
Software Support for Heterogeneous Computing
HOWARD JAY SIEGEL and HENRY G. DIETZ

Purdue University, West Lafayette, Indiana ^hj@ecn.purdue.edu&, ^hankd@ecn.purdue.edu&

JOHN K. ANTONIO

Texas Tech University, Lubbock ^antonio@cs4sun.cs.ttu.ed&

As a result of advances in high-speed
digital communications, researchers
have begun to use collections of differ-
ent high-performance machines in con-
cert to execute computationally intensive
application tasks. Existing high-perfor-
mance machines typically achieve only
a fraction of their peak performance on
certain portions of such application pro-
grams; that is, there is a gap between
average sustained performance and the
machine’s peak performance. One rea-
son for this is that different subtasks of
an application can have different com-
putational requirements that are best
processed by different types of machine
architectures. Thus, an important ap-
proach to high-performance computing
is to construct a heterogeneous comput-
ing (HC) environment, consisting of a
variety of machines interconnected by
high-speed links, orchestrated to per-
form an application whose subtasks
have diverse execution requirements.
In addition to how well a subtask

matches a machine, many factors must
be considered to exploit optimally the
power of an HC suite of machines.
These include the time to move data
shared by subtasks executed on differ-
ent machines, the operating system
overhead involved in stopping a task on
one machine and restarting it on an-
other, the ability to execute subtasks
concurrently on all or some subset of
the machines in the suite, and the ma-

chine and intermachine network load
caused by other users of the HC system.
There are many instances of successful

implementations of application tasks
across suites of heterogeneous machines.
Typically, however, current users of HC
systems must decompose the application
task into appropriate subtasks them-
selves, decide on which machine to exe-
cute each subtask, code each subtask spe-
cifically for its target machine, and
determine the relative execution schedule
for the subtasks. The automation of this
process is a long-term goal in the field of
HC, but research conducted toward this
goal should produce tools that will aid the
users of HC systems until full automation
is possible.
Even though the field of HC is rela-

tively new, it is very active. This paper
is a brief outline of the software support
challenges for HC addressed in Siegel et
al. [1996], and readers interested in
more details are referred to Eshaghian
[1996], Freund and Siegel [1993],
Freund and Sunderam [1994], Siegel et
al. [1996], and Sunderam [1995].
The first step in using an HC system

is to construct the application program.
A programming language used in an HC
environment must be compilable into
efficient code for any machine in the HC
suite, and the program specification
should facilitate the decomposition of an
application task into appropriate sub-
tasks. One model for automated HC
consists of four stages: (1) determina-

Copyright © 1996, CRC Press.

ACM Computing Surveys, Vol. 28, No. 1, March 1996



tion of characterization parameters, (2)
task profiling and analytical bench-
marking, (3) matching and scheduling,
and (4) task execution.
Stage 1 generates a set of parameters

relevant to both the computational re-
quirements of the applications and the
machine capabilities of the HC system
using information about the expected
types of application tasks and the ma-
chines in the HC suite. Categories for
computational requirements and cate-
gories for machine capabilities are de-
rived for each parameter. For example,
for “floating-point operations,” the com-
putational requirements to be quanti-
fied are the number of each type of
floating-point operation needed to per-
form the calculation, and the capabili-
ties of the machines to be quantified are
the speeds for these different types of
floating-point operations.
Stage 2 involves task profiling and

analytical benchmarking. Task profil-
ing decomposes the application task
into subtasks, each of which is in some
sense homogeneous with respect to
computational requirements. Both the
code and the data upon which the
specified HC system will operate must
be profiled. Analytical benchmarking
quantifies how effectively each of the
machines in the HC suite performs
each of the categories of computations
being considered.
Stage 3 can use the information gen-

erated by stage 2 to derive the esti-
mated execution time for a given sub-
task on a given machine and the
intermachine communication overhead
associated with a given assignment of
subtasks to machines. These static re-
sults and dynamic information about
the current loading and “status” of the
machines and intermachine network al-
low stage 3 to create an assignment of
the subtasks to machines and an execu-
tion schedule. The “status” could in-
clude whether the machines/network
are fully or partially functioning due to
faults, and when other tasks using the

machines/network are expected to com-
plete.
Finally, stage 4 is the execution of the

given applications on the HC suite. Be-
cause the loading/status of the ma-
chines/network may change, sometimes
it is necessary to reselect machines for
certain subtasks by reactivating stage
3.
The study of automatic HC is a rela-

tively new field with many open re-
search problems. A portable HC pro-
gramming language and each of the
stages described above need much more
research before they can be imple-
mented in a practical way. There is also
a need for debugging and performance
tuning tools that can be used across an
HC suite of machines. HC-specific oper-
ating system support is needed for rap-
idly stopping a task on one machine,
transferring state information and data
as needed, and then restarting the task
on another machine. Research is needed
in the area of software support for inter-
machine data transport, such as soft-
ware protocols and data reformatting.
Ideally, information about the current
loading and status of the machines in
the HC suite and the intermachine net-
work should be incorporated into the
matching and scheduling decisions. Re-
search is needed to determine methods
for collecting such information, ways to
distribute it, how to organize the infor-
mation, and how often to update it.
There are numerous administrative is-
sues that require software support, in-
cluding what to do with priority tasks,
what to do with priority users, what to
do with interactive tasks, and what to
do about security. Progress needs to be
made on these “automation” problems
(and others) just to generate tools to
facilitate near-optimal practical use of
HC systems in a user-specified way.
In summary, while the uses of exist-

ing HC systems demonstrate the benefit
of HC, the amount of effort currently
required to implement an application on
an HC system can be substantial. Fu-
ture research on open problems in the

238 • Howard Jay Siegel et al.

ACM Computing Surveys, Vol. 28, No. 1, March 1996



area of software support for HC will
improve this situation, will make the
use of HC more viable, and will allow
HC to realize its full potential.

REFERENCES

ESHAGHIAN, M. M., Ed. 1996. Heterogeneous
Computing. Artech House, Norwood, MA (to
appear).

FREUND, R. AND SIEGEL, H. J., Guest Ed.
1993. Special Issue on Heterogeneous Pro-
cessing. IEEE Computer 26, 6 (June).

FREUND, R. AND SUNDERAM, V., Guest Ed.
1994. Special Issue on Heterogeneous Pro-

cessing. J. Parallel Distrib. Comput. 21, 3
(June).

SIEGEL, H. J., ANTONIO, J. K., METZGER, R. C., TAN,
M. AND LI, Y. A. 1996. Heterogeneous com-
puting. In Handbook of Parallel Distributed
Computing, A. Y. Zomaya Ed. McGraw-Hill,
New York (to appear).

SIEGEL, H. J., DIETZ, H. G., AND ANTONIO, J. K.
1996. Software support challenges for heter-
ogeneous computing. In Handbook of Com-
puter Science and Engineering. CRC Press.

SUNDERAM, V., Ed. 1995. Proceedings of the
Heterogeneous Computing Workshop (April).
IEEE Computer Society Press, Los Alamitos,
CA.

Software Support for Heterogeneous Computing • 239

ACM Computing Surveys, Vol. 28, No. 1, March 1996


