
A Mathematical Model and Scheduling
Heuristics for Satisfying Prioritized

Data Requests in an Oversubscribed
Communication Network

Mitchell D. Theys, Member, IEEE, Min Tan, Noah B. Beck, H.J. Siegel, Fellow, IEEE, and

Michael Jurczyk, Member, IEEE

AbstractÐProviding up-to-date input to users' applications is an important data management problem for a distributed computing

environment, where each data storage location and intermediate node may have specific data available, storage limitations, and

communication links available. Sites in the network request data items and each request has an associated deadline and priority. In a

military situation, the data staging problem involves positioning data for facilitating a faster access time when it is needed by programs

that will aid in decision making. This work concentrates on solving a basic version of the data staging problem in which all parameter

values for the communication system and the data request information represent the best known information collected so far and stay

fixed throughout the scheduling process. The network is assumed to be oversubscribed and not all requests for data items can be

satisfied. A mathematical model for the basic data staging problem is introduced. Then, three multiple-source shortest-path algorithm-

based heuristics for finding a near-optimal schedule of the communication steps for staging the data are presented. Each heuristic can

be used with each of four cost criteria developed. Thus, 12 implementations are examined. In addition, two different weightings for the

relative importance of different priority levels are considered. The performance of the proposed heuristics are evaluated and compared

by simulations. The proposed heuristics are shown to perform well with respect to upper and lower bounds. Furthermore, the heuristics

and a complex cost criterion allow more highest priority messages to be received than a simple-cost-based heuristic that schedules all

highest priority messages first.

Index TermsÐCommunication network, data management, Dijkstra's multiple-source shortest-path algorithm, distributed processing,

heterogeneous computing, scheduling heuristics.

æ

1 INTRODUCTION

THE DARPA Battlefield Awareness and Data Dissemina-
tion (BADD) program [18] includes designing an

information system for forwarding (staging) data to proxy
servers prior to their usage as inputs to a local application in
a distributed computing environment, using satellite and
other communication links. The network combines terres-
trial cable and fiber with commercial VSAT (very small
aperture terminal) internet and commercial broadcast. This
provides a unique basis for information management. It will
allow web-based information access and linkage as well as

server-to-server information linkage. The focus is on
providing the ability to operate in a distributed server-
server-client environment to optimize information currency
for many critical classes of information.

Data staging is an important data management problem
that needs to be addressed by the BADD program. An
informal description of an example of the data staging
problem in a military application is as follows. A warfighter
is in a remote location with a portable computer and needs
data as input for a program that plans troop movements.
The data can include detailed terrain maps, enemy
locations, troop movements, and current weather predic-
tions. The data will be available from Washington, D.C.,
foreign military bases, and other data storage locations.
Each location may have specific data available, storage
limitations, and communication links. Also, each data
request is associated with a specific deadline and priority.
It is assumed that not all requests can be satisfied by their
deadline. In a military situation, the data staging problem
involves positioning data for facilitating a faster access time
when it is needed by programs that will aid in decision
making.

Positioning the data before it is needed can be compli±
cated by the dynamic nature of data requests and network
congestion, the limited storage space at certain sites, the
limited bandwidth of links, the changing availability of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 9, SEPTEMBER 2000 969

. M.D. Theys is with the Department of Electrical Engineering and
Computer Science, University of Illinois at Chicago, 851 S. Morgan St.,
RM 1120, Chicago, IL 60607-7053. E-mail: mtheys@uic.edu.

. M. Tan is with Dealist.com, 2059 Camden Ave., San Jose, CA 95124.
E-mail: mintan@ureach.com.

. N.B. Beck is with Sun UltraSPARC Verification, Boston Design Center, 5
Omni Way, MS UCHL05-104, Chelmsford, MA 01824.
E-mail: noah@noahsark.dyndns.com.

. H.J. Siegel is with the School of Electrical and Computer Engineering,
Purdue University, West Lafayette, IN 47907-1285.
E-mail: hj@purdue.edu.

. M. Jurczyk is with the Department of Computer Engineering and
Computer Science, University of Missouri-Columbia, 121 Engineering
Building West, Columbia, MO 65211. E-mail: mjurczyk@missouri.edu.

Manuscript received 18 Dec. 1998; revised 12 Jan. 2000; accepted 3 Apr. 2000.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 108474.

1045-9219/00/$10.00 ß 2000 IEEE

links and data, the time constraints of the needed data, the

priority of the needed data, and the determination of where

to stage the data [20]. Also, the associated garbage collection

problem (i.e., determining which data will be deleted or

reverse deployed to rear-sites from the forward-deployed

units) arises when existing storage limitations become

critical [18], [20]. The storage situation becomes even more

difficult when copies of data items are allowed to reside on

different machines in the network so that there are more

available sources from which the requesting applications

can obtain certain data (e.g., [22], [23]). Multiple copies of

data items also provide an increased level of fault tolerance,

in cases of links or storage locations going offline.
The simplified data staging problem addressed here

requires a schedule for transmitting data between pairs of

nodes in the corresponding communication system for

satisfying as many of the data requests as possible. Each

node in the system can be: 1) a source machine of initial

data items, 2) an intermediate node for storing data

temporarily, and/or 3) a final destination machine that

requests a specific data item.
It is also assumed in this simplified version of the data

staging problem that all parameter values for the commu-

nication system and the data request information (e.g.,

network configuration and requesting machines) represent

the best known information collected so far and stay fixed

throughout the scheduling process. It is assumed that not

all of the requests can be satisfied due to storage capacity

and communication constraints. The model is designed to

create a schedule for movement of data from the source of

the data to a ªstagedº location for the data. It is assumed

that a user's application can easily retrieve the data from

this location.
Three multiple-source shortest-path algorithm-based

heuristics for finding a near-optimal schedule of the

communication steps for staging the data are presented.

Each heuristic can be used with each of four cost criteria

developed. Thus, 12 implementations are examined. The

performance of the proposed heuristics are evaluated and

compared by simulations. This research serves as a

necessary step toward solving the more realistic and

complicated version of the data staging problem involving

fault tolerance, dynamic changes to the network configura-

tion, adhoc data requests, sensor-triggered data transfers,

etc.
Section 2 provides an overview of work that is related to

the data staging problem. In Section 3, a mathematical

model for a basic data staging problem is introduced.

Section 4 presents the multiple-source shortest-path algo-

rithm-based heuristics for finding a near-optimal schedule

of the communication steps for data staging. These

heuristics adopt the simplified view of the data staging

problem described by the mathematical model. A simula-

tion study is discussed in Section 5, which evaluates the

performance of the proposed heuristics outlined in

Section 4. A BADD-like network environment has been

used in developing the parameters for conducting this

simulation study.

2 RELATED WORK

To the best of the authors' knowledge, there is currently no
other work presented in the open literature that addresses
the data staging problem, designs a mathematical model to
quantify it, or presents a heuristic for solving it. A problem
that is, at a high level, remotely similar to data staging is the
facility location problem [13] in management science and
operations research. Under the context of the construction
of several new production facilities for components, a
manufacturing firm needs to arrange the locations of the
production facilities and assembly plants effectively, such
that the total cost of transporting individual components
from the production facilities to the assembly plants is
minimized. It is required that the firm makes several
interrelated decisions: how large and where should the
plants be, what production method should be used, and
where the production facilities should be located. If an
analogy is made between 1) the assembly plants and the
destination nodes that make the data requests, 2) the
individual manufacturing components and the requested
data elements to be transferred, and 3) the production
facilities and the source locations of requested data, then at
a high level the facility location problem has features similar
to those of the data staging problem (e.g., the use of a
graph-based method to reduce the facility location problem
to a shortest-path or minimum spanning tree problem).

However, when examining the relationship between the
facility location problem and the data staging problem
carefully, there are significant differences. First, each
component that a plant requests is usually not associated
with a prioritizing scheme, while in the data staging
problem, each data request has an individual priority. Also,
each component requested from a plant commonly does not
have a corresponding individual deadline related factor,
while in the data staging problem each data request has a
deadline. For the data staging problem, the individual
priority and individual deadline associated with each data
request are the two most important parameters for
formulating the optimization criterion. For example, the
minimization of the sum of the weighted priorities of
satisfiable data requests (based on their individual dead-
lines) is used as the optimization criterion in the mathema-
tical model of the basic data staging problem presented in
Section 3. But for the facility location problem, in general,
researchers adopt optimization criteria that are related to
the physical distances between plants and facilities in either
a continuous or discrete domain without any prioritizing
schemes or individual deadline related factors (e.g., [8], [10],
[14], [17], [19]). Furthermore, in the facility location
problem, all constraints must be satisfied for the production
to occur (e.g., all parts of a car must arrive). In this research,
it is known that not all requests can be satisfied (e.g., some
low priority data requests may be dropped). Thus, although
lessons can be drawn from the design of algorithms for
different versions of the facility location problem, there are
significant differences between the facility location and the
data staging problems in terms of their formulations and
potential solutions.

Data management problems similar to data staging for
the BADD program are studied for other communication

970 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 9, SEPTEMBER 2000

systems. With the increasing popularity of the World Wide
Web (WWW), the US National Science Foundation (NSF)
projects that new techniques for organizing cache memories
and other buffering schemes are necessary to alleviate
memory and network latency and to increase bandwidth
[4]. More advanced approaches of directory services, data
replication, application-level naming, and multicasting are
being studied to improve the speed and robustness of the
WWW [2]. It has been shown that several file caches could
reduce file transfer traffic, and hence the volume of traffic
on the internet backbone [11]. In addition, in distributed
environments, ways to increase system performance with
intelligent data placement are needed [1]. The study of data
staging can potentially draw lessons from and generate
positive input for the active research in these related, but
not directly comparable, areas.

Work has been done to provide extensions to wormhole

routing protocols that handle real-time messages. An off-
line approach that schedules usage of the virtual channels
by allowing higher priority messages to preempt lower

priority messages is presented in [3]. Their research shows
that they improve wormhole routing by employing such a
protocol. The goal of the work in [3] is similar to the goal of

the work presented here in that both give preference to
messages that have higher priority. However, in [3] the
focus is on wormhole routing protocols, while the work
presented here 1) is for a general communication system,

2) attempts to find minimum paths over multiple links, and
3) uses a cost criterion that also considers how close a
message is to its deadline.

There has been research done in the area of mapping

tasks onto a suite of distributed heterogeneous machines
(e.g., [6], [7], [12], [16], [25]). This task mapping research
focuses on deciding what machine should execute each
task, rather than assuming the task execution locations are

known (as in the data staging situation). Thus, the basic
problem being addressed by these task mapping studies is
different than that of data staging.

Research has been performed concerning dynamic dead-

line scheduling in real-time systems. Many algorithms for
this area have been based on earliest deadline first (EDF)
scheduling [21], which is also referred to as earliest due date

(EDD) scheduling [5]. Both of these approaches (EDD and
EDF) are dynamic approaches to scheduling and often
schedule periodic tasks, while the the research performed
here is static in nature and deals with one-time requests for

information. In addition, most EDF or EDD research has not
included the notion of priorities as defined here, which is an
integral part of this research.

Other research exploring heuristics for use in the BADD

environment has been performed [15]. This work examines
methods for scheduling efficiently the ATM-like channels of
a possible BADD-like environment. It shows that ªgreedyº
heuristics are effective tools for use in that BADD-like

environment and uses a network simulator to corroborate
this statement; however, those heuristics do not consider
several parameters considered here, such as deadlines and

data availability times. The work here differs from [15] in
that: 1) here a detailed mathematical model is developed,

and 2) the collection of heuristics and cost criteria studied
here are based on a different set of assumptions about

system structure and data request characterizations.

3 MATHEMATICAL MODEL

A quantitative mathematical model for a basic data staging

problem is presented in this section. This model allows the

heuristics introduced in Section 4 to be presented formally.

As stated and discussed in Section 1, this document
concentrates on solving a simpler version of the data

staging problem statically, where all parameter values for

the communication system and the data request informa-

tion stay fixed throughout the scheduling process. The
values of all parameters in the following model may change

temporally to reflect the dynamic nature of the underlying

network system when the model is extended and used in a

dynamic situation. In that case, the parameter values
represent the best known information collected at the given

point in time (e.g., all requests for data elements include

only those known at any specific time instant).
The model includes information about 1) the nodes in the

network, 2) the links in the network, and 3) the data
requests in the network. Each machine has parameters for

the storage capacity and node number. A link has an

availability starting time, availability ending time, band-

width, latency, source node, and destination node. Every
request has an approximate data item size, list of sources,

and a destination. A source of a data item consists of a node

number and a time after which the data is available on that

node. A destination for a data item contains a node number,
priority, and deadline for the data request. This description

of the network and associated data requests is used to

formulate the mathematical model for solving the basic data

staging problem. A glossary of notation is included in the
Appendix for the reader's convenience. The reader is

encouraged to reference this section as needed.
A communication system MM consists of mm machines

fM�0�;M�1�; :::;M�mÿ 1�g. Each machine can be a server

that stores data elements and/or a client that makes data
requests to the system. Each machine also can be an

intermediate node for storing a copy of a specific data item

temporarily. CCap�i��t� represents the available memory

storage capacity of machine MM�i� �0 � i < m� from time tj
to tj�1 (the interval from tj to tj�1 is not necessarily equal to

one time unit).
A network topology graph GGnt specifies the connectivity

of the communication system for the machines in M. A set
of m vertices V � fV �0�; V �1�; :::; V �mÿ 1�g is generated that
corresponds to the m machines in the communication
system, where node VV �i� corresponds to machine M�i�. Two
machines may be connected directly by zero or more
communication links. In this model, if two machines are
connected by the same transmission link during nl non-
overlapping and discontinuous time intervals, then nl
different virtual links corresponding to the appropriate
available time intervals are used to represent this situation
(e.g., the availability of a satellite link for fifteen minutes
each hour). Also, each transmission link is unidirectional. A

THEYS ET AL.: A MATHEMATICAL MODEL AND SCHEDULING HEURISTICS FOR SATISFYING PRIORITIZED DATA REQUESTS IN AN... 971

bidirectional link between two machines is represented as
two different virtual unidirectional links that correspond to
the transmission link in each direction (for each time
interval).

Let NNl�i; j� be the total number of unidirectional virtual
communication links from M�i� to M�j�. LL�i; j��k� denotes the
kth unidirectional virtual communication link from M�i� to
M�j�, where 0 � i; j < m, i 6� j, and 0 � k < Nl�i; j�. For each
L�i; j��k�, a directed edge EE�i; j��k�from V �i� to V �j� is
included in Gnt. All the included edges constitute the set
of edges EE of Gnt. Each L�i; j��k� is associated with one
unique time interval during which the corresponding
physical link is available for communication. Let
LLst�i; j��k� denote the time when link L�i; j��k� becomes
available (link start time) and LLet�i; j��k� denote the time
when link L�i; j��k�'s availability terminates (link end time).
With the above notation, link L�i; j��k� is available between
Lst�i; j��k� (starting time) and Let�i; j��k� (ending time). Each
virtual link also has an associated bandwidth.

Let a data item be a block of information that can be
transferred between machines. For any data item dd, jjd j
represents the size of the associated data item. Let DD�i; j��k��j
d j� denote the communication time for transferring
data item d (from machine M�i� to machine M�j� through
their kth dedicated virtual link during time interval
�Lst�i; j��k�; Let�i; j��k��). The time D�i; j��k��j d j� includes all
the various hardware and software related components of
the intermachine communication overhead (e.g., network
latency and the time for data format conversion between
M�i� and M�j� when necessary). Machines M�i� and/or M�j�
may be intermediate nodes for transferring d rather than the
original source or the final destination node of d.

It is assumed that each machine can send different data
items (each via a different link) to its neighboring machines
in the network simultaneously. Future work will relax this
assumption.

Suppose nn is the number of data items with distinctive
names (identifiers) available in the corresponding commu-
nication system M. Let �� � f��0�; ��1�; :::; ��nÿ 1�g be the set
of these data items, where each ���i� is unique. For example,
a weather map of Europe generated at 2 p.m. would have a
different name than a weather map of the same region
generated at 6 p.m. A data location table that specifies the
initial locations of the n available data items can be
constructed with the following notation. Let NN��i� be the
number of different machines that the data item ��i� is
located at initially. SSource�i; j� denotes the jth initial source
location of the data item ��i� (with no implied significance
for the ordering of the sources), where 0 � i < n,
0 � j < N��i�, and 0 � Source�i; j� < m. Also, ��st�i; j� de-
notes the time at which ��i� is available at its jth initial
source location (start time).

Suppose �� is the number of requested data items with
distinctive names (identifiers) in the corresponding com-
munication system M, where �0 � � � n�. Let RRq �
fRq�0�; Rq�1�; . . . ; Rq��ÿ 1�g be the set of the requested data
items. Each RRq�j� �0 � j < �� is the name of a data item and
there must exist an i �0 � i < n�, such that Rq�j� � ��i�. Each
Rq�j�must be unique. A data request table that specifies the
requests of data items can be constructed with the following

notation. Let NNrq�j� denote the number of different requests
for Rq�j�.
RRequest�j; k� denotes the number of the machine from

which the kth request for data item Rq�j� originates (with no
implied order among the requests), where 0 � j < �,
0 � k < Nrq�j�, and 0 � Request�j; k� < m. (It is assumed
that a given machine generates at most one request for a
given data item.) Also, RRft�j; k� denotes the finishing time
(or deadline) after which the data item RRq�j� on its kth

requesting location is no longer useful (e.g., data items may
be needed before a specific time when certain decisions
must be made). The deadlines are set by the users'
applications and also the users' position in the command
hierarchy. Two requests for the same data item, terminating
on two different destinations, could result in different
deadlines for each of the destinations.

A machine functioning as an intermediate node for a
data item Rq�j� does not need to keep the data item local
indefinitely. Instead, at

 time units after the latest deadline
for the requested data item Rq�j�, the data item is removed
from the storage of any intermediate nodes (i.e., garbage
collection is performed). In this way, storage capacity is
reclaimed by removing data items after they are no longer
needed, and a level of redundancy is provided in the
system in cases where a link, an intermediate node, or a
destination might lose their copy of Rq�j�. The scheduling
heuristics do not remove a data item from any of its sources
or destinations because it is considered outside the scope of
responsibility of the scheduler.

Suppose the priority of each data request is between 0
and P , where PP is the highest priority possible (i.e., P
corresponds to the class of most important requests).
PPriority�j; k� denotes the priority for the data request of
the data item Rq�j� on its kth requesting location. The
priority of each request would be set by the command
structure present in the problem, and two different requests
for the same data item can have different priorities (e.g., if a
general and a private both request the air traffic orders,
obviously the general would have a higher priority than the
private).

Suppose WW �i� �0 � i � P � denotes the relative weight of
the ith priority. These weightings allow system adminis-
trators to specify the relative importance of a priority � data
request versus priority � data request, where 0 � �; � � P .

Assume that the scheduling procedure of the commu-
nication steps starts at time 0. Let SS � fS0; S1; :::; S�ÿ1g
denote a set of �� distinct schedules for the communication
steps of transmitting requested data items. Consider a
specific schedule SSh, where 0 � h < �. The kth request for
data item Rq�j� is satisfiable with respect to Sh if Rq�j� can
be obtained by the requesting machine, M�Request�j; k��,
before the deadline, Rft�j; k�. Let SSrq�Sh� denote the set of
two-tuples f�j; k� j kth request of the data item Rq�j� is
satisfiable using schedule Shg.

The effect, EE�Sh�, of the scheduling scheme Sh is
defined as

E�Sh� � ÿ
X

�j;k�2Srq�Sh�
W �Priority�j; k��:

972 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 9, SEPTEMBER 2000

Given this mathematical model, the global optimization

criterion used for data staging in this document, for a

specific communication system, is to find an Sh such that

E�Sh� is minimized (i.e., the total sum of the weighted

priorities of all satisfiable data requests with respect to Sh is

maximized). It should be noted that an exhaustive set of

schedules is not created in this research.

4 DATA STAGING HEURISTICS

4.1 Introduction

The heuristics for solving the data staging problem are

based on Dijkstra's algorithm for solving the multiple-

source shortest-path problem on a weighted and directed

graph [9]. Dijkstra's algorithm takes as input a directed

graph with weighted edges, and produces as output the

shortest path from a set of source nodes to every other node

of the graph. More detailed information about Dijkstra's

algorithm can be found in [9].
All necessary communication steps are scheduled by the

data staging heuristics. These heuristics consider all data

requests together and utilize the following strategies

collectively:

1. find the shortest path for each data item as if it is the
only requested data in the system,

2. resolve conflicting requests,
3. maximize the weighted sum of the priorities of the

potentially satisfiable data requests, and
4. consider the urgency of a request as its deadline

approaches.

The model used for the heuristics and implementation

details about the heuristics are presented in Sections 4.2

through 4.4. Sections 4.5 through 4.7 discuss the three

heuristics that have been developed. These heuristics are

built upon Dijkstra's multiple-source shortest-path algo-

rithm. The heuristics iteratively pick which data item to

transfer next based on a cost function. Section 4.8 presents

background information about the cost criteria components,

and details the four cost criteria used in this research.

4.2 Adaptation of Dijkstra's Algorithm

For each requested data item Rq�i�, an instantiation, GGnt�i�,
of the graph Gnt (defined in Section 3) is created. Let VV S�i�
be the set of source nodes corresponding to the machines

that are the initial locations of the data item Rq�i�. Let VV D�i�
be the set of destination nodes corresponding to the

machines that are making data requests for Rq�i� (i.e.,

machines Request�i; k�; 0 � k < Nrq�i�). (It is assumed that

VS�i� \ VD�i� � ;.) The weight on an edge E�b; j��k� of Gnt�i� is
the communication time required to transfer Rq�i� from

machine b to machine j over virtual link L�b; j��k�. Let the

length of a path from a source node vvs 2 VS�i� to a

destination node vvd 2 VD�i� be defined as the difference

between the time when data item Rq�i� is available on vs and

the time data item Rq�i� arrives at vd (via the machines and

the communication links along the path). This time can be

calculated using the various parameters defined in Section 3.

With the defined Gnt�i�, VS�i�, and VD�i�, a separate multiple-

source shortest-path problem is well-defined for each

requested data item in the context of the data staging

problem.
Dijkstra's algorithm, in general, is applied to a directed

graph with weighted edges and a set of source nodes [9].

For each node in the graph, the algorithm generates a

shortest path from any of the sources of the data item to that

node (using the weighted edges). The heuristics examined

here begin by applying Dijkstra's algorithm to Gnt�i� for

each requested data item Rq�i�. More detailed information

about Dijkstra's algorithm can be found in [9]. Then the

heuristics consider all data items collectively.
An example of how Dijkstra's algorithm functions is

illustrated in Fig. 1. In the figure, nodes s0 and s1 are both

sources for the requested data item Rq�i� at time zero, i.e.,

VS�i� � fs0; s1g. In general, different sources can have

differing available times for the same data item. For the

purposes of this study, all available times, for a particular

data item, are created to be the same. Dijkstra's algorithm

will find the shortest path from a source to each of the other

three nodes in the graph, u, v, and x. In Fig. 1, the network

graph shows the links that are available, with their

associated cost noted. The four parts of Fig. 1 show four

states of Gnt�i� during the execution of the algorithm.
The following notation is used to show the state of the

algorithm at each time. The dotted lines are those next links

that can be used to schedule the movement of the data item

from a source to the other nodes. The dashed line shows the

next link to be scheduled. The set VV F , which is initially VS�i�,
contains all nodes currently scheduled to receive the data

items. When all the nodes in the graph reside in the set VF ,

the algorithm is finished. For each node j adjacent to a node

in VF , the current estimate of the earliest arrival time for the

data item at node j is ee�j�.
Fig. 1a shows the initial state for the example. In Fig. 1b,

the earliest arrival time for the data item at the three nodes

is noted. The algorithm selects the node with the smallest e��
value to next receive the data item. Thus, the dashed line

shows that the next link to be scheduled by the algorithm

will be moving the data to node x from s0, the node with the

earliest arrival time. After the data item is scheduled to

node x, x is added to the set VF .
In Fig. 1c, the algorithm then attempts to reduce the

earliest arrival time, e��, for all nodes that are adjacent to

node x. It is then determined that the path from s0 through

node x to node u is shorter than the direct path from s0 to

node u and e�u� is updated. Because e�v� < e�u�, the link from

s1 to node v will be the next scheduled.
Lastly, in Fig. 1d, the process is repeated by examining

those nodes adjacent to node v. The link from node x to

node u is scheduled to transfer the data item. When the

algorithm completes, the shortest path to each node

(machine) from one of the elements of VS�i� (a source) is

shown by the dashed lines in Fig. 1d.
The implementation of Dijkstra's algorithm in the

heuristics checks: 1) that all machines have enough memory

capacity, Cap, to hold the data item being transferred until

the garbage collection scheme schedules its removal; 2) that

THEYS ET AL.: A MATHEMATICAL MODEL AND SCHEDULING HEURISTICS FOR SATISFYING PRIORITIZED DATA REQUESTS IN AN... 973

the communication links are available; and 3) the initial

time that the data item is available on a source. This

information is for the shortest path from some source node

to a destination. At the completion of Dijkstra's algorithm,

the shortest path from any source to all nodes in the

network is known (clearly, VD�i� � all machines). The

shortest path time ee�i; s� for Rq�i� to arrive at node V �s� is

initially obtained from executing Dijkstra's algorithm, and

is a lower bound for the arrival time when requests for all

data items are considered collectively.
Suppose e�i; s� and e�i; r� are known and there are virtual

links L�s; r��k��0 � k < Nl�s; r�� from V �s� to adjacent node

V �r�. Let AL�s; r��i��k�AL�s; r��i��k� denote the time when the requested

data item Rq�i� can be available on machine V �r� via fetching

the copy from V �s� through the virtual link L�s; r��k�.
Attempting to reduce the shortest path time e�i; r� with

respect to the edges from V �s� to V �r� based on the known

e�i; s� and e�i; r� is implemented by the C-style pseudocode

in Fig. 2.
As illustrated by Step 10 in Fig. 2, the exact virtual link

L�s; r��kkl� used for updating the shortest path estimate to

M�r� needs to be recorded, due to the existence of multiple

virtual links between V �s� and V �r�. Thus, the predecessor-

node ���r�in the usual description of the Dijkstra's algorithm

(used to record the shortest path) is extended as a

predecessor field and is defined as a two-tuple �s; kl� in

this data staging heuristic, where s gives the source

machine and kl stores the virtual link used.

For the complexity analysis of this multiple-source

shortest-path based heuristic for determining one commu-

nication step in Sh, suppose that jjEj is the number of edges

and jjV j is the number of vertices in the network topology

graph Gnt. If a Fibonacci heap [9] is used to implement the

priority queue, the worst case asymptotic complexity of

Dijkstra's algorithm is O�jEj � jV j log jV j�. For the network

topology graph Gnt terminology described in Section 3,

jEj �P0�i 6�j<m Nl�i; j� and jV j � m. Because it is necessary

to apply the multiple-source shortest-path algorithm to all

the requested data items Rq�i�; �0 � i < m�, the worst case

asymptotic complexity of this heuristic for determining one

communication step in Sh is O���v log v�P0�i6�j<m Nl�i; j���.
4.3 Combining Paths for Multiple Data Items

After applying the multiple-source shortest-path algorithm

for each of the � requested data items Rq�i� individually, �

sets of shortest paths are generated. For the example shown

in Fig. 3, there are four valid communication steps that can

be scheduled (specified by asterisks). But different valid

communication steps may have conflicting resource re-

quirements (e.g., machine M�0� cannot send data items

Rq�0� and Rq�1� to machine M�3� over the same virtual link

simultaneously due to a link conflict). Thus, a local

optimization criterion is used to select one of the valid

communication steps to be scheduled (refer to Section 4.8

for more information).
Readers should notice that it may be impossible to use

the individually shortest paths to all destinations for each

data item due to possible communication link and memory

space contention in the network when transferring other

data items during the same time interval. Also, a multiple-

source shortest-path algorithm for Gnt�i� attempts to

minimize the time when only a given requested data item

Rq�i� is obtained by its corresponding requesting locations.

But as stated in Section 1, request deadlines and the

priorities of all potentially satisfiable data requests must be

taken into account (as well as the sharing of the memory

capacity of machines and the communication links by

multiple data items).

974 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 9, SEPTEMBER 2000

Fig. 1. An example execution of Dijkstra's algorithm for a given requested data item Rq�i�. The earliest arrival time for the data item at a node is

represented as e[]. Dotted lines are those next links that can be scheduled to move data; dashed lines show the links that have been scheduled. The

solid lines are other links in the system. The set VF contains nodes scheduled to receive the data item. The number next to each link is the

corresponding communication time for a data item to traverse the link. The figure components (a) through (d) show four states of the algorithm.

4.4 Garbage Collection

Leaving a copy of Rq�i� on machine M�r� after it is sent to

the next machine on the shortest path allows this copy to be

used as an intermediate copy for forwarding Rq�i� to some

other machines. For the example communication step of

transferring Rq�0� from M�0� to M�3� shown in Fig. 3a, by

tracing the shortest paths generated for M�7�, M�8�, and

M�9�, the set of intermediate machines can be determined as

f3; 5g. At some time after the latest deadline for Rq�i�, as

discussed in Section 3, the available memory capacity of

M�r� is incremented by j Rq�i� j to simulate the removal of

Rq�i� from its memory. So for the example, M�3� and M�5�
would keep Rq�i� in their local memory for
 time units after

the latest deadline among machines M�6�, M�7�, M�8�, and

M�9�. The data item is kept on the intermediate machines

for this time duration to provide a level of fault tolerance in

cases when communication links or storage locations

become unavailable, or in the case where a link, an

intermediate node, or a destination loses its copy of the

data.

4.5 Partial Path Heuristic

Each iteration of this heuristic involves: 1) performing

Dijkstra's algorithm for each data request individually,

2) for the valid next communication steps, determining the

ªcostº to transfer a data item to its successor in the shortest

THEYS ET AL.: A MATHEMATICAL MODEL AND SCHEDULING HEURISTICS FOR SATISFYING PRIORITIZED DATA REQUESTS IN AN... 975

Fig. 2. Pseudocode for attempting to reduce the shortest path time with respect to the edges from V �s� to V �r� for Rq�i�.

path, 3) picking the lowest cost data request and transfer-

ring that data item to the successor machine (making this

machine an additional source of that data item), 4) updating

system parameters to reflect resources used in 3), and

5) repeating 1) through 4) until there are no more satisfiable

requests in the system. In some cases, Dijkstra's algorithm

would not need to be executed each iteration for a particular

data transfer, i.e., if the data transfer did not use resources

needed for any future transfers. This optimization is not yet

considered, because this research is not focusing on

minimizing the execution time of the heuristics themselves.
This heuristic will schedule the transfer for the single

ªmost importantº request that must be transferred next,

based on a cost criterion. The heuristic is called the partial

path heuristic (referred to as partial in Figs. 6, 7, and 10),

because only one successor machine in the path is

scheduled at each iteration. If a data item is partially

scheduled through the system and because of other

scheduled transfers the requesting destination's deadline

is no longer satisfied, the scheduled transfers remain in the

system (the initial transfers were scheduled because the

deadline could have been satisfied). Reasons the schedule

for this now unsatisfiable request is not removed include:

1) in a dynamic situation, a change in the network could

allow the request to be satisfied, and 2) removing the

already scheduled transfers would require restarting the

scheduling for all data requests because of conflicts that

might have occurred. Sections 4.6 and 4.7 present the other

two heuristic methods explored. The various cost criteria

used with the heuristics are described in Section 4.8, and the

heuristics are evaluated in Section 5.

4.6 Full Path/One Destination Heuristic

The full path/one destination heuristic produces a com-

munication schedule that avoids partial paths that are later

blocked. The behavior of the partial path heuristic showed

that if a data item Rq�i� was selected for scheduling a

transfer to its next intermediate location (a ªhopº), in the

following iteration, the same requested data item, Rq�i�,
would typically be selected again to schedule its next hop.

The full path/one destination heuristic (referred to as

full_one in Figs. 6, 8, and 10) attempts to exploit this trend

by selecting a requested data item with one of the cost

criterion discussed in Section 4.8 and scheduling all hops

required for the data item to reach its lowest cost

destination before executing Dijkstra's algorithm again.
Considering the example communication system in

Fig. 3a, data item Rq�0� would be scheduled only from
M�0� to M�3� before executing Dijkstra's algorithm again in
the partial path heuristic. In the full path/one destination
heuristic, data item Rq�0� would be scheduled from M�0�
through M�3� and M�5� to M�9� (assuming M�9�'s cost is
lower than M�7� or M�8�) before executing Dijkstra's
algorithm again. This results in reducing the number of
executions of Dijkstra's algorithm by three for this example.
A savings proportional to the average length of a data
item's path from a source to a destination is expected from
this heuristic.

Considering again the communication system in Fig. 3a,

if this heuristic initially schedules the transfer of data item

Rq�0� from M�0� to M�9�, M�3� and M�5� would become

sources for Rq�0�. In the next iteration, M�7� could receive

Rq�0� from M�5�, and M�8� could receive ��0� from M�3�,
without having to schedule a transfer from the original

source, M�0�. The schedules generated by the partial path

and the full path/one destination heuristics are compared

in Section 5.
The partial path heuristic may construct a partial path (of

many links) that it later cannot complete (due to network or

memory resources being consumed by other requested data

items). However, until this is determined, the part of the

path constructed may block the paths of the other requested

data items, causing them to take less optimal paths or be

deemed unsatisfiable. The full path/one destination heur-

istic avoids this problem. An advantage the partial path

approach does have over the full path/one destination

approach is that it allows the link-by-link assignment of

each virtual link and each machine's memory capacity to be

made based on the relative values of the cost criteria for the

data items that may want the resource.

4.7 Full Path/All Destinations Heuristic

The full path/all destinations heuristic builds on the full

path/one destination heuristic and requires fewer execu-

tions of Dijkstra's algorithm then the other two heuristics. In

the full path/one destination heuristic, a data item is

976 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 9, SEPTEMBER 2000

Fig. 3. An example communication system that requests (a) Rq�0� and (b) Rq�1�. Source�i; j� denotes the jth initial source location of the data item

Rq�i�. Request�i; j� denotes the machine from which the jth request for data item Rq�i� originates. Solid lines show shortest paths for a given data item

to all nodes (even nonrequesters), and dashed lines show unused links for a given data item.

transferred from a single source to a single destination, even

if there are multiple destinations requesting the same data

item. For the example communication system in Fig. 3a,

Rq�0� is requested by machines M�7�, M�8�, and M�9�, and

the shortest path for these three destinations all originate at

machine M�0� and pass through machine M�3�. The full

path/all destinations heuristic (referred to as full_all in

Figs. 6, 9, and 10), will schedule all paths for a single data

item that share the next machine in the path as an

intermediate machine. In Fig. 3, the data item Rq�0� would

be scheduled for all three destinations (machines M�7�,
M�8�, and M�9�) at the same time. By scheduling the path to

multiple destinations, two fewer executions of Dijkstra's

algorithm are required as compared to the full path/one

destination heuristic. A savings is expected that is propor-

tional to the average number of destinations for a data item

whose shortest path intermediate machine sets share a

common machine.
This approach was considered because it was expected to

generate results comparable to the full path/one destination

heuristic, but with a smaller heuristic execution time. The

schedules generated by the three heuristics are compared in

Section 5.

4.8 Cost Criteria

Four cost criteria that use ªurgencyº and ªeffective priorityº

have been devised for the three heuristics presented. Each

of these cost criteria was chosen so as to vary the effect these

two parameters will have in determining the next commu-

nication step. This section begins by defining ªurgencyº

and ªeffective priority,º and then the four cost criteria used

are presented.
Recall that AT �i; j� denotes a lower bound on the time

when Rq�i� is received and available at its corresponding jth

requesting location (as mentioned in Section 3) and Rft�i; j�
denotes the finishing time (or deadline) after which the data

item Rq�i� on its jth requesting location is no longer useful

(as mentioned in Section 3). Assume M�r� is the next

machine in the shortest path from a given source to the jth

destination to receive data item Rq�i�. Let the set of all such

destinations j be called DDrq�i; r�. A satisfiability function

SSat�i; r��j� is 1 if a request for data item Rq�i� is scheduled to

be received at the jth requesting destination (through

machine M�r�) before its deadline; and 0 if the request for

data item Rq�i� is scheduled to be received after its deadline.

Note that if the request cannot be satisfied using the

shortest path, there is no other path that will cause it to be

satisfied.
As an example of the definition of Sat�i; r��j�, con±

sider the shortest paths generated by selecting first

the valid communication step for transferring Rq�0�
from M�0� to M�3� in Fig. 3a. For this example,

Drq�0; 3� � fM�7�;M�8�;M�9�g. Suppose that the request

deadlines for Rq�0� are as follows (in some abstract time

units): 10 for M�7�, 15 for M�8�, and 5 for M�9�. Suppose

further that the shortest path estimate has shown that the

network can deliver Rq�0� at time: 12 for M�7�, 11 for M�8�,

and 8 for M�9�. Then, Sat�0; 3��0� � 0, Sat�0; 3��1� � 1, and

Sat�0; 3��2� � 0.
Recall from Section 3 that Priority�i; j� denotes the

priority for the data request for the data item Rq�i� on

its jth requesting location and that W �k� �0 � k � P �
denotes the relative weight of the kth priority. Let

EEfp�i; r��j� denote the effective priority for the data

request of Rq�i� from its jth requesting location, where

Efp�i; r��j� � Sat�i; r��j� �W �Priority�i; j��.
Suppose UUrgency�i; r��j� denotes the urgency for the data

request of Rq�i� from its jth requesting location, where

Urgency�i; r��j� � ÿSat�i; r��j� � �Rft�i; j� ÿAT �i; j��, where

smaller Urgency�i; r��j� implies that it is less urgent to

transfer Rq�i� to the jth requesting location. Note that the

urgency would take into consideration the impact of factors

such as the number of intermediate nodes and the

bandwidths of the links between nodes. The unit of

measure for the Urgency term is seconds.
Four cost functions for transferring the requested data

item Rq�i� from machine M�s� to M�r� via an available direct

virtual link are each defined using urgency and effective

priority, as above defined. Readers should notice that

1) applying Dijkstra's algorithm to obtain AT �i; r� through

shortest paths, 2) maximizing Efp�i; r��j�, and 3) maximiz-

ing Urgency�i; r��j� follow the three strategies for designing

data relocation heuristics recommended in 1), 2), and 4),

respectively, in Section 4.1.
If Sat�i; r��j� is 0 for all r that correspond to valid next

machines that receive Rq�i� and the associated values of j,

that request receives no resources and the data does not

move from its current locations. The request is not

eliminated from the network. Currently, the heuristics are

applied to a static system, as this constraint is loosened and

a dynamic system is explored, links might become available

that would facilitate the delivery of an otherwise unsatisfi-

able request. Thus, requests that are at one point in time

unsatisfiable, might become satisfiable at a later point in

time.
The following information about the links in the network

is available: bandwidth available on a link, duration a

virtual link is available, and size of each data item. In the

model used here, the time interval a virtual link is needed to

transfer a specific data item Rq�i� is determined by dividing

the size of the data item, jRq�i� j , by the bandwidth available

on the link.
Suppose that the current chosen communication step is

to transfer the requested data item Rq[i] from M�s� to M�r�.
Before repeating the above heuristics for determining the

next communication step(s), the following information

must be updated: the list of virtual links and their start

and stop times, the available memory capacity on any

machines that Rq�i� has been placed, the sources of Rq�i�
must now include all machines that Rq�i� has been moved

to/through, and the time at which Rq�i� can be removed

from any intermediate machines.
The cost criteria are designed so that the next chosen

communication step should be the one that has the smallest

associated cost among all valid next communication steps

THEYS ET AL.: A MATHEMATICAL MODEL AND SCHEDULING HEURISTICS FOR SATISFYING PRIORITIZED DATA REQUESTS IN AN... 977

for transferring all Rq�i�, where 0 � i < �. Suppose WWE � 0

is the relative weight for the effective priority factor

and WWU � 0 is the relative weight for the urgency factor

in the scheduling. For the first cost criterion (C1), the

CostCost1�s; r��i; j��k�, for transferring the requested data item

Rq�i� from machine M�s� to M�r�, via link L�s; r��k�, for the

jth destination, is defined as:

Cost1�s; r��i; j��k� � ÿWE � Efp�i; r��j�
ÿWU � Urgency�i; r��j�:

The rationale for choosing the above cost for local

optimization is as follows. First, only a valid next commu-

nication step whose associated Sat�i; r� is not 0 will facilitate

satisfying data request(s). The first term of Cost1�s; r��i; j��k�
attempts to give preference to a satisfiable data request with

a priority higher than the other requests. Furthermore, to

satisfy as many data requests as possible, intuitively it is

necessary to transfer a specific data item to the requesting

locations whose deadlines are sooner. This intuition is

captured by the inclusion of the urgency term. Thus,

collectively with the consideration of the priority of

satisfiable data requests and the urgency of those data

requests in this local optimization step, using this cost

criterion in the data staging heuristic should generate a

near-optimal communication schedule that reasonably

achieves the global optimization criterion.
The second criterion (C2) examines the Cost2Cost2�s; r��i��k� for

transferring the requested data item Rq�i� from machine

M�s� to M�r� via link L�s; r��k�:

Cost2�s; r��i��k� � ÿWE � �
X

j2Drq�i;r�
Efp�i; r��j��

ÿWU � � max
j2Drq�i;r�

Urgency�i; r��j��:

This cost function considers all requests for Rq�i� whose

shortest path passes through machine M�r� and sums their

weighted priorities. Rather than summing all of the urgency

terms for these destinations, the most urgent satisfiable

request is added in Cost2. This method of capturing the

urgency is used as a heuristic to maximize the sum of the

weighted priorities of satisfied requests because if the most

urgent request for an item passing through M�r� is satisfied,

it is more likely that all requests for this data item passing

through M�r� will be satisfied.
The CostCost3�s; r ��i��k� for transferring the requested data

item Rq�i� from machine M�s� to M�r� via link L�s; r��k�
(C3) is:

Cost3�s; r��i��k� �
X

j2Drq�i;r�
Efp�i; r��j�=Urgency�i; r��j�:

The third criterion takes the weighted priority for a

destination and divides it by the urgency for this destina-

tion, and then sums over all the destinations with satisfiable

requests for data item Rq�i� on a path through machine

M�r�. This cost is a sum of the weighted priorities of

satisfiable requests normalized by the urgency of each

request. Note that this heuristic does not use WE or WU .

This is because the effective priority is divided by the

urgency and so WE divided by WU acts as a scaling

factor that would not affect the relative cost of the

requests. For example, if two data items i1 and i2 are

competing for the use of L�s; r��k�, the relative value of

Cost3�s; r��i1��k�=Cost3�s; r��i2��k� will be unchanged by in-

cluding any given WE to weight the Efp�i; r��j� factors and

any given WU to weight the Urgency�i; r��j� factors.
The CostCost4�s; r��i��k� for transferring the requested data

item Rq�i� from machine M�s� to M�r� via link L�s; r��k�
(C4) is:

Cost4�s; r��i��k� � ÿWE �
X

j2Drq�i;r�
Efp�i; r��j�

ÿWU �
X

j2Drq�i;r�
Urgency�i; r��j�:

This last criterion sums the weighted priorities of all

satisfiable requests for data item Rq�i� on a path through

machine M�r� and combines that with the sum of the

urgency for those same satisfiable requests. Comparing

Cost2 and Cost4, it should be noted that the urgency term

for each destination whose shortest path shares an inter-

mediate node M�r� is summed in Cost4, whereas Cost2
simply takes the maximum of the urgency terms over this

same set of destinations. The benefit of Cost4 is demon-

strated by the following example. The first data item, Rq�i�,
is requested by four machines that all have identical

priorities, and have an AT that is very close to their

deadlines. The second data item, Rq�j�, is also requested by

four destinations that have the same identical priorities, but

only one destination has an AT that is close to its deadline.

Cost2 will be unable to differentiate between these two data

requests, but Cost4 will chose to schedule Rq�i� before Rq�j�.
All four of these cost criteria are used in conjunction with

the partial path heuristic and the full path/one destination

heuristic. For the full path/all destinations heuristic, Cost1
is not used because it does not capture the fact that a data

item can be sent to multiple destinations.

978 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 9, SEPTEMBER 2000

Fig. 4. An example adjacency matrix for one of the networks used in the

simulation. A � at entry i; j implies there is a connection from machine i

to machine j.

The data item that the full path/one destination heuristic

chooses to send is sent from its current location (machine

�M�s�� in each of the cost criteria) over as many virtual links

as required to reach its destination machine (machine M�j�
for one value of j). For Cost1, the choice of j (i.e., which

requesting destination should be satisfied) is trivial; Cost1

only takes into account a single requesting destination. All

other cost criteria identify a set Drq�i; r� of destinations, and

one destination M�j� must be selected from that set to

satisfy. For cost Cost2, the value of j chosen is the one

satisfying the condition

max
j2Drq�i;r�

Urgency�i; r��j�

from the equation describing Cost2. For cost Cost3, the

value of j chosen is the one satisfying the condition

min
j2Drq�i;r�

Efp�i; r��j�
Urgency�i; r��j�

from the equation describing Cost3. For cost Cost4, the data

item is sent first to machine M�r�, and if no request was

satisfied, the cost is applied a second time for the same data

item Rq�i�, but setting the new M�s� (data source machine)

to the old M�r� (the machine to which the data was just

scheduled). The minimum cost is then taken over all values

of �r� (possible next staging locations). The value of �r� with

minimum cost determines the machine M�r� that the data is

sent to next. This process continues until the data item has

reached one requesting destination M�j�.

5 SIMULATION STUDY

5.1 Introduction

To perform the simulation study, network topologies and

data requests must be generated, values for WE and WU

must be determined, and other scheduling schemes need to

be created to compare to the heuristics discussed in

Sections 4.5 through 4.7. Rather than just choosing one

network topology and set of data requests, 40 test cases are

generated because one test case cannot reflect the range of

possible data requests and network configuration scenarios.

The three heuristics are executed using each of these cases

and the results are averaged. The properties for data

requests and the underlying communication systems are

randomly generated with uniform distributions in prede-

fined ranges representing a subset of the systems in a

BADD-like environment (see Section 5.3). The sources and

requesting machines for all data items are also generated

randomly. The test generation program guarantees that the

generated communication system is strongly connected [9],

such that there is a path consisting of unidirectional

physical transmission links between any pair of machines

in both directions.

These randomly generated patterns of data requests and

the underlying communication systems are used for three

reasons: 1) it is beneficial to obtain cases that can

demonstrate the performance of the heuristics over a broad

range of conditions, 2) a generally accepted set of data

staging benchmark tasks does not exist, and 3) the system

details of actual environments where these data heuristics

could be employed are constantly changing as new

technologies are introduced. Determining a representative

THEYS ET AL.: A MATHEMATICAL MODEL AND SCHEDULING HEURISTICS FOR SATISFYING PRIORITIZED DATA REQUESTS IN AN... 979

Fig. 5. An example of the initial link availability for one of the networks used in the simulation study.

set of data staging benchmark tasks remains an unresolved

challenge in the research field of data staging and is outside

the scope of this document.

As an example of the communication network structure

generated, one sample adjacency matrix is shown in Fig. 4.

A � at position �i; j� in the matrix represents the fact that a

physical link between machine i and machine j exists; a �
means there is no such link. The links utilized here are

unidirectional. This corresponds to some links being

satellite-based links. Bidirectional links can be represented

as two unidirectional links. Thus, a link from machine i to

machine j does not imply that there is a link from machine j

to machine i, nor does it disallow such a link.

Fig. 5 shows, for a subset of all the links in the system,

the time intervals that the physical links are available before

any scheduling of data items occurs. The varying avail-

ability of some links correlates to certain links being satellite

based and not always available. Other links can be reserved

for specific functions at certain times (such as teleconferen-

cing) and unavailable for transferring data items. Not every

link shown in Fig. 4 is available during the simulation

period shown in Fig. 5.

Finding optimal solutions to data staging tasks with

realistic parameter values are intractable problems. There-

fore, it is currently impractical to directly compare the

quality of the solutions found by the three heuristics with

those found by exhaustive searches in which optimal

answers can be obtained by enumerating all the possible

schedules of communication steps. Also, to the best of the

authors' knowledge, there is no other work presented in the

open literature that addresses the data staging problem and

presents a heuristic for solving it (based on a similar

underlying model). Thus, there is no other heuristic for

solving the same problem with which to make a direct

comparison of the heuristics presented in this document. To

aid in the evaluation of these heuristics, two lower bounds

and two upper bounds on the performance of the heuristics

are provided.

5.2 Lower and Upper Bounds

To provide lower bounds for the performance of the three

heuristics presented here, two random search based

scheduling procedures were devised. The first (looser)

lower bound is a random-search based scheduling proce-

dure that performs Dijkstra once for each requested data

item, assuming it is the only requested item in the network.

Then the paths through the network are scheduled for each

data item, finishing Rq�i� before Rq�i� 1� (where the

980 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 9, SEPTEMBER 2000

Fig. 6. Comparison of the heuristics' best cost criterion performance for the 1, 10, 100 weighting scheme.

ordering of the data items is arbitrary). If a conflict arises,

e.g., the link a transfer is attempting to schedule is no longer

available, the request is dropped and not satisfied. This

approach is referred to as single Dijkstra random (shown

as single_Dij_random in Fig. 6) because Dijkstra's algo-

rithm is only executed once for each data item. This random

based method is used to illustrate that executing Dijkstra's

algorithm more than once, with updated communication

system information, is advantageous.

The only difference between the second random proce-

dure and the partial path heuristic is that, instead of

choosing a valid communication step using a cost function

as discussed for the partial path heuristic, the Dijkstra

random heuristic (shown as random_Dijkstra in Fig. 6)

randomly chooses an arbitrary valid communication step to

schedule. This heuristic is used to show the importance of

using a cost criterion for decision making.

The first (looser) upper bound used for comparison

(shown as upper_bound in Fig. 6) is the total weighted sum

of the priorities of all requests in the system (it assumes

all requests can be satisfied). The second upper bound

represents those requests that could be satisfied if each were

the only request in the system (shown as possible_satisfy in

Fig. 6). The loose upper bound is not equal to the upper

bound because some requests cannot be satisfied due to

lack of link bandwidth and/or machine storage (even when

it is the only request in the system).

5.3 Parameters Used in Experiments

Creating the properties of a network structure that are

expected to occur in the field is a difficult endeavor. The

parameters used were chosen to reflect a representative

subset of a BADD-like environment. The number of

machines in the communication system is between ten

and twelve. Each machine has between 10 MB to 20 GB

memory storage capacity. The outbound degree of a

machine M�i� (i.e., the number of machines that M�i� can

transfer data items to directly through physical transmis-

sion links) is between four and seven. There are at most two

physical unidirectional transmission links between any two

machines (there can be none). The adjacency matrix is

created by selecting each machine in the network and

randomly determining the outbound degree of the machine

to be between the bounds mentioned above. Once the

outbound degree is chosen, the end machines for the links

are randomly generated. The network creation software

makes sure that a link does not originate and end at the

same machine.

THEYS ET AL.: A MATHEMATICAL MODEL AND SCHEDULING HEURISTICS FOR SATISFYING PRIORITIZED DATA REQUESTS IN AN... 981

Fig. 7. The partial path heuristic results for the 1, 10, 100 weighting scheme and various cost criteria.

The total number of data requests is 20 to 40 times the

number of machines in the system. The sources and

destinations for a data item are randomly selected from

the set of machines in the system such that: 1) there are at

most five sources, 2) there are at most five destinations, and

3) a destination for a data item is not also a source of the

same data item. Each data item size ranges from 10 KB to

100 MB. The simulations that were performed utilized two

different priority weightings. The first used a weighting of

1, 5, and 10 for low, medium, and high priority requests,

and the second used a weighting of 1, 10, and 100 for low,

medium, and high priority requests. Each data item that a

destination requests has an associated priority; therefore,

two destinations that request the same data item may have

differing priorities for that data item.

The bandwidth of each physical transmission link is

between 10Kbit/sec and 1.5 Mbit/sec. The link availability

times were generated as follows. First, a duration for a

particular virtual communication link between two

machines was chosen from the set {30 minutes, one hour,

two hours, four hours}. The percentage of the day (24 hours)

that a given physical link is available is then chosen

between 50 and 100 percent of the day, in increments of

10 percent. The number of virtual communication links is

then determined by taking the time the link is available

during the day (percentage available � 24 hours) and

dividing by the virtual link duration chosen above (for a

given communication link, all virtual links will have the

same duration). The starting time of the first virtual link is

randomly chosen between 0 and (1/3) � (total unavailable

time of the communication link). The unavailable time

between virtual links is randomly chosen such that: 1) no

two virtual links for the same physical link overlap in time,

2) the percentage of the day the physical link is available is

as chosen above, and 3) the number of virtual links is as

above calculated.

The starting time for a data item is sometime between 0

and 60 minutes (0 signifying some start time of the

scheduling period, such as midnight or 6 a.m.). The

deadline of a request for a data item is 15 to 60 minutes

after the data item's available time. Thus, the effective

duration of the simulation is two hours. The time duration

parameter for garbage collection,
, was set to six minutes.

Therefore, a particular intermediate machine M�r� will keep

a data item in its local memory for six minutes after the

latest deadline for Rq�i�. Sources and final destinations hold

data for the remainder of the simulation.

982 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 9, SEPTEMBER 2000

Fig. 8. The full path/one destination heuristic results for the 1, 10, 100 weighting scheme and various cost criteria.

Let the E-U ratio be WE=WU . As shown by the cost

functions introduced in Section 4.8, the E-U ratio may affect

the performance of the cost criterion (Cost1, Cost2, and

Cost4). Figs. 6, 7, 8, 9, and 10 show the performance of the

heuristic/cost-criterion pairings examined. It can be seen

from the figures how the E-U ratio affects the performance

of the heuristic/cost-criterion pairings. All data points in

Figs. 6, 7, 8, 9, and 10 are the average of the same

40 randomly generated test cases.

5.4 Evaluation of Simulations

The results shown in Figs. 6, 7, 8, and 9, are for the 1, 10, 100

weighting scheme. The results of the 1, 5, 10 weighting are

similar and are not shown here (see [24]). In the interval

from ÿ3 to 5, the horizontal axis contains the log10 of the E-

U ratio. The points inf and ÿ inf are the two extremes,

where iinf only considers the effective priority term, while

ÿÿinf only considers the urgency term.

Fig. 6 shows average lower and upper bounds (defined

in Section 5.2) and the average performance of the best

cost criterion for each of the heuristics, which happens to

be Cost4. (The minimum and maximum values for the

performance of these heuristics over the 40 individual

test cases with Cost4 are presented in [24].) The perfor-

mance of the partial path heuristic is shown in Fig. 7, the

full path/one destination heuristic in Fig. 8, and the full

path/all destinations heuristic in Fig. 9 (recall that Cost1
does not capture that a data item can be sent to multiple

destinations and is therefore not considered in the full

path/all destination heuristic). These graphs highlight the

performance of the four cost criteria for each of the

heuristics implemented.

Each of the cost criteria was developed for specific

features. The best cost criterion of the four investigated is

Cost4. This cost criterion combines the sum of the priorities

and the sum of the urgencies of multiple destinations whose

shortest path passes through a particular node. Cost1

performs worse than Cost4, because it does not consider

moving data to satisfy multiple requests, which Cost4 does.

The drawback of Cost2 is that the minimum urgency term

allows nonurgent data items within Drq to become

scheduled and block more urgent requests for other data

items. Using the ratio of priority and urgency in Cost3 was

meant to directly associate the priority of a request with its

particular urgency. This allows a nonurgent and urgent

request for a particular data item to be represented fairly

(i.e., take care of the problem with Cost2). The results in

Figs. 7, 8, and 9, show that this was not the case, most likely

due to scaling (i.e., one very small Urgency�i; j� may have

THEYS ET AL.: A MATHEMATICAL MODEL AND SCHEDULING HEURISTICS FOR SATISFYING PRIORITIZED DATA REQUESTS IN AN... 983

Fig. 9. The full path/all destinations heuristic results for the 1, 10, 100 weighting scheme and various cost criteria.

too much impact on the total cost). Future cost criteria

might be designed to capture the original intent.

An advantage of Cost3 is that it gave results that were

close to those of Cost4 with its best E-U ratio, while being

independent of the E-U ratio. Thus, in environments where

it is difficult to predict which E-U ratio to use, Cost3 may be

preferred.

When examining the schedule that the partial path

heuristic created, it was noted that often when a data item

started being scheduled, this particular data item was

repeatedly transferred until it reached a destination.

Because of this trend, the full path/one destination heuristic

was tested. A problem with the partial path heuristic is that

a data item can be partially scheduled through the network,

and then a second data item can be partially scheduled

through the network. At this point, the first data item may

attempt to finish being scheduled, and may be blocked by

the second data item from reaching a destination. The full

path/one destination heuristic corrects this problem and

outperforms the partial path heuristic, as can be seen in

Fig. 6. In addition, the full path heuristics were intended to

reduce the number of runs of Dijkstra's algorithm, hence

reducing execution time, as was found to be true in the

experiments.

Because the full path/one destination heuristic per-

formed so well, it was thought that scheduling a data item

to all of the destinations whose path passes through a

particular node would perform even better, the definition of

the full path/all destinations heuristic. This heuristic did

not perform as well as the other two. This may be because

this heuristic would schedule less important requests (by

sending to all requesting destinations using the intermedi-

ate node under evaluation) and block other more important

requests from being satisfied. Fig. 6 showcases these trends.

The full path/all destination heuristic did have the smallest

execution time, as was expected.

For the best performing E-U ratio, for each of the

heuristic/cost-criterion pairs, the average number of links a

satisfied data item traverses from a source to a destination

was measured in the range 1.5 to 1.6. All potentially

satisfiable data items have an average shortest path length

that is also in the above range. The maximum path length

taken by a satisfied data item was measured as nine links.
The various heuristics have differing execution times.

The ranges on execution time because each of the 40 test

cases correspond to a different scheduling problem with a

different optimal solution. The average execution times for

the three heuristics using the 1, 10, 100 weighting scheme

(for each heuristic's best cost criterion and best average E-U

ratio) are: partial pathÐ74 seconds, full path/one destina-

tionÐ53 seconds, and full path/all destinationsÐ50 sec-

onds. The random Dijkstra heuristic execution time (157

seconds) is larger than the cost-based heuristics because the

984 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 9, SEPTEMBER 2000

Fig. 10. A comparison of three heuristic's best E-U ratio/cost criterion combinations using different priority weighting terms.

random Dijkstra heuristic will spend time processing data
items that cannot possibly satisfy their associated deadlines,
whereas the cost-based heuristics will eliminate such data
items from consideration.

The last figure, Fig. 10, shows the comparison between
the two priority weighting schemes for the best combina-

tion of heuristic, cost criterion, and E-U ratio. It can be seen
that the 1, 10, 100 weighting satisfies more higher priority
requests and fewer medium and low priority requests than

the 1, 5, 10 weighting scheme, as was expected.
The last column in Fig. 10 (hi_med_lo) shows the

number of satisfied requests in the system by processing
all the high priority requests before any of the medium
priority requests, and all of the medium priority requests
before any of the low priority requests. Each request follows

its Dijkstra's shortest path (and Dijkstra's algorithm is rerun
after each request is scheduled). To implement this process,
the full path/one destination heuristic was used in
conjunction with Cost1, a log10�WE=WU� of infinity, and a

priority weighting scheme of 1, 10, 100. Choosing this
combination causes only the priority term of the cost
function to be used in determining which single request will
get network resources. This method provides a cost-guided

(versus arbitrary) approach to basing scheduling decisions
only on the priority of individual requests. Recall that the
priority of the requests was determined such that each

priority level was assigned to approximately one-third of all
the requests.

The other heuristics shown in Fig. 10 (with Cost4) satisfy

more high priority requests than the hi_med_lo method.

This is due to Cost4's collective view of destinations and the

incorporation of the urgency term. Furthermore, the total

weighted sum of priorities satisfied for hi_med_lo is the

lowest of the techniques shown for each of the priority

weighting schemes.

6 CONCLUSIONS

Data staging is an important data management issue for

distributed computer systems. It addresses the issues of
distributing and storing over numerous geographically
dispersed locations, both repository data and continually
generated data through an oversubscribed network, where

not all data requests can be satisfied. When certain data
with their corresponding priorities need to be collected
together at a site with limited storage capacities in a timely

fashion, a heuristic must be devised to schedule the
necessary communication steps efficiently.

The performance of eleven heuristic/cost-criterion pairs
were shown, and compared to upper and lower bounds.
Two different weightings for the relative importance of
different priority levels were considered. Each heuristic and

cost criterion had advantages. The results presented show
that for the system parameters considered (e.g., priority
weighting, network loads), the combination of the Cost4
and the full path/one destination heuristic performed the

best, when using the measure of weighted sum of priorities
satisfied.

Because each heuristic/cost-criterion pair has advan-

tages, the pair that performs best may differ depending on

the system parameters (i.e., the actual environment where

the scheduler heuristic/cost-criterion pair will be de-

ployed). If one was also concerned with execution time,

the full path/all destinations heuristic results in a compar-

able weighted sum of priorities satisfied with a slightly

faster execution time. Both of these heuristics allowed more

highest priority messages to be received than a simple-cost-

based heuristic that schedules all highest priority messages

first. Future work will explore how the heuristics perform

when varying the congestion of the network and when

additional priority weighting schemes are considered.

APPENDIX

GLOSSARY OF NOTATIONS

THEYS ET AL.: A MATHEMATICAL MODEL AND SCHEDULING HEURISTICS FOR SATISFYING PRIORITIZED DATA REQUESTS IN AN... 985

ACKNOWLEDGMENTS

This research was supported by the DARPA/ISO BADD
Program and the US Office of Naval Research under grant
N00014-97-1-0804, by NRaD under contract N66001-96-M-
2277, and by the DARPA/ITO AICE Program under
contracts DABT63-99-C-0010 and DABT63-99-C-0012.
M.D. Theys was also supported by a Purdue Benjamin
Meisner Fellowship, an Intel Fellowship, and an AFCEA
Fellowship. Equipment used in this research was donated
by Intel.

The authors would also like to thank Bob Beaton, Bob
Douglass, Surja Chatterjea, Richard F. Freund, Debra
Hensgen, and Joe Rockmore for their comments and the
anonymous reviewers for the helpful suggestions they
provided. Preliminary versions of some portions of this
material were presented at the Seventh Heterogeneous
Computing Workshop (HCW '98) and at the 20th Con-
ference on Distributed Computing Systems.

REFERENCES

[1] S. Acharya and S.B. Zdonik, ªAn Efficient Scheme for Dynamic
Data Replication,º Technical Report CS-93-43, Dept. of Computer
Science, Brown Univ., Sept. 1993.

[2] M. Baentsch, L. Baum, G. Molter, S. Rothkugel, and P. Sturm,
ªEnhancing the Web's Infrastructure: From Caching to Replica-
tion,º IEEE Internet Computing, vol. 1, no. 2, pp. 18-27, Mar.-Apr.
1997.

[3] S. Balakrishnan and F. OÈ zguÈ ner, ªA Priority-Driven Flow Control
Mechanism for Real-Time Traffic in Multiprocessor Networks,º
IEEE Trans. Parallel and Distributed Systems, vol. 9, no. 7,
pp. 664-678, July 1998.

[4] A. Bestavros, ªWWW Traffic Reduction and Load Balancing
through Server-Based Caching,º IEEE Concurrency, vol. 5, no. 1,
pp. 56-67, Jan.-Mar. 1997.

[5] M.A. Bonuccelli and M.C. Clo, ªEDD Algorithm Performance
Guarantee for Periodic Hard-Real-Time Scheduling in Distributed
Systems,º Proc. 13th Int'l Parallel Processing Symp. and 10th Symp.
on Parallel and Distributed Programming (IPPS/SPDP '99), Apr. 1999.

986 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 9, SEPTEMBER 2000

[6] T.D. Braun, H.J. Siegel, N. Beck, L.L. BoÈoÈni, M. Maheswaran, A.I.
Reuther, J.P. Robertson, M.D. Theys, and B. Yao, ªA Taxonomy for
Describing Matching and Scheduling Heuristics for Mixed-
Machine Heterogeneous Computing Systems,º Proc. IEEE Work-
shop Advances in Parallel and Distributed Systems, pp. 330-335, Oct.
1998.

[7] T.D. Braun, H.J. Siegel, N. Beck, L.L. BoÈloÈni, M. Maheswaran, A.I.
Reuther, J.P. Robertson, M.D. Theys, B. Yao, D. Hensgen, and R.F.
Freund, ªA Comparison Study of Static Mapping Heuristics for a
Class of Meta-Tasks on Heterogeneous Computing Systems,º
Proc. Eighth IEEE Workshop on Heterogeneous Computing Systems
(HCW '99), pp. 15-29, Apr. 1999.

[8] R. Chandrasekaran and A. Dauchety, ªLocation on Tree Net-
works: P-Centre and n-Dispersion Problems,º Math. Operations
Research, vol. 6, no. 1, pp. 50-57, Feb. 1981.

[9] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to
Algorithms. Cambridge, Mass.: MIT Press, 1990.

[10] G. Cornuejols, G.L. Nemhauser, and L.A. Wolsey, ªWorst-Case
and Probabilistic Analysis of Algorithms for a Location Problem,º
Operations Research, vol. 28, no. 4, pp. 847-858, July-Aug. 1980.

[11] P. Danzig, R. Hall, and M. Schwartz, ªA Case for Caching File
Objects Inside Internetworks,º Technical Report CU-CS-642-93,
Computer Science Dept., Univ. of Colorado, Mar. 1993.

[12] D. Hensgen, T. Kidd, D. St. John, M. Schnaidt, H.J. Siegel, T.
Braun, M. Maheswaran, S. Ali, J. Kim, C. Irvine, T. Levin, R.
Freund, M. Kussow, M. Godfrey, A. Duman, P. Carff, S. Kidd, V.
Prasanna, P. Bhat, and A. Alhusaini, ªAn Overview of MSHN: The
Management System for Heterogeneous Networks,º Proc. Eighth
IEEE Workshop on Heterogeneous Computing Systems (HCW '99),
pp. 184-198, Apr. 1999.

[13] A.P. Hurter and J.S. Martinich, Facility Location and the Theory of
Production. Norwell, Mass.: Kluwer Academic Publishers, 1989.

[14] P.C. Jones, T.J. Lowe, G. Muller, N. Xu, Y. Ye, and J.L. Zydiak,
ªSpecially Structured Uncapacitated Facility Location Problem,º
Operations Research, vol. 43, no. 4, pp. 661-669, July-Aug. 1995.

[15] M.J. Lemanski and J.C. Benton, ªSimulation for SmartNet
Scheduling of Asynchronous Transfer Mode Virtual Channels,º
masters of science thesis, Dept. Computer Science, Naval
Postgraduate School, June 1997.

[16] M. Maheswaran, S. Ali, H.J. Siegel, D. Hensgen, and R.F. Freund,
ªDynamic Mapping of a Class of Independent Tasks onto
Heterogeneous Computing Systems,º J. Parallel and Distributed
Computing: Special Issue on Software Support for Distributed
Computing, vol. 59, no. 2, pp. 107-121, Nov. 1999.

[17] I.D. Moon and S.S. Chaudhry, ªAn Analysis of Network Location
Problems with Distance Constraints,º Management Science, vol. 30,
no. 3, pp. 290-307, Mar. 1984.

[18] A.J. Rockmore, ªBADD Functional Description,º internal DARPA
memo, Feb. 1996.

[19] D.R. Shier, ªA Min-Max Theorem for p-Center Problems on a
Tree,º Transportation Science, vol. 11, no. 3, pp. 243-252, Aug. 1977.

[20] SmartNet/Heterogeneous Computing Team, ªBC2A/TACITUS/
BADD integration plan,º internal NRaD Naval laboratory report,
Aug. 1996.

[21] J.A. Stankovic, M. Spuri, K. Ramamritham, and G.C. Buttazzo,
Deadline Scheduling for Real-Time Systems. Boston: Kluwer Aca-
demic Publishers 1998.

[22] M. Tan, H.J. Siegel, J.K. Antonio, and Y.A. Li, ªMinimizing the
Application Execution Time through Scheduling of Subtasks and
Communication Traffic in a Heterogeneous Computing System,º
IEEE Trans. Parallel and Distributed Systems, vol. 8, no. 8,
pp. 857-871, Aug. 1997.

[23] M. Tan and H.J. Siegel, ªA Stochastic Model for Heterogeneous
Computing and Its Application in Data Relocation Scheme
Development,º IEEE Trans. Parallel and Distributed Systems, vol. 9,
no. 11, pp. 1,088-1,101, Nov. 1988.

[24] M.D. Theys, M. Tan, N. Beck, H.J. Siegel, and M. Jurczyk,
ªHeuristics and a Mathematical Framework for Scheduling Data
Requests in a Distributed Communication Network,º Technical
Report TR-ECE 99-2, School of Electrical and Computer Eng.,
Purdue Univ., Jan. 1999.

[25] L. Wang, H.J. Siegel, V.P. Roychowdhury, and A.A. Maciejewski
ªTask Matching and Scheduling in Heterogeneous Computing
Environments Using a Genetic-Algorithm-Based Approach,º J.
Parallel and Distributed Computing, vol. 47, no. 1, pp. 1-15, Nov.
1997.

Mitchell D. Theys received the BS degree in
computer and electrical engineering in 1993, the
MS degree in electrical engineering in 1996, and
the PhD in electrical engineering in 1999, all
from Purdue University. He is currently a
professor in the Electrical Engineering and
Computer Science Department at the University
of Illinois at Chicago. His current research
interests include: distributed computing, hetero-
geneous computing, network scheduling, paral-

lel processing, VLSI design, and computer architecture. During his
college career, he held various intern positions with Caterpillar Inc.,
Compaq Computer Corporation, and Lawrence Livermore National
Laboratory. In addition, during his undergraduate work, he participated
in the cooperative education program and worked in the sales,
marketing, quality assurance, and research and design departments of
S&C Electric Company. He has published several journal papers and
also had several documents reviewed and accepted at conferences,
such as the International Conference on Parallel Processing and the
Heterogeneous Computing Workshop. He has received support from
the US Defense Advanced Research Projects Agency (DARPA), Intel,
Microsoft, and the US Armed Forces Communications and Electronics
Association (AFCEA). Dr. Theys is a member of the IEEE, the IEEE
Computer Society, Eta Kappa Nu, and Tau Beta Pi.

Min Tan received the BA in mathematics and
physics from Western Maryland College, as well
as the MS degree in electrical engineering and
the PhD degree in computer and electrical
engineering from Purdue University. During his
academic career, his research interests have
included parallel and distributed processing,
heterogeneous computing, and network com-
munication. He has authored or coauthored
more than 20 technical papers in these and

related fields. He has worked at Cisco Systems and Segue Software as
a research and development engineer and a technical sales consultant.
He is currently a cofounder of Dealist.com, an Internet service provider
for Greater China and Asian business-to-business communities.

Noah B. Beck received the BS in computer
engineering in 1997 and the MS in electrical
engineering in 1999, both from Purdue Univer-
sity. While an undergraduate, he spent seme-
sters working for Siemens Stromberg-Carlson on
the EWSD telephone switch, and for Intel
Corporation on the Willamette x86 microproces-
sor core. As a graduate student, he researched
data staging in heterogeneous networks. After
completing the MS degree, Mr. Beck went to
work for Sun Microsystems at the Boston Design

Center, where he is currently a verification engineer working on a future
version of the UltraSPARC microprocessor. His research interests
include microprocessor functional and performance verification, as well
as computer architecture, parallel computing, and heterogeneous
computing.

THEYS ET AL.: A MATHEMATICAL MODEL AND SCHEDULING HEURISTICS FOR SATISFYING PRIORITIZED DATA REQUESTS IN AN... 987

H.J. Siegel received the BS degrees in electrical
engineering and management from the Massa-
chusetts Institute of Technology (MIT), and the
MA, MSE, and PhD degrees from the Depart-
ment of Electrical Engineering and Computer
Science at Princeton University. He is a profes-
sor in the School of Electrical and Computer
Engineering at Purdue University. In August
2001, he will hold the endowed chair position of
Abell Professor of Electrical and Computer

Engineering at Colorado State University. He is a fellow of the IEEE
and a fellow of the ACM. Professor Siegel has coauthored more than
250 technical papers, has coedited seven volumes, and wrote the book
Interconnection Networks for Large-Scale Parallel Processing. He was a
coeditor-in-chief of the Journal of Parallel and Distributed Computing,
and was on the Editorial Boards of the IEEE Transactions on Parallel
and Distributed Systems and the IEEE Transactions on Computers.
Professor Siegel's research interests include heterogeneous parallel
and distributed computing, communication networks, parallel algorithms,
interconnection networks, and reconfigurable parallel computer sys-
tems. He was program chair/cochair of three international conferences,
general chair/cochair of four international conferences, and chair/cochair
of four workshops. He is a member of the Eta Kappa Nu electrical
engineering honorary society and the Sigma Xi science honorary
society. He is an international keynote speaker and tutorial lecturer, as
well as a consultant for government and industry.

Michael Jurczyk studied electrical engineering
at Purdue University and the University of
Bochum, Germany, where he received his
diploma in 1990. He obtained the PhD in
electrical engineering from the University of
Stuttgart, Germany, in 1996, where he studied
parallel simulation and performance issues of
interconnection networks. In 1996, he was a
visiting assistant professor at the School of
Electrical and Computer Engineering at Purdue

University. He is currently an assistant professor in the Computer
Engineering and Computer Science Department as well as an adjunct
professor at the Electrical Engineering Department at the University of
Missouri-Columbia. His research interests include parallel and distrib-
uted systems, interconnection networks for parallel and communication
systems, ATM-networking, and networked multimedia. He is a member
of the IEEE and the IEEE Computer Society.

988 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 9, SEPTEMBER 2000

