
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 2, 79- 107 (1985)

Evaluation of Cube and Data Manipulator Networks*

ROBERT J. MCMILLEN

Hughes Aircraft Company, Long Beach, California 90810

AND

HOWARD JAY SIEGEL

PASM Parallel Processing Laboratory, School of Electrical Engineering,
Purdue University, West Lafayette, Indiana 47907

The interconnection of a large number of processors and other devices to form a
parallel/distributed computing system is a research area receiving a great deal of
attention. One method is to use a multistage network. This paper compares two
classes of multistage networks by examining two representative networks: the Gen-
eralized Cube and the Augmented Data Manipulator. The two topologies are com-
pared using a graph model. By interpreting the graphical representations of the
networks in different ways, different but functionally equivalent implementations
result. The costs of the various implementations are compared taking VLSI consid-
erations into account. Finally, the robustness (fault tolerance) of the different net-
works is measured and contrasted. 0 1985 Academic press, btc.

I. INTRODUCTION

The interconnection of a large number of processors and other devices to
form a parallel/distributed computing system is a research area receiving a
great deal of attention. Many different approaches to the interconnection
method have been proposed and discussed including the use of buses [47],
hierarchies of buses [44], direct links [131, single-stage networks [21], mul-
tistage networks [9, 22, 30, 381, and crossbars [49]. An important aspect of
this research is the evaluation and comparison of the proposed approaches
[6, 16, 40, 451. The conclusion most often reached is that the best scheme to
use in a particular design depends highly upon the intended application,
performance requirements, and cost constraints. Once a connection method

*This work was supported by the United States Army Research Office, Department of the
Army, under Grant DAAG29-82-K-0101; the National Science Foundation under Grant ECS
80-16580; and the Air Force Office of Scientific Research, Air Force Systems Commands,
USAF, under Grant AFOSR-78-3581. The U.S. Government’s right to retain a nonexclusive
royalty-free license in and to this paper, for governmental purposes, is acknowledged.

79
0743-7315185 $3.00

Copyright 6 1985 by Academic Press, Inc.
All rights of repmduction in any fom reserved.

80 MC MILLEN AND SIEGEL

is chosen (e.g., single-stage network), a specific design must be decided upon
and then implemented. During this phase of a system’s specification, it is
important for the designer to understand fully the differences and similarities
between candidate designs.

This work is motivated by an ongoing study of methods to model distrib-
uted systems and an examination of networks suitable for use in the PASM
[41] and PUMPS [lo] systems. Two classes of multistage networks that have
been considered for use in these and other systems, cube type and data
manipulator type, are investigated in this paper. Specifically, graph models
are used to quantify the difference between the Generalized Cube and Aug-
mented Data Manipulator (ADM) networks in terms of cost and robustness
(fault tolerance). Graph models are used because they are unencumbered by
implementation details and are an excellent tool for representing an essential
characteristic of a network: its topology. They also facilitate comparison of
this work with other studies (e.g., [5, 191).

The Generalized Cube and ADM networks are defined in Section II. Their
relation to other multistage networks described in the literature is also dis-
cussed. Using a graphical representation, the networks’ topologies are com-
pared in Section III. In Section IV, two functionally equivalent imple-
mentations resulting from two different graph interpretations are examined to
compare the cost of each network. Here, using VLSI chips is considered and
costs are compared relative to the fraction of a stage that can be implemented
on one chip. Finally, Section V contains an analysis of the robustness each
network exhibits.

II. THEGENERALIZED CUBE AND ADM NETWORKS

The Generalized Cube network is a multistage cube-type network topology
that was introduced as a standard for comparing network topologies [39].
Assume the network has N inputs and N outputs: in Fig. 1, N = 8. The
Generalized Cube topology has n = log2 N stages, where each stage consists
of a set of N lines connected to N/2 interchange boxes. Each interchange box
is a two-input, two-output device. The labels of the input/output lines entering
the upper and lower inputs of an interchange box serve as the labels for the
upper and lower outputs, respectively. Each interchange box can be set to one
of the four legitimate states shown [22].

The connections in this network are based on the cube interconnection
funcriom [35]. Let P = pa-1 * * * pip0 be the binary representation of an
arbitrary I/O line label. Then the n cube interconnection functions can be
defined as

CUbei(p,-1 ’ * ’ PlPO) = Pn-1 ’ ’ ’ Pi+lpiPi-1 ’ ’ ’ PIPO,

where 0 5 i < n, 0 5 P < N, and pi denotes the complement of pi. This

CUBE AND DATA MANIPULATION NETWORKS 81

STAGE 2 I 0

STRAIGHT EXCHANGE

LOWER UPPER

BROADCAST BROADCAST

FIG. 1. Generalized Cube network for N = 8 [37]. The four legitimate states of an inter-
change hox are shown.

means that the cubei interconnection function connects P to cubei(where
cubei is the I/O line whose label differs from P in just the ith bit position.
Stage i of the Generalized Cube topology contains the cube interconnection
function. That is, it pairs I/O lines that differ in the ith bit position.

The ADM network is shown in Fig. 2 for N = 8. It is based on Feng’s data
manipulator [151. In this network, a stage consists of N switching elements
or nodes and the 3N data paths that are connected to the inputs of a succeeding
stage. Each node can connect one of its inputs to one or more of its outputs.
At stage i of the ADM network, 0 I i < n, the first output of node j is
connected to the input of node (j - 23 mod N of the next stage; the second
output is connected to the input of node j; and the third output is connected
to the input of node (j + 2’) mod N. Because (j - 2”-‘) equals (j + 2”-‘)
mod N, there are actually only two distinct data paths instead of three from
each node in stage n - 1 (in the figure, stage 2). There is an additional set
of N nodes at the output stage.

Both of these networks are based on the PM21 interconnection functions
[35]. There are 2n of these functions defined by PM2+i(J) = j + 2’ mod N

82 MC MILLEN AND SIEGEL

a. .e

h’- ‘d
STAGE 2

FIG. 2. Augmented Data Manipulator network for N = 8 [37]. (Lowercase letters represent
end-around connections.)

and PM2-,()) = j - 2’ mod N for 0 I j < N, 0 5 i < n, where -x mod
N = N - x mod N. (Note PM2+,,-i, = PM2-,,-,,.)

A number of systems have been proposed and/or built that use multistage
networks (e.g., [7, 8, 24, 34, 411). Among the networks that have been
proposed are the ADM [38], baseline [48], binary n-cube [30], data manip-
ulator [151, Gamma [29], Generalized Cube [39], inverse ADM (IADM)
[27], omega [22], STARAN flip [9], and SW-banyan [191. Studies have
shown that the baseline, binary n -cube, Generalized Cube, omega, STARAN
flip, and SW-banyan (S = F = 2) networks are all topologically equivalent
[3 1,36,37,42,48]. Differences between these networks are due to proposed
control schemes, whether or not a broadcast capability is included, and the
method used to number input and output ports. All of these networks belong
to the general class of cube-type networks. Because of the similarities among
these networks, a designer is not faced with choosing between six different
networks; rather the choice is whether or not to use a cube-type network.

The data manipulator, ADM, IADM, and Gamma networks are topo-
logically identical. The differences between these networks are the control
scheme, order in which stages are traversed, and switch complexity. The
switches in each stage of the data manipulator are divided into two groups.
Each group receives an independent set of control signals and all switches in
a group respond identically. Each switching element of the ADM, IADM,
and Gamma networks is controlled individually. The stages of the IADM and
Gamma networks are traversed in an order opposite to that of the ADM and
data manipulator. Also, the Gamma network’s switching elements are 3 X 3

CUBE AND DATA MANIPULATION NETWORKS 83

crossbars (as opposed to selecting one input at a time). One property that these
networks have is that for all nontrivial source/destination pairs (i.e., source
address # destination address) there are multiple paths through the network.
For that reason, none of the networks is a member of the general banyan class
u91.

The capabilities of the Gamma network are a superset of the ADM and
IADM networks. It has been shown in turn that their capabilities are a
superset of all the cube-type networks as well as the data manipulator network
[36, 37, 421. Data manipulator-type networks, however, are more complex
than cube-type networks.

A common feature of all cube-type networks is that there is exactly one
path through the network for each source/destination pair. This property
makes control schemes simple but any single failure of a link or switch will
disallow the use of any path requiring the failed component.

Thus there exists the classic trade-off between cost and performance when
choosing between the two network types. In this paper, the network types are
compared, using one representative network from each type: the Generalized
Cube and the ADM. Both networks have the same number of input and output
ports and individual switching element control. Routing tag schemes are
available for the networks [22,28, 38, 391, so it is assumed that they are used
to implement network control.

Some aspects of the Generalized Cube and the ADM networks have been
compared elsewhere. The ability of the ADM network to perform all the
functions a Generalized Cube can was demonstrated in [42]. In [11, the total
number of unique permutation connections each network can perform was
compared. In [5], graph models were used to study multistage interconnection
networks which have the “buddy property” (cube-type networks have that
property) and other networks including the ADM. In that paper emphasis was
on comparing the networks’ permutation capabilities. This paper is concerned
with comparing cost and robustness or inherent fault tolerance. Cost is exam-
ined from two points of view. The first is the common method of counting
links and switching nodes. In this case, the graph model with a consistent
interpretation (two are possible) is used to ensure a “fair” comparison. The
second point of view is oriented toward VLSI considerations. Modules for
each network requiring roughly the same number of pins are compared. The
change in relative cost is also examined when as much as one whole stage is
placed on one chip. Robustness is measured by calculating the average num-
ber of network inputs and outputs affected by the removal of a single link or
switching element. The calculations are performed for both of the graph
interpretations to be defined.

III. GRAPH MODELING: A COMMON BASIS FOR COMPARING NETWORKS

Graph models have been used by Goke and Lipovski [191 as the basis for
defining a class of networks called banyans. The graphs used to represent

84 MC MILLEN AND SIEGEL

6 x>S

0 \05

d w h/ \07

COLUMN 3 2 I 0

STAGE 2 1 0

RG. 3. Graphical representation of the Generalized Cube network for N = 8.

these networks consist of nodes connected by directed arcs. By definition, in
a banyan there is one and only one path from input to output [191. In this paper
the arcs are undirected and there is no restriction on the number of paths from
input to output.

It has been observed [20, 231 that the Generalized Cube network (Fig. 1)
has the graphical representation shown in Fig. 3. This graph also represents
an SW-banyan (with S = F = 2). The graph can be interpreted a number of
different ways. One is to treat each node (vertex) (a circle in the figure) as a
switch and each arc (edge) (a line in the figure) as a link. To model the
network’s behavior under this interpretation, the switch (node) shown in Fig.
4a should only connect one of the input links, a or b, to one of the output
links, c or d. An implementation based on this interpretation, for an N
input/output network, would consist of n + 1 stages of N switches, with 2iV
lines between stages. The TRAC reconfigurable, multimicroprocessor system
contains an SW-banyan constructed from switches of this type (but that have
two incoming and three outgoing links, i.e., S = 2 and F = 3) [32].

A second interpretation of the graph in Fig. 3 is to treat the nodes as links
and the arcs as forming interchange boxes. For example, the thickened lines
in Fig. 3 can be considered to represent the interchange box with inputs 2 and
6 (compare this to Fig. 1). In this case the SW-banyan implementation would
have the same structure as specified here for the Generalized Cube (assuming
a bidirectional network). This interpretation is illustrated in Figs. 4b and c.

CUBE AND DATA MANIPULATION NETWORKS 85

(4

FIG. 4. (a) A node from the graph representing the Generalized Cube- network. When equated
with a switch, input a or b can be connected to output c or d. (b) Four nodes from the graph.
When the arcs, a, b, c, and d are equated with switches, a 2 x 2 crossbar is obtained. (c) The
components of a crossbar that correspond to the graph in (b).

Each of the arcs labeled a through d in Fig. 4b acts as a crosspoint switch in
Fig. 4c. When viewed this way, the portion of the graph within the dashed
lines of Fig. 4b behaves as a 2 x 2 crossbar or interchange box. If a and d
are “on,” the straight setting is obtained; b and c “on” corresponds to ex-
change; a and b “on” corresponds to upper broadcast; and c and d “on”
corresponds to lower broadcast. Conflict occurs if a and c or b and d are on
at the same time. It will be shown in the next section that implementations
based on the first and second graph interpretations are functionally equivalent.

A third possible interpretation of the graph in Fig. 3 is to equate nodes with
2 X 2 interchange boxes and arcs with links. In that case, Fig. 3 would
represent a size N = 16 Generalized Cube network. This interpretation will
not be discussed further in this paper.

86 MC MILLEN AND SIEGEL

COLUMN

STAGE

3 2 1 0

2 1 0

6

FIG. 5. Graphical representation of the Augmented Data Manipulator for N = 8.

The graphical representation of the ADM network (Fig. 2) is shown in Fig.
5. Since there are multiple paths from input to output, this is not a banyan
graph. This graph can be obtained by adding the dashed lines shown in Fig.
5 to the graph in Fig. 3. ’ When switches are equated with nodes, the network
depicted in Fig. 2 is obtained. When switches are equated with arcs, the
network looks like that shown in Fig. 6. In the figure, two nodes directly
connected by a solid line between stages are represented by a single node in
Fig. 5. Note that the labels on end-around connections in both Fig. 5 and Fig.
6 are attached to the same arcs (links) in the network. This second type of

‘We first published this observation in October 1982, in the Proceedings of the Third
International Conference on Distributed Computing Systems, in a preliminary version of this
material. It was also discovered independently and published in [5].

CUBE AND DATA MANIPULATION NETWORKS 87

STAGE 2 1 0
FIG. 6. Implementation of the Augmented Data Manipulator for N = 8 when the graph of

Fig. 5 is interpreted with arcs equated to switches.

implementation is examined in [43], where LSI packaging of network huild-
ing blocks is discussed.

Though the same ADM network is represented, Figs. 2 and 6 look rather
different. Depending upon which representation is chosen, a comparison with
the Generalized Cube in Fig. 1 could produce different conclusions. Com-
paring Figs. 1 and 2, one might conclude that, in addition to having an extra
column of switches, the ADM has twice as many switching nodes and three
times as many links as the Generalized Cube network. It would be easy to
decide that the ADM network is considerably more expensive. On the other
hand, comparing Figs. 1 and 6, it appears the only difference is N extra links
that interconnect switches within each stage of the ADM network. The latter
comparison is more accurate because the network depictions of Figs. 1 and
6 are based on the same interpretation of the networks’ respective graphs.
Thus when making comparisons, it is important to compare either graphical
representations or consistent interpretations of those graphs. In the next sec-
tion, the latter is done for both interpretations, so that the resulting imple-
mentations can be compared as well.

A. Introduction

IV. COST COMPARISON

The purpose of this section is to compare the cost of the Generalized Cube
network to that of the ADM network. To do this, implementations of each

88 MC MILLEN AND SIEGEL

network are examined. Two different criteria are used in the comparison.
First, hardware requirements are examined. Since two basic implementations
are possible for each network, to be fair, only implementations corresponding
to the same graph interpretation are compared. Then, since VLSI imple-
mentation is being considered, the total number of data pins available on a
chip is held constant and chip counts are compared for all the different
implementations. It would be desirable to compare the gate densities required
for each chip; however, that requires having a detailed design for each. In lieu
of such details, the attempt was made to compare chips with comparable
major architectural features (e.g., queues) which presumably require the
same amount of logic and which can be compared at a gross level.

Although the discussion presented here is in terms of integrated circuit
chips, it is not restricted to any particular technology. It is only presumed that
a network is constructed from modular elements with I/O facilities (ports)
proportional to that portion of the network graph (with an appropriate inter-
pretation) intersected by the boundary of the module. For example, in the
future, an I/O port may consist of a laser diode and a single optical fiber
instead of many parallel wires.

B. Hardware Realizations

There are two basic ways to implement multistage networks. They can be
circuit switched or packet switched. In circuit switching, a complete path is
established from input to output and must be held for the duration of the
communication. Circuit switching is often used when processors are con-
nected to the network inputs and memories are connected to the outputs.
Designs for circuit-switched interchange boxes have been discussed in [11,
26, 431. In packet switching, messages are decomposed into packets which
each make their way from stage to stage until the output is reached. This
method is often used in configurations that connect processing element
(processor/memory pair) j to input j and output j of a unidirectional network.
Packet-switched network switching element designs have been discussed in
[14, 26, 461.

In the remainder of this paper, implementations will be discussed primarily
in terms of packet switching. Circuit-switched versions can be obtained by
replacing any queues shown with buses. Other than this, remaining differ-
ences are in the control logic; however, the logic is shown only at the block
diagram level. Only key elements of the implementations to be discussed are
included since many variations of the basic designs are possible. For more
detail see [14, 26, 461.

C. Generalized Cube

Figure 7 shows two designs for a Generalized Cube switching element.
Figure 7a results when switches are equated with nodes in the graph (this
corresponds to Figs. 4a and 3). One of the two inputs is selected depending

CUBE AND DATA MANIPULATION NETWORKS

CONTROL
SIGNALS

CONTROL --

I
I

(a>

CONTROL
S LGNALS

z
1

5 QUEUE I w

I I
MUX -

. I --)

t

CONTROL
SIGNALSz;i-3;;

CONTROL
SIGNALS

89

(b)
FIG. 7. Implementation of Generalized Cube switches. (a) Node = switch interpretation. (b)

Arc = switch interpretation.

on the requests (if any) received by the (left half of the) control logic, which
handles any needed arbitration. A single output link is shown, but it is to be
connected to two other switches as shown in Fig. 8. A bit in the routing tag
is examined by the control logic, which then determines to which switch a
request for access should be made. The (right half of the) control logic
maintains the queue, interprets the routing tag, generates access requests, and
receives grants for access requests. Switches that implement nodes in column
3 of Fig. 3 only contain hardware to the right of the dashed line in Fig. 7a.
Switches that implement column 0 nodes only contain hardware to the left of
the &shed line. A detailed design of this type is discussed in [32].

If arcs in the graph are equated with switches, then four arcs form a 2 X 2
crossbar or interchange box (see Figs. 4b and c and 1). An implementation

90 MC MILLEN AND SIEGEL

QUEUE

--*

CONTROL --- -- -------- -- ---D c-- ------_---- --

.

FIG. 8. Four switches from Fig. 7a combined to form one switch (within dashed lines)
equivalent to that in Fig. 7b.

for this is shown in Fig. 7b. Here two input queues are required. As long as
a given queue is not full, incoming packets for that queue will be accepted.
Logic is required to handshake with other interchange boxes, maintain two
queues, and interpret the routing tags at the head of each queue. This logic
only interprets the tags in order to request the desired settings for the multi-
plexers. Logic asociated with the multiplexers performs any necessary arbi-
tration. It also makes appropriate requests of other interchange boxes once the
multiplexers are set. Different protocols and design variations for this type of
switching element are discussed in [26]. The performance of networks imple-
mented with these interchange boxes has been studied in [3, 14, 251.

The equivalence of two networks implemented with the two kinds of
switching nodes is illustrated in Fig. 8. Four of the switching elements shown
in Fig. 7a are connected as prescribed by the graph in Fig. 3. It can be seen
that the hardware within the dashed lines is identical to that shown for the
interchange box in Fig. 7b. The handshaking lines (directed dashed lines)
shown connecting control units are equivalent to internal connections be-
tween the tag interpretation and queue control logic and the arbitration and
output request logic in the control unit of Fig. 7b. It is thus apparent that the
same total amount of hardware is required for either implementation, but that

CUBE AND DATA MANIPULATION NETWORKS 91

CONTROL
SIGNALS

- MUX

t
-- --*
--- --
-- CONTROL --*
C-- -- CONTROL

SIGNALS

I
(4

INTRA-STAGE BUSES

CONTROL

INTKA-STAGE CONTROL SIGNALS

(b)

CONTROL
SIGNALS

FtG. 9. Implementation of Augmented Data Manipulator switches. (a) Node = switch inter-
pretation. (b) Arc = switch interpretation.

the two graph interpretations lead to different network building blocks or
packagings for the components.

D. Augmented Data Manipulator
Two implementations for the ADM network are shown in Fig. 9. Figure

9a results from equating the nodes of Fig. 5 with switches. In this design, the
multiplexer selects from among three input links and the output link is con-
nected to three other switches. The control signals shown on the output side

92 MC MILLEN AND SIEGEL

in Fig. 9a are used to determine which of the switches is to read the data from
the output link. A broadcast is performed by selecting more than one switch.
The basic routing tag scheme for the ADM network [28] requires the routing
tag logic to examine two bits, so it is slightly more complex than that required
in the Generalized Cube. As with the Generalized Cube, the switches imple-
menting nodes in columns 0 and 3 of Fig. 5 only require the logic to the left
and right, respectively, of the dashed line in Fig. 9a. This was also observed
in [15].

If arcs are equated with switches, an implementation similar to the inter-
change box is obtained as shown in Fig. 9b. Here, however, the outputs from
the queues must be connected to multiplexers in two other switching elements
(as shown in Fig. 6) via intrustuge buses. Similarly, the two multiplexers
shown here must accept connections from the queues of two other switching
elements. Two control signals must also accompany each of the intrastage
buses.

E. Comparison

An approximate cost comparison between the Generalized Cube and the
ADM network can be made by comparing their respective switching ele-
ments. Since the choice is arbitrary, Figs. 7a and 9a will be compared. Both
require a single queue. If the cost of the queue and its associated control logic
dominates the cost of the switching element, then the ADM switch will cost
only slightly more than a Generalized Cube switch in a discrete imple-
mentation. On the other hand, for a circuit-switched implementation, the
multiplexer and control logic in an ADM switching element will cost about
50% more than that required in a Generalized Cube switching element.

The perspective changes somewhat when implementing these four designs
in VLSI is considered. Input/Output (I/O) requirements and logic/pin ratio
become important considerations. For constructing a Generalized Cube net-
work, the interchange box in Fig. 7b is a better choice than the switch in Fig.
7a. The interchange box (Fig. 7b) has approximately 33% more pins but
approximately 100% more logic than the switch (Fig. 7a). For the ADM
network, the logic/pin ratio is nearly the same for both of the designs in Fig.
9. The design in Fig. 9b has approximately twice as many pins and twice as
much logic as that shown in Fig. 9a. The extra links that give the ADM
network its superior capabilities over the Generalized Cube require a larger
number of pins on the VLSI chips being considered.

The design of Fig. 7b and that of 9a have approximately the same number
of pins. If this number of pins (due to the data path width) is near tech-
nological limits (and thus the design of Fig. 9b will not fit on one chip), then
the Generalized Cube interchange box is superior due to the logic/pin ratio.
Assuming the cost of two chips with the same number of pins is about the
same, an ADM network would be more than twice as expensive as a Gener-
alized Cube network of the same size (when realized with these two re-

CUBE AND DATA MANIPULATION NETWORKS 93

spective chips). The logic/pin ratio of the ADM chip (Fig. 9a) can be im-
proved considerably by implementing extra capabilities the ADM network is
known to support [27, 281. These capabilities include dynamic rerouting of
blocked messages and stage look-ahead with rerouting for blockage predic-
tion. None of the additional features requires any extra pins. The additional
capabilities are possible because of the extra paths between input and output
and thus are not available for the Generalized Cube network.

The cost difference between the two implementations of each network due
to pin limitations can be further quantified. Assume that one switching ele-
ment is implemented on one chip and that the chips are bit sliced. For the sake
of modularity, in the node-equals-switch implementation of both networks,
this means the chip will be more complex than necessary for the switching
elements in the input and output columns (3 and 0 in Figs. 3 and 5).

Let D be the number of pins available on the chip for data path connections
and P be the number of I/O ports required by the switching element (see Figs.
7 and 9). The D/P is the number of pins available per port. It is assumed that
data pins dominate the total pin count and that the chip has the capacity to
accommodate the small number of control and power pins also needed. If the
network data path width is W, the W * P/D is the number of chips required to
construct one switching element. Multiplying this by the number of switching
elements needed to implement the network gives the total chip count. The
expressions for the chip count for the four implementations as a function of
W, D, N, and n are given in Table I. A crossbar is included for comparison.
The arc-equals-switch (interchange box) implementation of the Generalized
Cube gives the lowest count regardless of the values of W, D, and N. As an
example of the number of chips required in networks of size N = 16 and
N = 64, assume the network path width is W = 32 bits and there are a total
of D = 64 pins available on the chip for data connections. The resulting
counts are shown in Table I.

TABLE I
COMPARISON OF CHIP COUNTS FOR Two IMPLEMENTATIONS OF GENERALIZED CUBE AND

ADM NETWORKS”

W = 32, D = 64

Network Implementation P Chip count N= 16 N=64

Generalized Cube Node = Switch 3 3(W/D)N(n + 1) 120 672
Arc = Switch 4 2(W/D)Nn 64 384

ADM Node = Switch 4 4(W/D)N(n + 1) 160 896
Arc = Switch 8 4(W/D)Nn 128 768

Crossbar Crosspoint linking 2 2(W/D)N2 256 4096
two buses

“P is the number of I/O ports per switching element, W is the network path width, D is the
number of data pins per chip, and n = log, N.

94 MC MILLEN AND SIEGEL

As advances in packaging technology continue, the cost difference be-
tween the Generalized Cube and the ADM will narrow considerably until the
ADM is more cost effective. To see this, examine Fig. 6. The larger the
number of switching elements (of the type in Fig. 9b), in the same stage, that
can be placed on a single chip, the more intrastage buses can be internalized.
This reduces the I/O overhead of the extra links. If a whole stage can be
placed on one chip, then the ADM network requires the same number of chips
and connections between chips as the Generalized Cube network. The as-
sumption here is that the chip circuit density is not sufficient to support a
crossbar but it will accommodate more logic than one stage of a Generalized
Cube requires. The ADM network’s structure thus fills a gap between the
cube-type networks and crossbars. Until very large portions of an inter-
connection network can be placed on a single chip, it is clear that the ADM
network will be more expensive to implement than the Generalized Cube,
though the difference will continue to decline. Thus, it is important to deter-
mine the networks’ cost effectiveness. It has already been pointed out that the
ADM’s capabilities are a superset of the Generalized Cube’s. Another factor
that is becoming more important as the construction of enormous systems is
considered will be discussed in the next section: robustness of inherent fault
tolerance.

V. ROBUSTNESS: A COMPARISONOFDEGRADATIONUNDER COMPONENT
FAILURE

A. Introduction
In this section, the robustness of each network is measured by removing a

single component (link or switch) and counting the number of input and
output ports that are affected. An input port is considered affected if it cannot
send a message to all output ports. An output port is considered affected if
there is at least one input port from which it cannot receive messages. Since
the number of ports affected varies with the location of the removed com-
ponent, averages are computed. Calculating the averages for the Generalized
Cube network is relatively straightforward. Calculating the averages for the
ADM network is complicated considerably by the varying numbers of multi-
ple paths between ports of the network. Extensive use of and extension to the
theoretical result in [28] were required to obtain the closed-form solutions
presented here. To streamline this presentation, however, most of the math-
ematical derivations appear in the Appendix.

The average number of affected ports is calculated for both imple-
mentations of each network. These calculations are performed using two
different rules for counting affected ports. The first rule requires all I/O ports
to be considered. Under this rule, it has been shown that some permutation

CUBE AND DATA MANIPULATION NETWORKS 95

connections can be routed around a faulty link in the ADM network, but this
is not true in general [38].

The second rule allows “severely” affected ports to be disabled and thus not
included in the count. It is implemented as follows. Referring to the graphs
in Figs. 3 and 5, if a straight (or horizontal) arc at level j is removed, then
input port j and output port j are disabled. If links are equated with arcs, one
pair of I/O ports is disabled. If switches are equated with arcs, since two
straight arcs are included in each switching element (Figs. 7b and 9b), two
pairs of I/O ports are disabled. Thus, in Figs. 1 and 6, the I/O ports whose
addresses correspond to the output labels on a given switching element are
disabled if that switching element fails.

This second rule takes into account a practical system response to a network
fault: the disabling of some components so that operation can continue, but
in a degraded mode. This is feasible if the network is used for asynchronous
communication by cooperating processors (MIMD mode [181). If the network
is used in a synchronous mode to establish permutation connections (SIMD
mode [181) disabling some components is not feasible. However, if the
system is partitionable so that subsets of the processors, called submachines,
operate synchronously but independent of other submachines, then certain
submachines can be disabled when a fault occurs. PASM [41] and TRAC [34]
are systems with this capability.

Since robustness is useless unless it can be exploited, it is implicit that
faults can be detected and diagnosed and that the system can continue to
function once a fault is detected. Detection and diagnosis have been in-
vestigated in [4, 17, 33, 391. The latter requirement implies that measuring
robustness is only meaningful for MIMD and partitionable SIMD environ-
ments .

The results using the first rule are shown in Table II and those using the
second rule in Table III. Two examples of how to calculate the expressions

TABLE II
AVERAGE NUMBER OF AFFECELI I/O PORTS IN THE GENERALIZED CUBE AND ADM

NETWOFXS WHEN LINKS AND SWITCHES ARE REMOVED’

Node = Switch Arc = Switch

Failure Link Switch Link Int. box

2N-2 Generalized Cube - n
4N - 2 4N - 2 4N - 4
n+l nfl n

ADM N+n-1 2N+n 2NZNfn
3n n+l nfl

7N-8+1
2n

CUWADM =6 -2 =2 =1.14

“All ports are considered. Node = switch implementation corresponds to Figs. 3 and 2.
Arc = switch implementation corresponds to Figs. 1 and 6.

96 MC MILLEN AND SIEGEL

TABLE III
AVERAGE NUMBER OF AITFJXED I/O PORTS IN THE GENERALIZED CUBE AND ADM

NETWORKS WHEN LINKS AND SWITCHES ARE REMOVED’

Failure

Node = Switch Arc = Switch

Link Switch Link Int. box

Generalizal Cube 2N-2 1 2N 2N 2N - - --2 -- n+l 2 -- n+l 4 n n

ADM 0 0 0 -- 3N 2n 3

Cube/ADM co cc

’ Severely affected ports are disabled and not counted.

m El.33

in Table II are shown in the next subsection. The remaining derivations for
both tables are presented in the Appendix. It should be noted that the entries
in both tables under the “Node = Switch” column for a switch failure and
under the “Arc = Switch” column for a link failure are identical. This is
because both situations correspond to removing a single node from the graph-
ical representation. Removing a link from the node-equals-switch imple-
mentation corresponds to removing a single arc from the graph, whereas
removing an interchange box from the arc-equals-switch implementation
corresponds to removing four or eight arcs from the graph, considerably
different situations.

B. Fault Effect Analysis Counting All Affected Ports

Here the effects of a link fault are analyzed in detail for the Generalized
Cube network and then for the ADM network. For the former, assume there
is a link failure in stage i, the first rule applies, and the network is imple-
mented by equating nodes with switches (Fig. 3). To see which inputs are
affected, start with the failed link and move backward toward the input,
tracing all links that are connected to the failed one. The number of affected
inputs corresponds to the number of traced links in stage n - 1. In general
this number is 2”-i-‘. For example, if the link at level 4, stage 1 (Fig. 3)) fails,
inputs 0 and 4 are affected. The number of affected outputs is calculated by
tracing links from the failed one to those to which it is connected in the last
stage, i.e., stage 0. This number is expressed as 2’. For example, failure of
the link at level 6, stage 2 (Fig. 3), affects outputs 4,5, 6, and 7. To calculate
the average number of affected I/O ports, given a single link failure, a sum
of these two terms taken over all stages is computed:

j j 2 pn-i-l

r=O

+ 2’) = i ‘jf 2i = 2(N, ‘).

1=0

CUBE AND DATA MANIPULATION NETWORKS 97

As a second example, consider the case of a link failure in the ADM
network, using the first rule, and implemented by equating nodes with
switches (see Fig. 2). A property of the ADM network is that there are at least
two paths between every nontrivial (input address f output address)
input/output pair [28]. One of the existing paths consists of plus and straight
links only and is called positive dominant. There is another path that consists
of minus and straight links only and it is called negative dominant. The
portions of the positive and negative dominant paths that are distinct depend
on the relationship between the addresses. If they agree in the low-order i + 1
bits, then the paths converge at the input to stage i and follow the same set
of straight links in stages i through 0. (The paths will be distinct in stages
n - 1 through i + 1.) Thus if a nonstraight link fails, none of the I/O ports
are affected because there will be a distinct path of the opposite dominance
that avoids that link. (Routing schemes have been proposed that allow mes-
sages to dynumicully switch between positive and negative dominant paths as
they traverse the network [27,28], allowing them to avoid busy or faulty links
and switches.) If a straight link in stage i at levelj fails, then all the input ports
whose low-order i + 1 bits agree with output port j’s low-order i + 1 bits
will not be able to send a message to output j. There are 2”-i-’ such input
ports. The other input ports can communicate with output port j since their
paths to j do not converge until reaching a stage less than i. No output port
other than j is affected by the failure. To see this, consider output port k # j.
All input ports must be able to communicate with k. They can be divided into
two classes: (1) those whose addresses agree with k’s in less than i + 1
low-order bits; and (2) those whose addresses agree with k’s in at least i + 1
low-order bits. In the first case, either a given path from the input to output
k does not include the faulty straight link (in stage i, level j) or if it does, there
is another path of opposite dominance that does not. In the second case, in
stages i through 0 the required path uses straight links; however, they are all
at level k. Thus all inputs can communicate with output k so k is unaffected.
As an example, suppose the straight link in stage 1, level 4 (in Fig. 2), is bad
(i = 1,j = 4). C onsider three different situations: communication from in-
puts 0 and 4 to output 4, from input 0 to output 5, and from input 1 to output
5. Output 4 will be unable to receive messages from inputs 0 and 4, since 0
and 4 agree with j in the low-order i + 1 bits (2 bits). All the other output
ports are unaffected. Consider connecting input 0 to output 5. Even though
the positive dominant path, +2’, straight, + 2’) from input 0 to output 5
includes the bad straight link, a message can simply take the negative domi-
nant path, straight, -2i, -2’. Input 1 agrees with output 5 in the two
low-order bits (bits 0 and 1) and therefore requires straight links in stages 0
and 1. However, the required links are at level 5, and thus the faulty straight
link is not required.

The average number of I/O ports affected by a bad straight link, under the
first rule, is calculated by adding the number of affected input and output ports

98 MC MILLEN AND SIEGEL

(as a function of the stage in which the fault is located) and summing over all
stages:

i z (y-i-1 + 1) = $ fli (2’ + 1) =
zV+n-1

1=0 r=O n ’

Since the failure of a +2’ or a -2’ link does not affect any I/O ports, if link
failures are equally likely, then the average over all links is one-third of the
above value.

In Table II, the ratio of the average number of affected I/O ports in the
Generalized Cube to those in the ADM is computed. Regardless of network
size, in the node-equals-switch implementation, a link failure in the Gener-
alized Cube network affects six times as many ports, on the average, as a link
failme in the ADM. A given switch failure affects twice as many ports. In the
arc-equals-switch implementation, a link failure in the Generalized Cube
network affects twice as many ports as the same failure in the ADM network.
An interchange box failure affects 1.14 times as many ports.

C. Discussion of Fault Esfects with Some Disabled Ports

The measurement using the first rule is a very conservative indication of the
robustness of the ADM network. Table III shows that under the second rule,
the ADM network is very robust. When the pair of I/O ports connected to the
network at the level of the failure is disabled in the node-equals-switch
implementation, none of the remaining ports is affected by a link or a switch
failure. A failure can only eliminate one of at least two paths that are always
available between the enabled I/O ports (as illustrated in the example above
connecting input 0 to output 5). In the arc-equals-switch implementation, link
failures have no effect on enabled I/O ports, because (as pointed out earlier)
the situation is equivalent to removing a switch in the node-equals-switch
implementation. However, “interchange box” failures do affect some enabled
ports. The reason this is the case is that there are situations in which both paths
between input and output ports pass through the same box. It so happens that
these situations only occur in networks larger than size N = 8. The full details
are presented in the Appendix.

The entries in Table III for the Generalized Cube network are calculated in
a fashion similar to those in Table II. The derivation for each entry is given
in the Appendix.

The “interchange box” implementation fault analysis for the Generalized
Cube and ADM networks considers only the worst case; i.e., the entire box
is faulty. Whether both paths are acutally blocked due to a single fault in a
real implementation depends on the nature of the fault. Assume that one
interchange box is implemented on a single integrated circuit chip. If two data
lines internal to the chip and coming from the same input become shorted, this
will have no effect on the other internal data path and it is not necessary to

CUBE AND DATA MANIPULATION NETWORKS 99

assume that the whole interchange box has failed. On the other hand, a
mechanical failure could affect enough of the chip to render the entire device
unusable. From a reliability point of view, this analysis shows that the
implementation in Fig. 9a (which corresponds to the network in Fig. 2) is to
be preferred over that in Fig. 9b (which corresponds to the network in Fig.
6). Since the logic/pin ratio is roughly the same for both implementations,
nothing is lost. However, the total component count will be higher, leading
to a less physically compact implementation.

The robustness measures for the ADM network are equally applicable to
all the data manipulator-type networks with individual switching element
control since all the properties used to derive them apply to each of the
networks. Similarly, all the measures for the Generalized Cube network are
applicable to all the cube-type networks that have individual switching ele-
ment control.

The results presented here arc for the basic cube-type and data manipulator-
type topologies. It should be noted that variations on these topologies which
are more fault tolerant have been proposed [2, 12, 271.

The above analysis assumed that the failure of one component was inde-
pendent of the failure of any other component. If all or a large part of one
stage is implemented on a single chip, this assumption may or may not be
valid. If it is not, then the networks can be reanalyzed using the techniques
presented here to account for the new failure pattern exhibited.

VI. CONCLUSIONS

This paper has examined two classes of multistage interconnection net-
works for use in parallel/distributed systems: the cube type and the data
manipulator type. This was done by comparing a representative network from
each class: the Generalized Cube and the Augmented Data Manipulator
(ADM). This paper has attempted to quantify the differences in imple-
mentation costs by considering comparable implementation models for both
networks. It was found that a discrete, circuit-switched implementation of the
ADM network costs approximately 50% more than the same type of imple-
mentation of the Generalized Cube network. For discrete, packet-switched
implementations, assuming the packet buffer cost dominates, the two net-
works cost about the same amount (ADM would be slightly higher). If the
networks are to be constructed from VLSI chips, assuming the network’s
building block chips are to have nearly equal numbers of pins, the ADM

network requires more than twice as many chips as the Generalized Cube.
Both networks can benefit from VLSI implementation. Each can be par-

titioned into complex building blocks that have higher logic/pin ratios than
partitions of simple building blocks. Though the ADM building block re-
quires more I/O ports on a chip than a Generalized Cube building block,

100 MC MILLEN AND SIEGEL

present and future predicted pin capacities are sufficient for the ADM
network’s needs. Using bit slicing, arbitrarily wide networks of either type
can be constructed.

Using a graph model as a basis, two quantitative measures of comparative
robustness were applied to the networks assuming they are used in MIMD or
partitioned SIMD environments. Applying the measures to two different
(functionally equivalent) implementations of each network under different
faults it was found that the ADM network is always more robust. Using the
first measure, the Generalized Cube network varied from having 1.14 to 6
times as many affected I/O ports due to a single failure as the ADM network.
Using the second measure, in which some I/O ports are disabled, one imple-
mentation of the ADM network was shown to be able to fully support
communication among the remaining enabled I/O ports.

In summary, a graph model has been used as a basis for quantifying the
differences between cube- and data manipulator-type networks. Both imple-
mentation costs and robustness have been compared.

APPENDIX: DERIVATIONS OF ROBUSTNES RESULTS

The following are derivations of each of the results in Tables II and III
(excluding those already presented in Section V, B: the average number of
affected I/O ports in the Generalized Cube and ADM networks when links or
switches fail. Two different implementations and two different rules for
disabling I/O ports are considered. Recall that a port is affected by a failure
if it cannot send a message to all of the other ports or if it cannot receive a
message from all of the other potts.

I. Rule 1: When a link or a switch fails, no I/O ports are disabled.
A. Implementation: Node = Switch (Arc = Link).

1. A single link fails. This case was considered in Section V of
the text.

2. A single switch fails. Under this implementation there are
II + 1 columns of switches (see Figs. 3 and 5) so summations
in the average are taken from 0 to n.
a. Generalized Cube

Starting at the failed switch, trace links and switches back
to the input to determine the number of affected inputs.
This number is 2”-’ if the failed switch is in column i.
Using this same method, but tracing to the output, the
number of affected output ports is 2’. The average num-
ber affected is thus

& 2 (y-i + 2’) = $ $ 2’ = 2’y+sl ‘).
r=O r=O

CUBE AND DATA MANIPULATION NETWORKS 101

b. Augmented Data Manipulator
The same reasoning discussed in the text (Section V)
applies here. There are 2”-’ affected input ports and only
1 affected output port. The average is thus

& 2 (2,-i + 1) = --& $ 2’ + 1
r=O r=O

2N- 1 =-
n+1

+12fn
n+l’

B. Implementation: Arc = Switch (Node = Link).
1. A single link fails. This case is completely analogous to I.A.2

above.
2. A single interchange box fails. The effects of this are deter-

mined by examining Figs. 1 and 6.
a. Generalized Cube

The effects of a failed interchange box in stage i are
determined by tracing both input links to the box back to
the input and the two output links to the output. The
number of affected input ports is 2”-’ and output ports is
2’+‘. The average number affected is

I 2 p-i + 2i+l) = 2 5 2i+l = 4 g 2i = 4(N - 1).
’ i=O n i=O n i=O n

b. Augmented Data Manipulator
In this implementation, the straight arcs (from Fig. 5) that
are paired at stage i (for the network in Fig. 6) are P,,-~
’ ’ ’ pi+lpipi-I ’ ’ * PO and Pn-1 ’ * * Pi+lFiipi-I * * ’ PO*
The logical “distance” between these links is 2’. Thus, if
j = pn-1 * ’ ’ pi+lOpi-1 ’ * * p. is the address of the upper
input to an “interchange” box in stage i, then j + 2’ =
Pn-1 * * ’ pi+llpi-1 * ’ * p. is the address of the lower
input. For example, in Fig. 6, the second box from the
top in stage 1 has inputs with addresses 4 and 6. In binary
the addresses are pzOpo = 100 and p21po = 110, respec-
tively. Notice that each box has two other inputs from
nonstraight links. To consider all of the inputs that possi-
bly could be affected by the failure of a box with inputs
j and j + 2’ in stage i, trace links backward from each
box input to the input of the network. The easiest way to
do this is to use Fig. 5. Start with the nodes at levels j and
j + 2’ in column i. For the example above, these are

102 MC MILLEN AND SIEGEL

nodes 4 and 6 in column 1. Trace the three links back-
ward to column i + 1 and mark the appropriate nodes.
Repeat the procedure for each marked node. There will
be 2”-’ inputs marked in column n, so this is the upper
bound on the number of affected inputs. For the example,
nodes 0, 2,4, and 6 are marked in column 3 of Figure 5.
This translates to inputs with these numbers in Fig. 6.
None of the other inputs can be affected by the failure of
this box because they have no physical connection to it.
All of the marked inputs are affected. This is because any
input whose low-order i + 1 bits match either j (bits
opi-, * - * po) or j + 2’ (bits lpi-1 * . * po) will require
straight connections in stages i through 0 at level j or
j + 2’ when these inputs communicate with outputs j or
j + 2’. They will be forced to use the faulty interchange
box in stage i. Calculation shows that there are 2”-’ ad-
dresses that meet this criterion so the number of affected
inputs equals the upper bound.

To determine which outputs are affected requires two
observations: (1) inputs that can reach output j orj + 2’
of the faulty interchange box can only get to levels in
stage i of the form j 2 b2’ mod N, b any integer; and (2)
regardless of the path taken in stages n - 1 though i,
when the path reaches the output of stage i, it must be less
than a distance of 2’ (i.e., 0 to 2’ - 1) of the destination
D. Observation (1) is a result of the fact that the inputs
agree with j in the i low-order bits. In stages n - 1
through i the smallest increment by which a path can
change levels is 2’. Thus all the levels it can get to in stage
i agree with j in the i low-order bits. Observation (2) is
a result of the fact that the maximum distance stages
i - 1 through 0 can change a path is LXi1\ 2k = 2’ - 1.

Now consider five cases regarding the relationship be-
tween D, j, and j + 2’. First, note that any interchange
box in stage IZ - 1 that fails will affect all the outputs
since none of them can receive messages from inputs j
and j + 2”-‘. So, assume i < n - 1.

Case 1. D = j. Output j is the only output from the
faulty box less than a distance of 2’ from D; therefore (as
shown in the affected inputs analysis) inputs that agree
with j in the low-order i bits cannot communicate with D.

Case 2. D = j + 2’. The argument is the same as for
Case 1; thus D is affected.

CUBE AND DATA MANIPULATION NETWORKS 103

Case 3. j < D < j + 2’. The only outputs in stage i
less than 2’ from D are j and j + 2’. Thus both potential
paths from an input that agrees with j in the low-order i
bits must route through the faulty interchange box, so D
is affected.

Case4.01D <j(ifj=O=DseeCasel).IfDis
a distance of 2’+’ or more from j, it is completely un-
affected because there is no physical path from the faulty
box to D. If D is a distance of less than 2’+’ from j, the
only outputs from the faulty box less than 2’ from D are
j - 2’ and j. One of the paths to output j - 2’ comes from
the faulty box. However, it is known that there are at least
two ways to get from an affected source to output j - 2’
in stage i (which is input j - 2’ of the next stage, stage
i - 1). This follows from the facts that (1) there are at
least two paths between every nonequal network input
and output [28], and (2) the only way to reach network
output j - 2’ from an affected source is to go through
input j - 2’ from stage i - 1 and then “straight” through
the rest of the network. Therefore, there are at least two
physical paths from an affected source to input j - 2’ at
stage i - 1. Thus, every affected input must be able to
communicate with D through the other path to input
j - 2’ in stage i - 1. Therefore, D is unaffected.

Case5.j+2’<D~N-1(ifj+2’=iV-1=
D see Case 2). This case is completely analogous to Case
4. If D is a distance of 2’+’ or more from j + 2’ then it
is completely unaffected. Otherwise, the only outputs in
stageilessthan2’fromDarej + 2’andj + 2’+‘. Thus
D is unaffected.

To summarize, if i = n - 1, two inputs and all N
outputs are affected. For 0 5 i C n - 1, the outputs
affected have an address D such that j 5 D I j + 2’.
There are 2’ + 1 such outputs. The inputs affected agree
with j in the low-order i bits. There are 2”-’ such inputs.
The average number of affected I/O ports is

I
[

2 (2,-i + 2’ + 1) + N + 2
* i-0 1

(4(2’) + 2’ + 1) + N + 21 = v + 1.

104 MC MILLEN AND SIEGEL

II. Rule 2: If a straight link or switching element at level j fails, disable
input j and output j. If an interchange box with inputs j and k fails,
disable inputs j and k and outputs j and k.
A. Implementation: Node = Switch (Arc = Link).

1. A single link fails.
a. Generalized Cube

When a straight link in stage i fails there are 2”-i-’ - 1
affected inputs and when a nonstraight link fails there are
2”-i-’ affected inputs (since no ports are disabled). Sim-
ilarly there are 2’ - 1 and 2’ affected outputs, re-
spectively. The average is thus

i z (p-i-1 _ 1 + 2n-i-1 + 2’ _ 1 + 2’)

r=O

= $I (y-i-* + 2i-1) = E.)? - 1.

I=0

b. Augmented Data Manipulator
If any straight link at level j fails, the only output some
of the inputs cannot communicate with is output j. Since
it is disabled and it was the only affected output (see the
discussion in Section V), none of the remaining enabled
input or output ports is affected.

2. A single switch fails.
a. Generalized Cube

This case is similar to case I.A.2.a except that there is
one less affected input and one less affected output. Also,
the failure of a switch in column n or 0 has no effect on
any inputs or outputs. This is because when a column n
switch fails, any input other than the one entering that
switch can reach all outputs. Similarly, when a column 0
switch fails, the only output that cannot be reached is the
one attached to the failed switch. The average is thus

;;-l/i 2 (p-i + 2’ - 2) = ---& $ (2’ - 1)
I=1 1=1

2hf c--2
n+l .

b. Augmented Data Manipulator
No input or output links are affected. The reasoning is
similar to case ILA. 1 .b. If a switch at level j fails, the

CUBE AND DATA MANIPULATION NETWORKS 105

only affected output port is that connected to the faulty
switch by straight links, namely, output j.

Implementation: Arc = Switch (Node = Link).
1. A single link fails.

This case is completely analogous to case II.A.2 above.
2. An interchange box fails.

a. Generalized Cube
This is similar to case I.B.2.a except that two less inputs
and two less outputs are affected. Also, the failure of an
interchange box in stage it - 1 or 0 has no effect on any
inputs or outputs. This is because when a stage n - 1 box
fails, any input other than those entering that box can
reach all outputs. Similarly, when a stage 0 box fails, the
only outputs that cannot be reached are those attached to
the failed box. The average is thus

B.

i 2 (p-i + 2;+1 - 4) =
1=l

f 2 (pi+’ - 2) = 7 - 4.
1=l

b . Augmented Data Manipulator
This is similar to case I.B.2.b except that two less inputs
and two less outputs are affected. As in case II.B.2.a, the
failure of an interchange box in stage n - 1 or 0 has no
effect on any inputs or outputs. Therefore, the average is

12 (2,-i + 2’ _ 3) = 1 g (3.2’ _ 3) = g _ 3.
n i=l n i=l

ACKNOWLEDGMENT

A preliminary version of this material was presented at the Third International Conference
on Distributed Computing Systems, October 1982.

REFERENCES

1. Adams, G. B., III, and Siegel, H. J. On tbe number of permutations performable by the
augmented data manipulator network. IEEE Trans. Compur. C-31 (Apr. 1982), 270-277.

2. Adams, G. B., III, and Siegel, H. J. The extra stage cube: A fault-tolerant interconnection
network for super-systems. IEEE Trans. Comput. C-31 (May 1982), 443-454.

3. Adams, G. B., III, and Siegel, H. J. The use of 4 X 4 switching elements in the multistage
cube networks. Proc. 1st Int. Conf. Computers and Applications, June 1984, pp.
585-592.

4. Agrawal, D. P. Testing and fault-tolerance of multistage interconnection networks. Com-
puter 15 (Apr. 1982), 41-53.

5. Agrawal, D. P. Graph theoretical analysis and design of multistage interconnection net-
works. IEEE Trans. Comput. C-32 (July 1983). 637-648.

106 MC MILLEN AND SIEGEL

6. Anderson, G. A., and Jensen, E. D. Computer interconnection structures: Taxonomy,
characteristics, and examples. ACM Comput. Surveys 7 (Dec. 1975), 197-213.

7. Barnes, G. H., and Lundstrom, S. F. Design and validation of a connection network for
many-processor multiprocessor systems. Computer 14 (Dec. 1981), 31-41.

8. Batcher, K. E., STARAN parallel processor system hardware. Proc. AFIPS 1974 Nat.
Computer Conf., May 1974, pp. 405-410.

9. Batcher, K. E. The flip network in STARAN. Proc. 1976 Int. Conf. Parallel Processing,
Aug. 1976, pp. 65-71.

10. Briggs, F., Fu, K. S., Hwang, K., and Wah, B. W. PUMPS architecture for pattern
analysis and image data-base management. IEEE Trans. Comput. C-31 (Oct. 1982),
969-983.

11. Ciminiera, L., and Serra, A. Modular interconnection networks with asynchronous control.
14th Annual Hawaii Int. Conf. System Science, Jan. 1981, pp. 210-218.

12. Ciminiera, L., and Serra, A. A fault-tolerant connecting network for multiprocessor sys-
tems. 1982 Int. Conf. Parallel Processing, Aug. 1982, pp. 113-122.

13. Dcspain, A. M., and Patterson, D. A. X-tree: A tree structured multi-processor computer
architecture. Proc. 5th Annual Int. Symp. Computer Architecture, Apr. 1978, pp.
144-151.

14. Dias, D. M., and Jump, J. R. Analysis and simulation of buffered delta networks. ZEEE
Trans. Comput. C-30 (Apr. 1981), 273-282.

15. Feng, T. Data manipulating functions in parallel processors and their implementations.
IEEE Trans. Comput. C-23 (Mar. 1974), 309-318.

16. Feng, T. A survey of interconnection networks. Computer 14 (Dec. 1981), 12-27.
17. Feng, T., and Wu, C. Fault-diagnosis for a class of multistage interconnection networks.

IEEE Trans. Comput. C-30 (Oct. 1981), 743-758.
18. Flynn, M. J., Very high-speed computing systems. Proc. IEEE 54 (Dec. 1966),

1901-1909.
19. Goke, L. R., and Lipovski, Cl. J. Banyan networks for partitioning multiprocessor systems.

Proc. 1st Annual Int. Symp. Computer Architecture, Dec. 1973, pp. 21-28.
20. Jenevein, R. M., and Browne, J. C. A control processor for a rcconfigurable array

computer. Proc. 9th Annual Int. Symp. Computer Architecture, Apr. 1982, pp. 81-89.
21. Lang, T., and Stone, H. S. A shuffle-exchange network with simplified control. IEEE

Trans. Comput. C-25 (Jan. 1976), 55-65.
22. Lawrie, D. H. Access and alignment of data in an array processor. IEEE Trans. Comput.

c-24 (Dec. 1975), 1145-1155.
23. Malek, M., and Myre, W. W. A description method of interconnection networks. IEEE

Tech. Committee D&rib. Process. Quart. 1 (Feb. 1981), l-6.
24. McDonald, W. C., and Williams, J. M. The advanced data processing test bed. Proc.

Compsac, Mar. 1978, pp. 346-351.
25. McMillen, R. J., Adams, G. B., III, and Siegel, H. J. Performance and implementation

of 4 x 4 switching nodes in an intercomrection network for PASM. Proc. 1981 Int. Conf.
Parallel Processing, Aug. 1981, pp. 229-233.

26. McMillen, R. J., and Siegel, H. J. The hybrid cube network. Proc. Distributed Data
Acquisition, Computing, and Control Symp., Dec. 1980, pp. 1 l-22.

27. McMillen, R. J., and Siegel, H. J. Performance and fault tolerance improvements in the
inverse augmented data manipulator network. Proc. 9th Annual Int. Symp. Computer
Architecture, Apr. 1982, pp. 63-72.

28. McMillen, R. J., and Siegel, H. J. Routing schemes for the augmented data manipulator
network in an MIMD system. IEEE Truns Comput. C-31 (Dec. 1982), 1202-1214.

CUBE AND DATA MANIPULATION NETWORKS 107

29. Parker, D. S., and Raghavendra, C. S. The Gamma network: A multiprocessor network
with redundant paths. Proc. 9th Annual Int. Symp. Computer Architecture, Apr. 1982,
pp. 73-80.

30. Pease, M. C. The indict binary n-cube microprocessor array. IEEE Trans. Comput. C-26
(May 1977), 458-473.

31. Pradhan, D. K. and Kodandapani, K. L. A uniform representation of single- and multistage
interconnection networks used in SIMD machines. IEEE Trans. Compur. C-29 (Sept.
1980), 777-791.

32. Premkumar, U. V., Kapur, R., Malek, M., Lipovski, G. J., and Home, P. Design and
implementation of the banyan interconnection network in TRAC. Proc. AFIPS 1980 Nat.
Computer Conf., June 1980, pp. 643-653.

33. Rathi, B. D., and Malek, M. Fault diagnosis of networks. Proc. Distributed Data Acqui-
sition, Computing, and Control Symp., Dec. 1980, pp. 110-119.

34. Sejnowski, M. C., Upchurch, E. T., Kapur, R. N., Charm, D. P. S., and Lipovski, G. J.
An overview of the Texas Reconfigurable Array Computer. Proc. AFIPS 1980 Nat.
Computer Conf., June 1980, pp. 631-641.

35. Siegel, H. J. Analysis techniques for SIMD machine interconnection networks and the
effects of processor address masks. IEEE Trans. Comput. C-26 (Feb. 1977), 153-161.

36. Siegel, H. J. Interconnection networks for SIMD machines. Computer 12 (June 1979),
57-65.

37. Siegel, H. J. Interconnection Networks for Large-Scale Parallel Processing: Theory and
Case Studies. Lexington Books, Lexington, Mass., 1984.

38. Siegel, H. J., and McMillen R. J. Using the augmented data manipulator network in
PASM. Computer 14 (Feb. 1981), 25-33.

39. Siegel, H. J., and McMillen R. J. The multistage cube: A versatile interconnection net-
work. Computer 14 (Dec. 1981), 65-76.

40. Siegel, H. J., McMillen, R. J., and Mueller, P. T., Jr. A survey of interconnection methods
for reconfigurable parallel processing systems. Proc. AFIPS 1979 Nat. Computer Conf.,
June 1979, pp. 529-542.

41. Siegel, H. J., Siegel, L. J., Kemmerer, F. C., Mueller, P. T., Jr., Smalley, H. E., Jr.,
and Smith. S. D. PASM: A partitionable SIMDIMIMD system for image processing and
pattern recognition. IEEE Trans. Comput. C-30 (Dec. 1981), 934-947.

42. Siegel, H. J., and Smith, S. D. Study of multistage SIMD interconnection networks. Proc.
5th Annual Int. Symp. Computer Architecture, Apr. 1978, pp. 223-229.

43. Smith, S. D. LSI design considerations for multistage interconnection networks for parallel
processing systems. Proc. 14th Annual Hawaii Int. Conf. System Science, Jan. 1981, pp.
219-227.

44. Swan, R. J., Fuller, S. H., and Siewiorek, D. P. Cm*: A modular, multimicroprocessor.
Proc. AFIPS 1977 Nat. Computer Conf., June 1977, pp. 637-644.

45. Thurber, K. J., Interconnection networks-A survey and assessment. Proc. AFIPS 1974
Nat. Computer Conf., May 1974, pp. 909-919.

46. Tripathi, A. R., and Lipovski, G. J. Packet switching in banyan networks. Proc. 6th.
Annual Int. Symp. Computer Architecture, Apr. 1979, pp. 160-167.

47. Widdoes, L. C., Jr. The Minerva multi-microprocessor. Proc. 3rd Annual Int. Symp.
Computer Architecture, Jan. 1976, pp. 34-39.

48. Wu, C., and Feng, T. On a class of multistage interconnection networks. IEEE Trans.
Comput. C-29 (Aug. 1980), 694-702.

49. Wulf, W. A., and Bell, C. G. Cmmp-A multi-miniprocessor. Proc. AFIPS 1972 Fall
Joint Computer Conf., Dec. 1972, pp. 765-777.

