IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

477

Power and Thermal-Aware Workload Allocation
in Heterogeneous Data Centers

Abdulla M. Al-Qawasmeh, Sudeep Pasricha, Member, IEEE, Anthony A. Maciejewski, Fellow, IEEE, and
Howard Jay Siegel, Fellow, IEEE

Abstract—Many of today’s data centers experience physical limitations on the power needed to run the data center. The first problem that
we study is maximizing the performance (quantified by the reward collected for completing tasks by their individual deadlines) of a

data center that is subject to total power consumption (of compute nodes and CRAC units) and thermal constraints. The second problem
that we study is how to minimize the power consumption in a data center while guaranteeing that the overall performance does not drop
below a specified threshold. For both problems, we develop novel optimization techniques for assigning the performance states of cores at
the data center level to optimize the operation of the data center. The resource allocation (assignment) techniques in this paper are thermal
aware as they consider effects of performance state assignments on temperature and power consumption by the CRAC units. Our

simulation studies show that in some cases our assignment technique achieves about 17% average improvement in the reward collected,
and about 9% reduction in power consumption compared to an assignment technique that only considers putting a core in the performance

state with the highest performance or turning the core off.

Index Terms—Thermal-aware, performance states, data center, CRAC, heterogeneous computing

1 INTRODUCTION

OVER the last decade, the power consumption of data
centers has been increasing at a rapid rate. In a report
by the EPA [18], it is estimated that the power consumed by
servers and data centers has more than doubled between the
years 2000 and 2006. In 2006, it is estimated that the power
consumed by servers and data centers was 61 billion kWh,
which is equal to 1.5% of the total U.S. electricity consumption
that year. This amounts to $4.5 billion in annual electricity
costs, equivalent to the power consumption costs of 5.8 million
average U.S. households. Motivated by the need to reduce the
power consumption of data centers, many researchers have
been investigating methods to increase the energy efficiency
in computing at different levels: chip, server, rack, and data
center (e.g., [2], [7], [8], [10], [14], [21], [24], [28], [29], [32], [36],
[40], [45]).

In some cases, there are physical limitations on the amount
of power available for data centers. For example, Morgan
Stanley is no longer able physically to get the power needed to
run a new data center in Manhattan [11]. In a survey of data
centers [19], 31% identify power availability as a key factor
limiting server deployment. The EPA report also indicates
that about 50% of the power consumed in data centers is due
to the infrastructure for power delivery and cooling.

® A.M. Al-Qawasmeh, S. Pasricha, A.A. Maciejewski, and H.]. Siegel are with
the Department of Electrical and Computer Engineering, Colorado State
University, Fort Collins, CO 80523.
E-mail: abdulla@arabellaconsulting.com, sudeep, aam, hj@colostate.edu.

® H.J. Siegel is also with the Department of Computer Science, Colorado State
University, Fort Collins, CO 80523.

Manuscript received 20 Sept. 2012; revised 31 Mar. 2013; accepted 12 May
2013. Date of publication 21 May 2013; date of current version 16 Jan. 2015.
Recommended for acceptance by D. Bader.

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TC.2013.116

Therefore, minimizing the power consumed by the cooling
infrastructure, can lead to significant overall power savings.

This paper studies two problems. In Problem 1, we maxi-
mize the performance of a data center that is subject to both a
total power consumption constraint (£,,s) and thermal con-
straints. The power consumption of the data center is the sum
of the power consumption of both Computer Room Air
Conditioning (CRAC) units and compute nodes. We quantify
the performance of the data center as the total reward
collected from completing tasks in a workload by their indi-
vidual deadlines. We consider a data center in the steady state
where task flow rates, temperatures at compute nodes and
CRAC units, and the power consumption of compute nodes
become constant; we assume that the steady state may take on
different values during subsequent time intervals. Therefore,
the performance is equivalently quantified by the total rate at
which reward is collected (the total reward rate). In Problem 2,
we minimize the power consumption of a data center while
guaranteeing that the total reward rate does not drop below a
specified threshold (Reons').

Performance states (P-states) of cores provide a trade-off
between the power consumed by a core and its performance
[23]. Lower P-states consume more power and provide better perfor-
mance. The relationship between the performance and power
consumption of the P-states is non-linear. In most cases, the
lowest P-state (P0) is not the P-state with the best trade-off
between performance and power consumption [30], [41].

P-state assignments in data centers are mainly done at the
compute node level. In cases where the workload fluctuates,
the P-state of one or more cores is increased when the node’s
utilization drops below a specified threshold (e.g., [17], [35],

1. Appendix C, which can be found on the Computer Society Digital
Library at https://doi.ieeecomputersociety.org/10.1109/TC.2013.116,
provides a list of notations used in this paper.

0018-9340 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

478

[40]. However, in a power or performance constrained data
center where the workload assigned to a core is constant, the
utilization of each core (that is not turned off) in a specific
P-state will be close to 100% to avoid idle time. This is because
we want to execute as many tasks as possible to obtain the
maximum performance for a given power consumption. In
this paper, we show that our technique of assigning the
P-states when considering the whole data center increases
the overall performance (in terms of increased reward or
reduced power consumption) of the data center.

The power consumed by compute nodes in the data center
is dissipated as heat that is removed by the CRAC units. Our
approach of assigning tasks and P-states to cores is thermal
aware as it considers the temperature evolution effects of
P-state assignments, which in turn affects the power con-
sumed by the CRAC units. For both problems studied in this
paper, we show how each assignment can be expressed as an
exact optimization problem. The P-state assignment part of
the problem introduces integer constraints. The integer con-
straints make each assignment problem not scalable with
respect to the number of cores in the data center. A simple
relaxation of the integer constraints may introduce additional
binary constraints that make each assignment problem not
scalable. To address this, we propose novel and scalable
assignment techniques for both problems. Each technique
involves solving a set of scalable optimization problems. Our
techniques are compared against a technique that only con-
siders putting a core in the lowest P-state or turning off the
core. We show that using our techniques results in notable
performance improvements.

In summary, we make the following novel contributions.
Our first contribution is that we model data centers that are
power or reward constrained. The second contribution is that
we express each assignment problem at the data center level as
an optimization problem that includes P-state assignment. The
decisions of this optimization problem are: the P-states of cores,
the desired number of tasks per unit timeallocated toa core, and
the outlet CRAC temperatures. The known solution techniques
to both optimization problems are not scalable due to integer
constraints imposed by the P-states. The third contribution is a
scalable assignment technique to find near-optimal solutions
for each problem. The fourth contribution is a dynamic sched-
uler that assigns tasks to cores such that the actual rate of task
execution is as close as possible to the desired rate. Finally, the
fifth contribution of this research is showing, through simula-
tions, the performance gains of applying our techniques to
solve Problems 1 and 2 as opposed to current techniques.

The rest of this paper is organized as follows. Section 2
discusses related work. The data center model is described in
Section 3. In Section 4, the thermal constraints in the data
center are described. The assignment problems and our solu-
tion to the problems are given in Section 5. Section 6 describes
the simulation set up. Simulation results are shown in
Section 7. Conclusions are given in Section 8.

2 RELATED WORK

In [40], a control system for minimizing the power consump-
tion in blade server enclosures is proposed. The power
consumption of the blade server is minimized using three
techniques: blade server consolidation, adjusting the speeds

IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

of the fans, and assigning P-states to processors. The P-state
assignment is based on a simple utilization-based technique.
A processor is assigned a P-state so that the utilization is never
higher than 80%. However, as discussed in the introduction,
this technique is not effective in a power or performance
constrained data center because the utilization of each core
should be close to 100%. The other two techniques (blade
server consolidation and adjusting the speeds of the fans) can
be used in future work in combination with our assignment
technique to reduce the power consumption.

In [36], it is shown that using an integrated approach to
managing the cooling and computational resources in a data
center is more efficient than if the two resources were man-
aged independently. Their technique is similar to ours in that
it trades-off power consumption with QoS (reward). They
trade-off power by deciding the amount of compute resources
will be turned on at a compute node. In this paper, we extend
that work in two directions. First, we consider a power
constrained data center and a reward constrained data center.
Second, we show how assigning P-states at the data center
level results in improved performance.

The P-state assignment problem for optimizing some ob-
jective in a computer system has been studied widely (e.g., [7],
[8], [13], [41], [45], [46]). The primary difference between our
work and these studies is that our work considers the power
consumed by the CRAC units in addition to the power
consumed by compute nodes.

The thermal-aware scheduling problem has been previ-
ously researched (e.g., [2], [14], [32], [34]). However, unlike
our study, none of these papers consider P-state assignment.

Many other techniques to increase the energy efficiency of
data centers exist. For example, the Open Compute Project
started by Facebook proposes the following two techniques:
1) using a480 V electrical distribution system to reduce energy
loss and 2) reusing hot aisle air in the winter to heat offices.
Another example proposed by the Sustainable Ecosystems
Research Group at HP is to use water evaporation for cooling
instead of using compressors. Many of these techniques can be
used in conjunction with our technique to obtain further
performance gains.

3 DATA CENTER MODEL

3.1 Overview

In this section, we give a detailed description of the workload
and the different components of the data center. Data centers
are typically arranged in a hot-aisle/cold-aisle configuration,
as depicted in Fig. 1. CRAC units draw hot air from the top
and deliver cold air through the perforated floor tiles in the
cold aisles. Compute nodes draw air from the cold aisles. The
power consumption of compute nodes causes the tempera-
ture inside of the compute nodes to rise. The hot air inside a
compute node is expelled into the hot aisle. Due to complex air
flow patterns in a data center, some of the hot air exiting a
compute node re-circulates into another compute node.

3.2 Workload

We assume that we have a set of 7" known task types. The
arrival rate of tasks of type i is given by ;. The types of tasks
and their arrival rates in real-world data centers may change
over time (e.g., depending on the time of day). This may cause

AL-QAWASMEH ET AL.: POWER AND THERMAL-AWARE WORKLOAD ALLOCATION IN HETEROGENEOUS DATA CENTERS 479

cold aisles

\\

\

2 %)) %)) %)
S ~ ~ ~ ~ ~
© (o] [s] o]]]
— (1] © O [0 (]

S — S — S

g @)) @ @
S ° © - e, °
e o o) o o o

c c c c c

] o o o o o
S)) - =)
2 5 5 5 5 5
£ a a a a a
S IS € £ IS IS
S o o o o o

o o o o o
hot aisles
CRAC1 CRAC2 CRAC3

Fig. 1. A hot-aisle/cold-aisle data center layout.

the data center to operate at less than capacity at times and be
overloaded at other times. In this paper, we assume that
historic data can be used to identify the types of tasks that
the data center will be executing and estimate the arrival rates
of each of the task types in different time intervals in the future
(e.g., [26]). In each of these time intervals, the arrival rate of
tasks of each type remains constant. When the arrival rates of
tasks change (i.e., we enter a new time interval), the assign-
ment problems in this paper will be solved again for the new
arrival rates.

A reward r; is collected for completing a task of type i by
the task’s individual deadline. The deadline of a task of type i
isgivenby: deadline = arrival time + d;. The value of d; would
be specified by the user. In addition, we assume tasks can be
dropped if their deadlines cannot be satisfied. The goal of
Problem 1 in this paper is to maximize the total reward that is
collected given a constraint on the total power consumption of
the data center (the power consumption of compute nodes
and CRAC units). The goal of Problem 2 in this paper is to
minimize the total power consumption given a constraint on
the total reward collected.

3.3 Compute Nodes

Let the number of compute nodes in the data center be NC'N.
Each compute node has a number of identical cores. Each
compute node j belongs to a specific compute node type NT}.
Compute nodes with the same type are identical (i.e., they
have the same number and type of cores, and the same power
consumption characteristics). The characteristic of compute
nodes (e.g., number of cores, the power consumption proper-
ties, and/or the computational performance of cores) differs
across compute node types. The total number of cores in the
data center is NCORES. We use a global index for cores. Let
CT;, be the type of the compute node to which core & belongs.
Because all cores within a compute node are identical, we also
refer to CT}, as being the type of core k.

The power consumption of a compute node is the sum of its
base power consumption and the power consumption of its
cores. The base power consumption is used to model non-
compute devices (e.g., disks, fans). The power consumed by
the non-compute devices is not affected by the utilization of

the cores [33]. Let B; be the base power consumption of a
compute node of type j. We assume that compute nodes are
not turned off during the execution of a workload. Therefore,
the base power consumption will always be incurred even if
the compute node is not executing any tasks.

Each core of type j in the data center can be put in one of 7;
P-states. P-state 0 is the P-state with the highest clock frequency
and highest power consumption. Each consecutive P-state
has a lower clock frequency and lower power consumption.
We also consider the case where we can turn off the core.

Wemodel the case where the coreis turned off by adding one
additional P-state to the available P-states of a core. The turned-
off P-state will be the highest P-state (e.g., for cores with P-states
from PO to P5, the turned-off state will be P6). The power
consumption of a core of type j running in P-state & is 7; .

In some cases, the power consumption of a core is also a
function of the task type that it executes. For example, I/O
intensive tasks usually consume less power than other tasks
[33]. In this work, we assume that the power consumption of a
core is dependent on its type and P-state alone. However, it is
possible to extend our model to capture the effect of a task type
(e.g., I/O or compute intensive task types) on core power
consumption. A third index would have to be added to 7 to
represent the effect of a task type on the power consumption
of a core. For example, for an I/Obound task type 1 the power
consumption of a core of type j running in P-state & is ;.
which will be less than the power consumption of the same
core when it runs a CPU bound task type 2 (i.e., 7j 11 < 7j1.2)-
Introducing this third index will increase the size of our
assignment problems. However, the same assignment tech-
niques will still be applicable.

Let PSS}, be the assigned P-state of core k. Let cores; be the
set of indices of cores that belong to compute node j. The
power consumption of compute node j, PCNj, is given by:

PCN]' = BNTJ + Z TNT;,PSy - (1)

kecores;

The first term refers to the baseline power for a compute
node j of type NT; and the second term refers to the active
operational power that depends on the P-state.

3.4 Estimated Computational Speed

We assume that the estimated computational speed (EC'S) of
a task of type ¢ on a core of type j running in P-state k, ECS(i, j,
k),is known. ECS(i, j, k) represents the number of tasks of type
i that can be completed per time unit on a core of type j when
running in P-state k. The estimated computational speed is
equal to the reciprocal of the estimated time to compute (ETC)
[4], [5]. The assumption of ETC information is a common
practice inresource allocation research (e.g., [9], [15], [22], [25],
[27], [37], [42]). The ETC values for a given system can be
obtained from user supplied information, experimental data,
or task profiling and analytical benchmarking [3], [22], [27],
[42]. Obviously, when the core is turned-off, the ECS of a task
of any type is 0, i.e., ECS(¢, j,77; — 1) = 0 for all 4 and j.

3.5 Computer Room AC Units

We assume that the number of CRAC units in a data center is
NCRAC. CRAC units are used to remove the heat generated by
the compute nodes. The power consumed by a CRAC unit is

480

equal to the ratio of the amount of heat removed at that CRAC
unit to the Coefficient of Performance (CoP) of that CRAC unit [32].
The amount of heat removed by a CRAC unit : depends on
the inlet air temperature, TC RAC™ (which is directly affected
by the heat generated by compute nodes), and the assigned
outlet air temperature, TCRAC;"lt (which is the temperature
of the cool air to be generated by the CRAC). Let p be the
density of air, Cp be the specific heat capacity of air, and
FCRAC; be the air flow rate at CRAC unit 7. The amount of
heat removed per unit time at CRAC unit ¢ is equal to [39]:

p-Cp-FCRAC, - (TCRAC® — TCRACS™). (2)

The CoP of a CRAC unit is a function of its outlet tempera-
ture [32]. The power consumed by CRAC unit i, PCRAC, is
given by [32]

Cp- . in out
pCRAC, PO FCRAG (TCRAQt TCRAC™)
CoP (TCRACY™)

- (3)

When the inlet air temperature of a CRAC unit is less than
or equal to the assigned outlet temperature (there is no heat to
be removed) the power consumption is 0.

4 THERMAL CONSTRAINTS

Due to the law of energy conservation, the power consumed at
a compute node will be dissipated as heat causing an increase
in the temperature of the air going through the compute node.
To maintain the reliability of the CRACs and compute nodes,
CRAC units must remove the heat generated by the compute
nodes so that the inlet air temperature of the CRACs and
compute nodes are kept at or below a redline temperature. Let
TCN!™ and TCN™ be the inlet and outlet air temperatures at
compute node 7, respectively. Let F'CN; be the air flow rate at
compute node i. The outlet air temperature of compute node
is given by [39]

(4)

. PCN.:
TCN;’“:TCN;“+< ON,;)

p~Cp~FCN,,-

Air flow patterns in data centers are complex. The inlet
temperatures of CRAC units and compute nodes are affected
by the outlet temperatures of other CRAC units and compute
nodes [39]. Let

T = [TCRACS™, ..., TCRACR 1o, TCNSU, ... TCNQA],
and T"=[TCRACY,... TCRACE 0, TCNT ... TCNE 7.
Using the “Abstract Heat Flow Model” proposed in [39], we
can compute each element of 7™ as a linear combination of the
elements of T°, i.e.,

™ = AT (5)

The values in matrix A can be estimated using sensor
measurements [39]. Let 7™ be the vector of redline

IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

temperature constraints on inlet air temperatures, which
gives the constraint

Tin < Tredline . (6)

The inequality is element-wise (i.e., element ¢ in vector Tin
must be less than or equal to element i in vector 7*edline)

5 ASSIGNMENT PROBLEMS

5.1 Overview

Given a workload composed of a set of tasks arriving at
different times, the goal of assignment Problem 1 is to maxi-
mize the total reward rate subject to a constraint on the
maximum total power consumption. The goal of assignment
Problem 2 is to minimize the power consumption of the data
center subject to a constraint on the minimum reward rate.
Both problems are subject to thermal constraints (i.e., the
redline temperatures at the inlets must not be exceeded). The
decisions that both assignment problems must make are:
1) the P-states of cores, 2) the task to core assignments, and
3) the outlet temperatures of the CRAC units.

Because we assume the arrival rates of task types remain
relatively constant during the steady state, the decision vari-
ables will remain constant. When the arrival rates change,
then we will have a new time interval and another optimiza-
tion problem that we will have to solve to obtain the new
values of the decision variables.

Temperature evolution in the data center is in orders of
minutes, while the execution of a task is in orders of seconds or
milliseconds. To make workload assignments tractable, pre-
vious research (e.g., [2], [36]) has used a two-stage assignment
approach. The first stage manages the power and the thermal
evolution in the data center, while the second stage performs
workload balancing. In this paper, we apply the two-stage
assignment approach for both of our assignment problems. In
the first stage, our approach assigns the P-states of cores, the
desired execution rate of task types on cores, and the outlet
temperatures of CRAC units. The first stage guarantees that
the thermal constraints and the power constraint for Problem
1 or the reward constraint for Problem 2 are not violated. In
the second stage, our approach implements a dynamic sched-
uler that assigns tasks to cores so that the actual execution rate
of each task type on each core approaches the desired execu-
tion rate set by the first step. The dynamic scheduler can also
make the decision to drop a task. The two-stage assignment is
depicted in Fig. 2.

In Section 5.2, we focus on the first-stage assignment
problem for solving Problem 1. The difference between the
first-stage assignment for Problem 1 and Problem 2 is shown
in Section 5.3. In Section 5.4, we propose a dynamic scheduler
to assign incoming tasks to cores.

5.2 First-Stage Assignment: Problem 1
5.2.1 Overview

In Section 5.2.2, we formulate the assignment problem as an
exact mixed integer nonlinear program (MINLP). Because the
solution techniques for solving the exact MINLP are not
scalable, we propose a scalable technique to find near-optimal
solutions. The technique divides Stage 1 into three steps. The

AL-QAWASMEH ET AL.: POWER AND THERMAL-AWARE WORKLOAD ALLOCATION IN HETEROGENEOUS DATA CENTERS 481

CRAC units
outlet D
temperatures D
first-stage
assignment :
desired P-states
execution cores
rates
incoming D
I% second-stage %
assignment
assigned :
H tasks | []
dropped
tasks

Fig. 2. The assignmentproblem in the data center. The first stage assigns
the outlet temperatures of CRAC units, the P-states of cores, and the
desired execution rate of task types on cores. The second stage assigns
the incoming tasks to cores based on the desired execution rate set by the
first step or drops tasks that cannot make their deadline.

first step assigns power budgets to compute nodes, CRAC
outlet temperatures, and the fraction of time each core spends
running tasks of each type. The second step converts the
power budget assignment into a P-state assignment for each
core. Finally, Step 3 uses the exact P-state assignment in Step 2
to assigns the desired execution rate of each task type on each
compute node.

5.2.2 Problem Formulation
The decisions made at the first stage are: the outlet tempera-
ture of each CRAC unit (TCRAC;"“), the P-state of each core
(PSg), and the desired rate of executing tasks of each type on
each core. The desired rates are organized in a matrix ER.
Entry ER(¢, k) represents the desired execution rate of tasks of
typeion core k. Once a P-state of a core is assigned, we assume
that it is not changed. Therefore, the first stage assignment is
considered as static assignment.

The following equation shows the assignment problem for
Problem 1:

T NCORES
maximize Z (ri Z ER(i, k)), (7)
=1 k=1
subject to:
T
1. > ER(4, k)/ECS(i, CTy, PS;) <1,
i=1
k=1,...,NCORES.
2. ER(7, k)(d; — (1/ECS(i, CTyPS;)) > 0
i1=1,...,Tand k=1,... , NCORES

NCORES

3. S ER(G,k <N, i=1,...,T.
k=1
NCN NCRAC

4. Z PCN/ + Z PCRACL S Pconst-
j=1 i=1

J
5 Tin < Tredline

The objective function is the total reward rate. The first
constraint guarantees that the desired execution rate of task
types on a core will not exceed the core’s ability to complete
the tasks. When the estimated execution time of a task of type
i on a core of type j running in P-state k (i.e., 1/ECS(i, j, k))
is greater than d;, no task of type ¢ can make its deadline on
core k even if its execution starts immediately after its arrival.
Therefore, if 1/ECS(1, j, k) > d;, then Constraint 2 guarantees
that ER(7, k) = 0 to avoid executing tasks of type i on core k.
Constraint 3 guarantees that the sum of the desired execution
rate of a task type on all cores does not exceed its arrival rate.
The power constraint is guaranteed by Constraint 4. Finally,
Constraint 5 guarantees the thermal constraints.

Note that there are two cases where ECS values can be 0.
First, when P§S;, is the turned-off P-state, the ECS of any task
type on core k is 0. Second, a core type may not be able to
execute certain task types (for example, due to certain re-
quired software not being installed on the corresponding
node type). When an ECS value is 0, 1/ECS will not be
defined. However, we can solve this issue by assuming that
the ECS value is a “small enough” positive number.

The problem in Equation 7 is a MINLP for the following
two reasons. First, the above problem contains integer con-
straints due to the requirement that the P-states be integers.
Second, the measured CoP of the CRAC units at the HP Labs
Utility Data Center as a function of CRAC output tempera-
ture, 7, is given by [32]

CoP(r) = 0.00687° + 0.00087 + 0.458. (8)

For this CoP, the power consumption of the CRAC units
(Equation 3) is nonlinear (and non-convex), which makes
constraint 4 a nonlinear (and non-convex) constraint.

MINLPs belong to the class of NP-hard problems. Finding
the optimal solution of such problems is computationally
infeasible for large problem sizes. For example, consider a
compute node that has 32 cores and that each core can be put
in one of 5 P-states. This gives us 5% ~ 2.3 x 10** P-state
assignment combinations.

In the following subsections, we show how the Stage 1
assignment is divided into three steps to relax the integer
P-state constraints. In the first step, instead of assigning
P-states to cores, we assign power consumption to cores. This
makes the assignment problem simpler. The decision vari-
ables in the first step are the power consumption of each
compute node, the outlet temperature of each CRAC unit, and
the fraction of time each compute node spends on tasks of each
type. The second step converts the compute node power
assignment into a P-state assignment. The third step assigns
the desired execution rate of each task type on each core for the
P-state assignment obtained from the second step.

5.2.3 Step 1 Assignment

Relaxing the integer P-state constraint means that we allow a
core to be assigned a continuous P-state value rather than a
discrete one. Therefore, we have to define core power con-
sumption and ECS functions for continuous P-states. Another
equivalent assignment problem is to assume that cores can be
assigned a continuous power value between zero and the
power consumption in P-state 0. We use this equivalent

482
15
1
ECS
C;
0.5
0
power: 0 0.05 0.1 0.15
P.state: 3 2 1 0

Fig. 3. An example CFS function.

assignment problem because it makes the representation of
the assignment problem easier (we relate power directly with
performance), and it eliminates the need to define power
consumption functions for continuous P-states.

For the relaxed problem, the ECS of a task of type ¢ on core k
is a continuous function of the power consumption of the core.
Let PCORE) be the power assigned to core k. Let
C’LEICS (PCOREY) be the ECS for a task of type ¢ running on
a core of type j as a continuous function of PCORE,. To
minimize the difference between the integer solution and the
relaxed solution of the Step 1 assignment, we select CE]CS 50
that it goes through the points

(ﬂljyoECS(i,j, O)), ey (71']‘,,]./,,1, ECS(Z,], ny — 1))

Each of these points is the power consumption of a P-state
and the ECS at that P-state. Intuitively, one can view the value
of CFS when PCORE}, is not equal to the power consumption
of any P-state, is to assume that the core can switch between a
P-state with power consumption lower than PCORE}, and a
P-state with a power consumption higher than PCORE}, such
that the average power consumption is equal to. Therefore, we
chose to represent C}'(*® using a piecewise linear function.

For example, assume a core of type j with four P-states. The
power consumption of P-states 0, 1, 2, and 3 is 0.15, 0.1, 0.05,
and 0 Watts (W), respectively. The ECS PCORE;, values for
task type 4 for each of the four P-states are 1.2, 0.9, 0.5, and 0,
respectively. The CE-CS function is a linear piecewise function
that goes through the points (0, 0), (0.05, 0.5), (0.1, 0.9), and
(0.15, 1.2). This function is shown in Fig. 3.

Because for both Problems 1 and 2 a higher ECS value will
result in a better solution, if the ijcs function is concave,
then the computational expense of the optimization can be
greatly reduced by representing the CFC function with
linear constraints. The CEJ-CS function, however, is not
guaranteed to be concave. In that case, an equivalent repre-
sentation is only achieved by introducing additional binary
constraints. The introduction of the binary constraints would
make the Stage 1 optimization problem computationally
infeasible for a large number of cores. For instance, consider
the example shown in Fig. 4 where the number of P-states is
four (i.e., n; = 4). The ECS values for the P-states 0, 1,2, and 3
are1.2,0.9,0.2,and 0, respectively. This CZEJCS functionisnota
concave function.

The non-concavity of an CF™S function is caused by a
P-state that has an ECS to power consumption ratio that is
less than its next lower P-state. We call this P-state a “bad”
P-state.For the CF® function in Fig. 4, P-state 2 is a “bad”
P-state because the ratio of its ECS to its power consumption

IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

-

power: 0 0.05 0.1 0:15
P-state: 3 2 1 0

Fig. 4. An example of a non-concave C function.

power: 0 0.05 0.1 0.15
P-state: 3 2 1 0

Fig. 5. Anillustration of the calculation of the C}fg function in Fig. 4 when
the “bad” P-state is ignored.

is 4, where the ratio of P-state 1’s ECS to its power consump-
tion is 9. If we ignore P-state 2 (the “bad” P-state), then the
CES function will be concave. This case is shown in Fig. 5. We
ignore “bad” P-states (i.e., donotassign a core a “bad” P-state)
so that we can reduce the computational complexity of the
Step 1 assignment.

In general, when the “bad” P-states are not ignored, the
Step 1 assignment will still avoid “bad” P-states. For example,
consider the case where a compute node of type j has two
cores. Assume that the compute node can assign a maximum
of 0.1 W total power to its cores. Assume that there is only one
task type and it has areward of 1, i.e., 7; = 1. If the function in
Fig. 4 is the ECS of that compute node, then the optimal
solution in this case would be to put one of the cores in P-state
1 (i.e., assign 0.1 W power to it) and the other in P-state 3 (i.e.,
assign 0 W power to it). This will result in a total reward rate of
0.45, which is the same as when “bad” P-states are ignored.
It should be noted that the optimal value when the “bad”
P-states are ignored is never better than the optimal value
when the “bad” P-states are not ignored.

Let DF(i, k) be the desired fraction of time that core k&
spends executing tasks of type i. The desired execution rate of
task type i on core k, ER(4, k), is equal to

DF (i, k)CIeh, (PCORE).

The Step 1 (relaxed) optimization problem is obtained from
Equation 7 by replacing ER(¢, k) with

DF (i, k)CI'G}, (PCOREy),

and ECS(i, CTy, PSy) with CFGR (PCOREy). The effect of

Constraint 2 is captured by cé)nsidering a P-state k of core
type j a “bad” P-state for task type ¢ if d;<1/ECS(z, j,k).

AL-QAWASMEH ET AL.: POWER AND THERMAL-AWARE WORKLOAD ALLOCATION IN HETEROGENEOUS DATA CENTERS 483

Equation 9 and its constraints represent the Step 1 optimiza-
tion problem.

T /NCORES
maximich(Z mDF(i,l{;)C’;ijCS(PCOREU)7 9)

k=1
subject to:
T
1. > DF(i,k < 1), k=1,...,NCORES.
i=1
NCORES
2. Z DF(i,k)CECS(PCORE) < A, i=1,...,T.

NCN NCRAC
3. > PCN;+ Z PCRAC,; < Pt

J=1 i=1
4 Tln < Tredhne

Because all the cores within a compute node are homoge-
nous, we canreduce the time to find a solution for Equation 9 by
assuming that all cores within a compute node will be assigned
the same value of DF for each task type and the same power
consumption (PCORE}). This reduces the size of matrix DF
and the number of ECS functions to be equal to 7" - NCN.

The problem in Equation 9 is an NLP. To avoid locally

optimal solutions that have Z DF(i,k) <1 (i.e., core k is not

fully utilized), we substitute the inequality in Constraint 1
with an equality. Even with this change, a solution to Equa-
tion 9 may be locally (and not globally) optimal. Different
locally optimal solutions may be obtained from different
initial starting points. Therefore, we try multiple random
starting points. Details on how we decided on the number
of random start points are in Section 7 (simulation results).

5.2.4 Step 2 Assignment

The purpose of the Step 2 assignment is to convert the power
assigned to a core k into a P-state. The solution to Step 1
guarantees that the power and thermal constraints are satisfied.
Therefore, the power consumption at any compute node should
be kept at or below the power consumption that resulted from
the Step 1 assignment. We design the following heuristic to
convert the PCORE, values into a P-state assignment:

1. For each core k, assign it the highest possible P-state that
results in a power consumption greater than or equal to
PCOREj;.

2. For each compute node j

While the power consumption calculated by Equation 1
is greater than the power consumption that resulted
from Step 1
Increase the P-state of the core with the smallest
P-state the next non-bad P-states.

Because the CF'(S functions are concave, the ECS to power
consumption ratio of a P-state will always be lower than or
equal to that of a higher P-state. Therefore, in Step 2 of the
procedure above we increase the P-state of the core with the
lowest P-state. In cases where there are multiple task types
assigned to a core, we only ignore the bad P-states of the task
type that gives the most reward rate on that core.

5.2.5 Step 3 Assignment

In Step 3, we solve Equation 7 to determine the optimal
desired execution rate of task types on cores (i.e., the optimal

ER matrix) using the outlet temperature of CRACs that is
determined in Step 1 and the discrete P-state assignment
determined in Step 2, which make the solution to Equation 7
a simple linear program (LP).

5.3 First-Stage Assignment: Problem 2

The exact formulation of the first-stage assignment for Prob-
lem 2 is similar to the formulation of Problem 1 (given in
Equation 7) except that the objective function for Problem 2 is
to minimize power consumption subject to a constraint on the
minimum total reward rate. The exact formulation of Problem
2 is also a MINLP. Therefore, we propose a three-step ap-
proach for solving Problem 2. Similar to the first step of
Problem 1, the first step of Problem 2 uses the C}’f* functions
to relax the integer P-state assignment constramts

Step 2 of the first-stage assignment for Problem 2 converts
the power consumption assignment of cores into a discrete
P-state assignment. To guarantee that the total reward rate
constraint is not violated, the conversion at a specific compute
node j must guarantee that the cores in their assigned P-states
will collectively be capable of executing task types at a rate
that is greater than or equal to the total desired execution rate
that is set by Step 1 for compute node j.

A simple way to guarantee that the total reward rate
constraint is not violated at a compute node j is to assign
each core in compute node j to the highest possible P-state that
results in a power consumption greater than or equal to
PCORE;. This guarantees the total reward rate constraint
because we assume that ECS(i, j,p) > ECS(¢, j,p + 1).

One may be able to improve this simple P-state assignment
(i.e., reduce the power consumption) by incrementing the
P-state of some cores. However, incrementing the P-state of
any core will require reassigning the desired execution rate of
task types among the compute node cores so that the total
reward rate constraint is satisfied. We show how a mixed
integer program can be used to find the optimal P-state
assignment that satisfies the total reward rate constraints.
Because finding the optimal solution of a mixed integer
program is an NP-hard problem, we design a heuristic pro-
cedure that can be used to find a near-optimal solution.

Let the reassigned desired execution rates of task types on
cores be arranged in matrix RER. Entry RER(¢, k) represents
the reassigned desired execution rate of task type i on core k.
For cores in compute node j, the following mixed integer
program finds the optimal P-state assignment and reas-
signed desired execution rates for cores that belong to
compute node j:

minimize E TINT,PS;; K € cores;, (10)
ke&cores;

subject to:
1. Z RER(7,k)/ECS(i, CT;PS;) < 1, k € cores;

2. RER(z k)(m; — (1/ECS(3,CTy, PSi)) > 0
= 1,...,Tand k € cores;.

3. > RER(i,k)> > ER(®,k),i=1,...,T.

kecores; k€cores;

Constraints 1 and 2 are similar to Constraints 1 and 2 in
Equation 7. Constraint 3 guarantees that the total available
execution rate for each task type at compute node j is greater
than or equal to the total desired execution rate set by Step 1.
The problem in Equation 10 contains integer constraints due

484

to the P-state assignment that makes it computationally
intractable for many of today’s compute nodes that contain
a large number of cores. However, for a fixed P-state assign-
ment, the problem in Equation 10 is a LP feasibility problem.
We use the LP feasibility problem to test whether a specific
P-state assignment satisfies the total reward rate constraints.

We designed the following procedure to convert the power
consumption of cores into a P-state assignment:

1. For each core k, assign it the highest possible P-state that
results in a power consumption greater than or equal to
PCOREj;.

2. For each compute node j
a. Until a feasible solution exists for Problem 10

Increase the P-state of the core with the smallest
P-state to the next non-bad P-state.

The output of Step 2 is a P-state assignment and the matrix
RER (which now becomes the new ER). Similar to Step 2 of
Problem 1, Step 2 of Problem 2 avoids “bad” P-states.

The P-state assignment of Step 2 may violate the thermal
constraints. Therefore, Step 3 solves the exact optimization
problem for Problem 2. Because the P-state and desired
execution rates are determined, the exact optimization prob-
lem becomes an NLP (due to the power consumption of
CRAC units).

5.4 Second Stage Assignment

The second stage assignment for both Problems 1 and 2 is the
same. The dynamic scheduler at the second step keeps track of
the actual execution rate of each task type on each core in
matrix AER. The goal of the dynamic scheduler is to make the
ratio of AER(i, k)/T'C(i, k) as close as possible to 1 for each
task type i and core k.

For each incoming task ¢, the dynamic schedulermapsttoa
core that can complete it before its deadline and has the
minimum AER(, k)/T'C(i, k) value that is less than or equal
to 1. If no such core exists, then the dynamic scheduler drops .

6 SIMULATION SETUP

6.1 Overview

We conducted simulation studies to evaluate the effectiveness
of our assignment technique. In this section, we show how the
parameters of the simulations were generated.

Real-world data centers can vary widely in the number and
type of compute nodes, the number and type of CRAC units,
and the arrival rate and type of task types. For illustration
purposes, we set up our simulations with eight task types, two
compute node types, and three CRAC units.

6.2 Compute Nodes

In our simulations, we used a varying number of compute
nodes. Each compute node belongs to one of two compute
node types based on two 7U servers listed in the SPECpo-
wer_ssj2008 results [38]. The first compute node type is based
on the HP ProLiant DL785 G5 server. This server has eight
AMD Opteron 8381 HE processors with four cores in each
processor. The second compute node type is based on the
NEC Express5800/ A1080a-S server. This server has four Intel
Xeon X7560 processors. Each processor has eight cores. Table 1
lists the parameters of both node types. Details on how the
values of the parameters were obtained are in Appendix A.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

TABLE 1

Parameters of the Two Node Types Used in Simulations
node type 1 2
base power consumption
(W) 0.353 0.418
number of cores 32 32
number of P-states 4 4
power consumption of P-
state 0 (kW) 0.01375 0.01625
clock frequencies of P- 2500, 2100, 1700, 2666, 2200, 1700,
states (MHz) 800 1000
air flow rate (m’/s) 0.07 0.0828

We used a uniform random variable to assign a node type
to compute nodes. Each compute node type has an equal
probability of being assigned to a compute node.

6.3 ECS Matrices

The estimated computation speed values are arranged in a
three-dimensional ECS matrix. These dimensions represent
task types, node types, and P-states. In a real world environ-
ment, the ECS values can be based on user supplied informa-
tion, experimental data, or task profiling and analytical
benchmarking (e.g., [3], [20], [22], [27], [31], [43], [44]). The
following paragraphs discuss how we generated synthetic
ECS data for the purposes of our simulations.

In our simulations, we have eight task types, two compute
node types, and four P-states (not including the turned-off
P-state). First, we generate a two dimensional ECS matrix for
P-state 0. The columns represent the node types and the rows
represent the task types. The ratio of the performance of node
type 1 to node type 2 is 0.6 (this is based on the number of
server side Java operations per second each node type can
perform [38]). Therefore, we assumed that the average ECS
over all task types for node types 1 and 2 is 0.6 and 1,
respectively. Let NTY PES be the number of compute node
types in the data center. The easiness of a task type i, TE;, is

assumed to be equal to the sum of the ECS values over allnode
NTYPE
types for P-state 0, i.e,, TE; > ECS(i,,0). Without loss of
=1

generality, we assume that the easiness for task type ¢ is half
that of task type i + 1. Let rand|a,b] be a uniform random
variable in the interval [a, b]. Entry (i, j) in the two-dimen-
sional ECS for P-state 0 is the product of the average ECS for
task type i, the average ECS for node type j, and a variation
factor rand[1 — Vicg, 1 + Vies]. The variation factor is used so
that the affinity between task types and node types differs
across the types. The value of Vg that we used is 0.1.

Let f; . be the clock frequency of a core of type j running in
P-state k. In many cases, the ECS of task types on cores is not
exactly proportional to clock frequency. For example, reduc-
ing the clock frequency will have less impact on the ECS of a
task that is I/O bound versus a task that is CPU bound.
Therefore, we use a parameter V., so that the ECS of a task
type on a core type is not exactly proportional to the clock
frequency of the P-states. The ECS is extended in the third
dimension by using

ECS(i,j,k) = ECS(4, 4,0) % rand [1— Vigop, 1+ Viop. (1)
5.0

We used two different values for V},,, in different sets of

simulations, i.e., 0.1 and 0.3.

AL-QAWASMEH ET AL.: POWER AND THERMAL-AWARE WORKLOAD ALLOCATION IN HETEROGENEOUS DATA CENTERS 485

Using Equation 11 may result in a P-state that has a higher
ECS value for a specific task type and a specific core type than
alower P-state. To prevent this case, if an entry (i, j, k) is higher
than entry (i, j, K —1), then we generate a random number
rand[1 — Viop, 1 + Virop] for ECS(4, 7, k) until it is less than
ECS(1, j, k — 1). We start by generating the ECS for P-state 1
then P-state 2 and so on.

6.4 Task Types

The number of task types in all of our simulations is assumed
to be eight. The reward for completing a task of type ¢ by its
deadline is assumed to be equal to the reciprocal of its
easiness, i.e.,

We also have conducted simulations to show how different
reward values will affect the performance of our assignment
techniques (see Section 7.2.5).

Now we show how the d; values that are used to calculate
the deadline of individual tasks are generated. Let MinEC'S;
and Max EC'S; be the minimum and maximum ECS values for
task type i over all core types and all P-states except the
turned-off P-state. MinECS; is given by

MinECS; = min[ECS(z, j,n; — 2)]1 < j < NTYPES. (13)
MaxECS; is given by
MaxECS; = max[ECS(i, j, 0)]1 < j < NTYPES. (14)
The value of d; is given by
d; = 1.5rand[1/MaxECS;, 1/MinECS;]. (15)

We used Equation 15 to compute d; because it guarantees
that there is at least one core type that can make the deadline of
a task of type i. There is also a chance of generating a task type
such that some of its tasks’” deadlines can be met by all core
types running at their lowest frequency.

The last parameter that needs to be generated for a task
type is its arrival rate, \;. Let Sum EC'S; be the ECS obtained
for a task type i if all cores in the data center are used equally
by every task type and all cores are running in P-state 0. The
value of SumECS; is given by

NCORES
SumECS; = Y ECS(i,CT},0)/T.

k=1

(16)

Our goal is to assign arrival rates for task types such that
the data center can complete all the arriving tasks when
running at full capacity (i.e., all cores in P-state 0) but would
be oversubscribed if there is a power constraint (i.e., there is
not enough power to run all cores in P-state 0). This is not
simple to achieve. Therefore, we use SumECS,; to approximate
the arrival rates. In addition, to introduce some randomness in
the assigned arrival rate of task type i, we use a parameter,
Vimival. Once the arrival rate for a task type is assigned, it
remains constant. The arrival rate of task type ¢ is given by

)\i - SumECSz . rand[_‘/arrivah 14 Varrival]- (17)

The value of V,,,iva that we used is 0.3.

6.5 Cross Interference Coefficients

In [39], for two compute nodes ¢ and j, the cross interference
coefficient, «;;, is the percentage of air recirculated from
compute node i to compute node j. Computational Fluid
Dynamics (CFD) simulations were used in [39] to obtain cross
interference coefficients for a small data center (ten racks with
five compute nodes in each rack, and one CRAC unit). The
time consumed for a single run of a CFD simulation was about
an hour with a CFD simulation required for each of the 50
compute nodes [39]. In our simulations, we use 150 compute
nodes and three CRAC units. The amount of time to run the
CFD simulations for each data center in our simulations is
prohibitive. In Appendix B, we show how an LP feasibility
problem can be used to generate the cross interference coeffi-
cients. Our goal is not to propose a method of calculating the
cross interference coefficients for a real data center. Rather,
our goal is to generate cross interference coefficients for
simulation studies that are based on realistic information
about the air flows in data centers.

6.6 Power and Thermal Constraints

To set a reasonable power constraint in our simulations for
Problem 1, we need to find the minimum and maximum
power consumption of the data center. The minimum power
consumption occurs when all cores in the data center are
turned off. The maximum power consumption occurs when
all cores are running in P-state 0. The minimum and maxi-
mum power consumption of the data center can be found
using the NLP problem below solved for the two extreme
values of PCN;. The solution for this problem will provide the
power consumption bounds of the data center. The decision
variables are the outlet temperatures of CRAC units. Because
it is an NLP problem, our solution to the problem will not
necessarily provide the global minimum. Therefore, the solu-
tions are considered an upper bound of the minimum and
maximum power consumption of the data center.

NCN NCRAC
PCN; + Y PCRAC;|,

=1 =1

minimize

(18)

subject to
Tin < Trcdlinc.

Let Py and P« be the upper bounds on the minimum
and maximum power consumption of the data center, respec-
tively. Let ® be a “power multiplier” that takes values in the
interval [0,1]. The power multiplier allows us to select a power
constraint that is between the minimum and the maximum
power consumption bounds. The power constraint, Py, is
given by

Pconst - Rnin + (Pmax - Pmin) - . (19)

The redline inlet air temperature was set at 25° Celsius for

compute nodes and 40° Celsius for CRAC units.

6.7 Total Reward Constraint

To set a reasonable total reward rate constraint for Problem 2,
we need to find the maximum possible total reward rate that
occurs when all cores are running in P-state 0. Let FRAC(1, 7)

486

be the average fraction of a core in compute node j that is used
to execute task of type i. The effective number of cores at
compute node j that are used to execute tasks of type i, £(3, j),
is equal |cores;|FRAC(%, j). The maximum reward rate can be
found using the following LP:

T NCM

maximize Z Z r,ECS(1, 7,0)E(i, 7).

i=1 j=1

(20)

Subject to
NCN
L. > ECS(i,5,0)E(i,j) < N, 1 <i < T,

j=1
T

2. " E(i,j) < |cores;|, 1 <j <NCN,
i=1

3. ?Tin < Tredline.

6.8 CRAC units

In our simulations, we assumed that there are 3 homogeneous
CRAC units. The CoP for each CRAC unit is given by Equa-
tion 8. The air flow rate of each CRAC unit is set so that the
sum of the air flow rates of the compute nodes is equal to the
sum of the flow rates of the CRAC units. The layout of the data
center is given in Fig. 1.

7 SIMULATION RESULTS

7.1 Comparison Overview

One may choose to run all cores in the data center in P-state 0
without considering the power consumption implications.
Although this approach is simple and will result in the highest
reward rate, it may violate the power constraint and resultin a
lower reward rate per power consumption. We show this in
the next subsection.

We performed simulations for the first-stage assignment
problem and compared our technique with a technique that
only considers putting a core in P-state 0 or turning off the
core. The authors in [36] show how the fraction of the
“computational resources” at a compute node can be used
to compute the power consumption of a compute node and
the QoS obtained from that compute node. Our techniques
solve different assignment problems than the technique in [36]
and our techniques consider P-state assignments. We adapt
the technique in [36] by relating the effective number of cores
used at a compute node to the reward rate obtained from that
compute node and the total power consumed at that node as
described by Equations 21 and 22. We compare our techni-
ques with the one adapted from [36].

The power consumption of compute node j is given by

T

PCN, = B; + 7,0 Y E(i,).
=1

(21)

The reward rate for a task of type 7 at compute node j is
equal to 7, ECS(i,7,0)E(i, j) The comparison technique for
solving Problem 1 is given by

T NCN

maximize » Y rECS(i, §,0)E(i, 5). (22)
i=1 j=1

IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

Subject to

NCN

J=1

T
2. Y E(i,j) < |cores;|, 1 <j <NCN,

N NCRAC

3. Z PCN] + PCRAC7 S Pconstr
J=1 i=1

4. Tin S Tredline.

Constraint 1 guarantees that the execution rate for a task
type is not higher than its arrival rate. The effective number of
cores used at a compute node must not exceed the total
number of cores at that compute node. This is guaranteed
by Constraint 2. Constraints 3 and 4 are the power and
thermal constraints, respectively. The deadline constraints
can be dealt with by setting FE(i,j) =0 whenever
d;<(1/ECS(i,NT;,0)) Equation 22 is an NLP problem due
to the power consumption of CRAC units. The comparison
technique for solving Problem 2 is similar to the comparison
technique for solving Problem 1 except that the objective is to
minimize power consumption while guaranteeing that the
total reward rate does not drop below Reoys.

7.2 Results
7.2.1 Overview

We have conducted simulations to compare our technique
against the one described in Equation 22. We illustrate the
effect of the following three parameters on the performance:
1) static power consumption of cores, 2) the variation of the
ECS values from being proportional to the clock frequency of
cores, and 3) the reward and power constraints. Note that the
static power consumption is part of the total power consump-
tion of a core and is different than the base power consumption
of a compute node. The static power consumption is part of
the second term in Equation 1. The total power consumption
of a compute node is equal to the sum of its base power
consumption and the sum of the static and dynamic power
consumption of its cores. The results in this section show the
percentage increase in the reward rate or the percentage
decrease in the power consumption that our technique
achieves in comparison to the one described in Equation 22.

7.2.2 Random Starting Points

Because the Step 1 assignments of both Problems 1 and 2 are
NLPs, their solutions may be locally optimal. The quality of
the locally optimal solution is affected by the starting point of
the NLP optimization. To determine an appropriate number
of starting points to use, we have conducted 20 simulations,
each using 100 randomly generated starting points. For each
simulation, we determined the number of random starting
points needed to obtain a solution that is within 1% of the best
solution. The upper limit of a 95% confidence interval of the
number of solutions was 11.45, so we used 11 random starting
points for our simulations and one starting point that is the
solution of Equation 22.

The Problem in Equation 22 is a NLP due to the power
consumption of the CRAC units. Therefore, the solutions to
the problems may be locally optimal. A brute force discretized
optimization of a problem that has three CRAC units,

AL-QAWASMEH ET AL.: POWER AND THERMAL-AWARE WORKLOAD ALLOCATION IN HETEROGENEOUS DATA CENTERS

Problem 1 (maximize reward)

;\? 25

§ 20 OVop=0
2 .Vprop =01
E L Voo = 0.3
2 10

<

C s

[\

2

2

20%
static power (as percentage of P-state 0 power)

30%

10%

Fig. 6. This figure shows the results for Problem 1 (maximizing reward
rate). The average percentage improvement obtained by using the three-
step assignment given in Section 5.2 versus the assignment that is based
on [36] (given in Equation 22) is shown. A 95% confidence interval is
shown for each average percentage improvement. The static power
consumption of P-state 0 as a percentage of the total processing core
power consumption is increased from 10% to 30%. Each group of columns
compares the results when the value of V., is 0,0.1, and 0.3. The number
of compute nodes, task types, and CRAC units for each simulation is 150,
eight, and three, respectively.

Problem 2 (minimize power)

12
0 Vo = 0
10 B Vi =0.1
8 2 Voo =0.3

power reduction (%)
D

10%

20%
static power (as percentage of P-state 0 power)

30%

Fig. 7. This figure shows the results for Problem 2 (minimizing power
consumption). The average percentage improvement obtained by using
the three-step assignment given in Section 5.3 versus the assignment that
is based on [36] (given in Equation 22) is shown. A 95% confidence
interval is shown for each average percentage improvement. The static
power consumption of P-state 0 as a percentage of the total processing
power consumption is increased from 10% to 30%. Each group of columns
compares the results when the value of V., is 0,0.1, and 0.3. The number
of compute nodes, task types, and CRAC units for each simulation is 150,
eight, and three, respectively.

150 compute nodes, and eight task types, is computationally
intractable. However, tests on smaller problems, i.e., two
CRAC units, 40 compute nodes, and eight task types, have
shown no improvement. Therefore, we only use a single
starting point to find the solution to Equation 22.

7.2.3 Main Results for Problems 1 and 2

Figs. 6 and 7 show the percentage increase in the reward rate
for Problem 1 and the percentage reduction in power con-
sumption for Problem 2 that our technique achieves. Each bar
in Figs. 6 and 7 represents the average of 20 simulations. Error
bars are added to show a 95% confidence interval around the
average.

Both figures show that as the static power consumption
of P-state 0 increases, the relative performance of our
technique decreases. Because P-state 0 runs at a higher

TABLE 2

487

Static Power Consumption of P-States of Cores in Each Node

Type as a Percentage

Node type 1
(P-state 1,2, 3)

Node type 2
(P-state 1,2, 3)

i’;ttiitz gwerzl - 12.3,15.6, 31.0% | 12.5,16.6, 27.5%
Et-astti?:t:) (())wer i 24.0, 293, 502% | 24.4,31.0,46.0%
P-state 0

35.1, 41.5, 63.4% 35.6,43.5,59.4%

static power =30%

voltage and frequency, the percentage of dynamic power
consumption is usually higher than that of the other
P-states. Therefore, the static power as a percentage of the
overall power consumption for the other P-states will be
higher compared to that of P-state 0. The static power
consumption is not related to the frequency, so the higher
P-states will have a lower performance (in terms of clock
frequency) to power consumption ratio compared to
P-state 0. When the performance to power consumption
ratio of P-state 0 is the highest among all the P-states, the
assignment technique of Equation 22 will perform as well
as our technique. The static power percentages for all the
P-states of each node type are shown in Table 2. The static
power consumption of the P-states in each node type is
calculated using the static power of P-state 0. For our
simulations, we assumed three different static power con-
sumption percentages for P-state 0 (10, 20, and 30%). Refer
to Appendix A for details about the calculation of the static
power.

Figs. 6 and 7 also show that the relative performance of our
technique increases as V., increases from 0 to 0.3. For a given
core type, a higher value of V)., gives a higher affinity of
P-states to task types (i.e., some P-states will be better suited
for specific task types than others). Therefore, more reward
rate per power consumption can be obtained by matching task
types with their better suited P-states.

The reason that our technique achieves higher increase in
reward rate for Problem 1 compared to the decrease in power
consumption for Problem 2 is that there is a lower bound on
the minimum power.

The lower bound occurs when all cores are turned off and
all compute nodes are only consuming the base power.
However, the minimum reward rate of the data center is
zero, which also happens when all cores are turned off.
Because the minimum power is greater than zero, Problem
2 leaves less opportunity for improvement than Problem 1. If
we do not consider the minimum power consumption of the
data center for both our technique and the technique in
Equation 22, then percentage power reduction that our tech-
nique achieves over the technique in Equation 22 will be on
average 1.58 times higher on average.

The simple approach of running all cores in the data center
at P-state 0 will result in a violation of the power constraint for
Problem 1 and higher power consumption for Problem 2. For
example, when P-state 0 static power is 10% of its total power
consumption and V., is 0.1, the simple approach resulted in a
violation of the power constraint by 42% for Problem 1 and a
power consumption of 75% higher than our approach for
Problem 2.

488

Problem 1 (maximize reward)

60 25
= 5l A
° 20 5
@ 2
o 40 -)
5 ——reward rate increase (%) 15 -%
.E 30 E
g / Yreward rate/power 10 _g
o 20 o S
g 5 @
2 10
o

0 0

0 010203040506070809 1
power multiplier

Fig. 8. This figure shows the percentage increase in reward rate that our
approach achieves over the technique in Equation 22 and the reward rate
per power consumption for our technique for Problem 1 (maximizing
reward rate). The power multiplier is increased from 0.1 to 1 with a step
of 0.1. The static power of P-state 0 is 10% and V},.,, is 0.3. Each pointin
the figure represents a simulation case for one data center. The number of
compute nodes, task types, and CRAC units for each simulation is 150,
eight, and three, respectively.

7.2.4 Effect of Power and Reward Constraints

We also have conducted simulations to show the effect of
increasing the power and reward constraints on the perfor-
mance of our techniques. For these simulations, the static
power consumption of P-state 0 was set to 10% of its total
power consumption and V., was set to 0.3. These simula-
tions are shown in Figs. 8 and 9.

As the power constraint gets tighter (i.e., the power
multiplier value gets lower) the relative performance of our
technique improves. This is because when power is scarce,
managing it intelligently can lead to substantial performance
gains. As the power constraint gets looser, our technique will
start assigning lower P-states to take advantage of the available
power. Therefore, the performance of our technique will be
closer to the performance of the technique in Equation 22 until
they are both equal when the power multiplier is equal to 1.

As shown in Fig. 9, when the reward constraint is low, the
relative performance of our technique is low. This is because
there is a lower bound on the minimum power consumption
of the data center. However, as the reward constraint in-
creases, the power needed to satisfy the reward rate constraint
becomes higher and more power savings can be obtained
using our technique. Even when the reward rate constraint is
at 90% of the maximum possible, our technique achieves 8.6%
improvement. When the reward rate constraint is 100% of the
maximum possible, both our technique and the one in Equa-
tion 22 will run all cores in the data center at P-state 0 to satisfy
the constraint. Therefore, our approach will have no reward
rate improvements.

Figs. 8 and 9 also show the reward rate per power con-
sumption ratio for different power and reward rate con-
straints. When the power multiplier is low (i.e., tighter power
constraint) or the reward rate multiplier is low (i.e., looser
reward rate constraint) solutions to Problem 1 and Problem 2
are both driven to consume less power and collect less reward.
Because of the minimum power consumption of the data
center is not zero, the ratio of the reward rate to power
consumption decreases more with the reduction in reward
rate than it does increase with the reduction in total power

IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

Problem 2 (minimize power)
12 25

i ﬁ ?
8-
/ \ 15
J A \ o
1 —@-reward rate/power \

2. -5

—&—power reduction (%)

power reduction (%)
(0]

0 T T T T T T T T O
0O 10 20 30 40 50 60 70 80 90 100
reward constraint (% of max)

Fig. 9. This figure shows the percentage reduction in power consumption
that our approach achieves over the technique in Equation 22 and the
reward rate per power consumption for our technique for Problem 2
(minimizing power). The reward rate as a percentage of the maximum
possible reward rate is increases from 10% to 100%. The static power of P-
state 0 is 10% and V., is 0.3. Each point in the figure represents a
simulation case for one data center. The number of compute nodes, task
types, and CRAC units for each simulation is 150, eight, and three,
respectively.

consumption. This explains the low reward rate to power
consumption ratio when the power multiplier is low or the
reward rate multiplier is low.

There are two reasons that cause the ratio of reward rate to
power consumption to decline for a higher value of a power
constraint for Problem 1 or a higher value of a reward rate
constraint for Problem 2. The first reason is that our tech-
nique will run the cores at lower P-states that are not power
efficient so that all the power that is available is used (in
Problem 1) or the reward rate constraint is satisfied (in
Problem 2). The second reason is that our technique will
assign tasks of types that have low reward rates because all
the higher reward rate tasks are fully assigned. The simple
approach of running all cores in the data center at P-state 0
will be equivalent to the case where the reward rate con-
straint is 100% of the maximum and the case where the
power multiplier is 1. The simple approach will result in a
reward rate per power consumption ratio equal to 19.43 that
is less than the highest ratio which is equal to 21.6 for
Problem 1 (Fig. 8) and 21.4 for Problem 2 (Fig. 9).

7.2.5 Effect of Reward

In all the results discussed previously, the reward of a task
type was assumed to be equal to the reciprocal of its easiness
(see Equation 12). We have conducted two sets of simulations
for Problem 1 to show the effect of different task type reward
values on the performance results of our technique. The
following are the common parameters between both sets of
simulations (which are identical to those from Fig. 6):

1. The number of task types, CRAC units, and compute

nodes is eight, three, and 150, respectively.

2. The static power percentage for P-state 0 is 10%.

3. The power multiplier is 0.5.

4. Each set of simulations has 20 cases.

In the first set of simulations, we calculated eight reward
values using Equation 12. The reward value of a task type was
assigned randomly with no replacement from the set of eight
reward values. The average increase in reward rate that our
technique achieved compared to the one in Equation 22 was

AL-QAWASMEH ET AL.: POWER AND THERMAL-AWARE WORKLOAD ALLOCATION IN HETEROGENEOUS DATA CENTERS

Execution Times for Step 1 of Problem 1 as the Number of
Compute Nodes Varies

TABLE 3

siiiberof ficdss number of task average execution
types time (seconds)

30 8 42

90 8 679

150 8 2771

210 8 3688

270 8 9575

Table 4

489

Execution Times for Step 1 of Problem 1 as the Number of
Compute Nodes and the Number of Task Types Vary

sl oF fiodas number of task average execution
types time (seconds)

30 2 10

90 5 181

150 8 2771

210 11 12242

270 14 134842

13%. This reward rate increase is less than the reward rate
increase for the same static power (10%) and V., (0.3) in Fig. 6
(in that case it was 18.5%). The reason for this lower reward
rate increase is that when we assign reward values randomly,
we will have some tasks that have faster average execution
rates and have more reward. Both heuristics (ours and the one
based on Equation 22) execute the easier tasks that have the
most reward. Even though our heuristic executes more tasks
than the one based on Equation 22, the difference in total
reward rate is not as large because the extra tasks are more
difficult and have a smaller reward rate. This effect was even
more pronounced in our second set of simulations were we
assigned task types a reward value that was equal to its
easiness (i.e., easier tasks will have more reward).

7.2.6 Scalability Analysis

In our approach, the step that consumes the most time is Step
1. We conducted a scalability analysis for the execution time of
Step 1 for Problem 1 (the execution time for Problem 2 was
similar to Problem 1). Table 3 shows the execution times in
seconds for different numbers of compute nodes. The number
of task types remains fixed at eight task types. In Table 4, we
have increased the number of task types as the number of
compute nodes was increased. The execution times for each
caseinboth Tables 3 and 4 are averaged across five simulation
runs. All the simulations were run on a laptop computer with
a Core i7 processor running at a clock frequency of 2.8 GHz.
The number of CRAC units was fixed at three CRAC units.

Tables 3 and 4 show that the execution time is sensitive to
both the number of task types and the number of compute
nodes. Recall that the task type arrival rate is a function of the
number and type of compute nodes (which determines the
total number of cores) and the number of task types (1), as
shown in Equation 16. As 7" increases, the arrival rate of each
task type decreases (Equation 16). However, the total work-
load remains relatively constant.

Because the calculation of Step 1 is done offline (i.e., the
assignment decisions are made before tasks arrive) based on
estimated task arrival rates obtained from historical data for
each task type, it is feasible to execute it for a longer time
compared to online techniques. Furthermore, if Step 1 is
parallelized (for example, by calculating the solutions to
multiple starting points in parallel), then the time consumed
by it can be significantly reduced.

7.2.7 Unexecuted Workload

Because of the power constraint in Problem 1 and the reduc-
tion of power consumption in Problem 2, a portion of the
workload will not be executed. The task types that are not
executed are the ones with low reward per power

consumption ratio. In many cases, these task types were the
same for our technique and the technique in Equation 22.
However, there are some cases were this was not the case. This
is because our technique considers higher P-states that may
have a better reward per power consumption for different
task type than the technique in Equation 22.

Both our technique and the technique in Equation 22 exe-
cute more tasks for Problem 1 compared to Problem 2. This is
because in Problem 1 the goal is to execute as many tasks as
possible to maximize the reward. However, in Problem 2 the
goal is to minimize the power consumption which will result
in less tasks being executed because we are not concerned
with collecting reward at a rate higher than the reward rate
constraint.

7.2.8 Summary

Our results show an average improvement over the compari-
son technique of up to 17% for Problem 1 (maximizing
reward) and up to 9% for Problem 2 (minimizing power).
Higher percentage increase in reward rate can be achieved for
data centers with tighter power constraints. Because today’s
data centers are large, these improvements can mean hun-
dreds of thousands of dollars in additional revenue or power
savings. For example, the average cost of electricity in the U.S.
for the industrial sector is $0.0688 /kWh [16]. If we achieve 9%
power savings in a data center that has an average power
consumption of 5 MW, then that will result in about $271, 395
in annual savings.

8 CONCLUSION

In this paper, we study two assignment problems. The first
problem maximizes the reward collected for completing tasks
by their deadlines with a constraint on the maximum total
power consumption. The second problem minimizes power
consumption with a constraint on the minimum reward rate.
We show how the P-states can be assigned at the data center
level and divide each assignment problem into two stages.
The first stage assigns the P-states of cores, the desired number
of tasks per unit time allocated to a core, and the outlet CRAC
temperatures. The second stage assigns individual tasks as
they arrive at the data center to cores so that the actual number
of tasks per unit time allocated to a core approaches the
desired number set by the first stage.

We formulate the first-stage assignment as a MINLP.
Because the MINLP is not scalable with respect to the number
of cores, we propose a multi-step, scalable assignment tech-
nique. At the second stage, we propose a dynamic scheduler
to assign tasks entering the data center to cores.

490

In many data centers where static and dynamic core power
consumptions are considered, P-state 0 is not the P-state with
the highest performance to power consumption ratio. There-
fore, using the assignment techniques in this paper will result
in a better total reward over a technique that chooses between
putting a core in P-state O or turning it off.

We conducted simulations to show the effectiveness of our
technique over a technique based on [36] which did not
consider multiple P-states. In some cases, our technique
achieved 17% average improvement for the problem of maxi-
mizing reward and 9% average improvement for the problem
of minimizing the power consumption. In a large data center,
these improvements can mean hundreds of thousands of
dollars in additional revenue from additional productivity
(Problem 1) or power savings (Problem 2).

In our work, we assume that there is always enough
memory to run all the tasks assigned to the cores in a specific
compute node. One way this work can be extended is to take
into account memory limitations.

ACKNOWLEDGMENTS

The authors thank Mark Oxley and Ryan Friese for their
valuable comments on this work. This research was sup-
ported by the NSF under Grant CNS-0905399, and by the
Colorado State University George T. Abell Endowment. A
preliminary version of portions of this material appeared in
the Heterogeneity in Computing Workshop 2012.

REFERENCES

[1] AMD Family 10h Server and Workstation Processor Power and Thermal
Data Sheet. Publication # 43374, Revision 3.19, June 2010.

[2] Z. Abbasi, G. Varsamopoulos, and E.K.S. Gupta, “Thermal Aware
Server Provisioning and Workload Distribution for Internet Data
Centers,” Proc. 19th ACM Int’l Symp. High Performance Distributed
Computing (HPDC’10), pp. 130-141, 2010.

[3] S.Ali, T.D. Braun, H.J. Siegel, A.A. Maciejewski, N. Beck, L. B6loni,
M. Maheswaran, A.L. Reuther, J.P. Robertson, M.D. Theys, and
B. Yao, “Characterizing Resource Allocation Heuristics for Hetero-
geneous Computing Systems,” Advances in Computers, Parallel, Dis-
tributed, and Pervasive Computing, vol. 63, pp. 91-128, 2005.

[4] A.M. Al-Qawasmeh, A. A. Maciejewski, and H.]. Siegel, “Character-
izing Heterogeneous Computing Envinronments Using Singular Val-
ue Decomposition,” Proc. 19th Heterogeneity in Computing Workshop
(HCW 2010), 24th Int'l Parallel and Distributed Processing Symp., Work-
shops and PhD Forum (IPDPSW 2010), pp. 1-9, Apr. 2010.

[5] AM. Al-Qawasmeh, A.A. Maciejewski, and H.]. Siegel, “Character-
izing Task-Machine Affinity in Heterogeneous Computing Envir-
onments,” Proc. 20th Heterogeneity in Computing Workshop (HCW
2011), 25th Int’l Parallel and Distributed Processing Symp., Workshops
and PhD Forum (IPDPSW 2011), pp. 34-44, Apr. 2011.

[6] AM. Al-Qawasmeh, A.A. Maciejewski, H. Wang,]. Smith,
H.J. Siegel, and]. Potter, “Statistical Measures for Quantifying Task
and Machine Heterogeneities,” |. Supercomputing, Special Issue on
Advances in Parallel and Distributed Computing, vol. 57, no. 1,
pp. 34-50, July 2011.

[7] J. Apodaca, D. Young, L. Briceno,]J. Smith, S. Pasricha, A.A.
Maciejewski, H.J. Siegel, S. Bahirat, B. Khemka, A. Ramirez, and
Y. Zou, “Stochastically Robust Static Resource Allocation for Energy
Minimization with a Makespan Constraint in a Heterogeneous
Computing Environment,” Proc. 9th ACS/IEEE Int’l Conf. Computer
Systems and Applications (AICCSA’11), p. 10, Dec. 2011.

[8] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, “Dynamic
and Aggressive Scheduling Techniques for Power-Aware Real-Time
Systems,” Proc. 22nd IEEE Real-Time Systems Symp. (RTSS'01),
pp- 95-105, Dec. 2001.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

[9] H.Barada,S. M. Sait, and N. Baig, “Task Matching and Scheduling in
Heterogeneous Systems Using Simulated Evolution,” Proc. 10th
Heterogeneous Computing Workshop (HCW 2001), 15th IEEE Int'l
Parallel and Distributed Processing Symp. (IPDPS 2001), pp. 875-882,
Apr. 2001.

[10] A.Beloglazov, . Abawajy, and R. Buyya, “Energy-Aware Resource
Allocation Heuristics for Efficient Management of Data Centers for
Cloud Computing,” Future Generation Computer Systems, vol. 28,
no. 5, pp. 755-768, May 2012.

[11] D. Brown and C. Reams, “Toward Energy-Efficient Computing,”
Communications of the ACM, vol. 53, no. 3, p. 14, Mar. 2010.

[12] J.A.Buttsand G.S. Sohi, “A Static Power Model for Architects,” Proc.
33rd Ann. ACM/IEEE Int'l Symp. Microarchitecture (MICRO 33),
pp- 191-201, Dec. 2000.

[13] K. W. Cameron, R. Ge, and X. Feng, “High-Performance, Power-
Aware Distributed Computing for Scientific Applications,” Comput-
er, vol. 26, no. 11, pp. 40-47, Nov. 2005.

[14] J. Choi, S. Govindan,]J. Jeong, B. Urgaonkar, and
A. Sivasubramaniam, “Power Consumption Prediction and Power-
Aware Packing in Consolidated Environments,” IEEE Trans.
Computers, vol. 59, no. 12, pp. 1640-1654, Dec. 2010.

[15] M.K. Dhodhi, I. Ahmad, and A. Yatama, “An Integrated Technique
for Task Matching and Scheduling onto Distributed Heterogeneous
Computing Systems,” Parallel and Distributed Computing, vol. 62,
no. 9, pp. 1338-1361, Sep. 2002.

[16] Energy Information Administration. http://www.eia.gov/electrici-
ty/data.cfm, last accessed, 2012.

[17] E. N. Elnozahy, M. Kistler, and R. Rajamony, “Energy-Efficient
Server Clusters,” Proc. Second Int’l Workshop Power-Aware Computer
Systems, pp. 179-197, 2002.

[18] Environmental Protection Agency. Report to Congress on Server
and Data Center Energy Efficiency, http://www.energystar.gov/ia/
partners/prod_development/downloads/EPA_Datacenter_Report_
Congress_Finall.pdf, Last accessed, 2011.

[19] D. Filani, J. He, S. Gao, M. Rajappa, A. Kumar, P. Shah, and
R. Nagappan, “Dynamic Data Center Power Management: Trends,
Issues,and Solutions,” Intel Technology].,vol.12,no0.1, pp.59-67,2008.

[20] R.F.Freund and H.J. Siegel, “Heterogeneous Processing,” Computer,
vol. 26, pp. 13-17, June 1993.

[21] SK. Grag, C.S. Yeo, A. Anadsivam, and R. Buyya, “Environment-
Conscious Scheduling of HPC Applications on Distributed Cloud-
Oriented Data Centers,” Parallel and Distributed Computing, vol. 71,
no. 6, pp. 732-749, June 2011.

[22] A. Ghafoor and J. Yang, “A Distributed Heterogeneous Supercom-
puting Management System,” Computer, vol. 26, no. 6, pp. 78-86,
June 1993.

[23] Hewlett-Packard Corporation, Intel Corporation, Microsoft Corpo-
ration, Phoenix Technologies Ltd., and Toshiba Corporation Std.
(Apr. 2010). Advanced Configuration and Power Interface Specification,
Rev. 4.0a, http://www.acpi.info/DOWNLOADS/ACPIspec40a.
pdf, last accessed, 2012.

[24]]J-W. Jang, M. Jeon, H.-S. Kim, H. Jo,].-5. Kim, and S. Maeng,
“Energy Reductions in Consolidated Servers through Memory-
Aware Virtual Machine Scheduling,” IEEE Trans. Computers, vol. 60,
no. 4, Apr. 2011.

[25] M. Kafil and I. Ahmad, “Optimal Task Assignment in Heteroge-
neous Distributed Computing Systems,” IEEE Concurrency, vol. 6,
no. 3, pp. 42-51, July 1998.

[26] X.Kang, H. Zhang, G. Jiang, H. Chen, X. Meng, and K. Yoshihira,
“Understanding Internet Video Sharing Site Workload: A View
from Data Center Design,” J. Visual Comm. Image Representation,
vol. 21, no. 2, pp. 129-138, Feb. 2010.

[27] A.Khokhar, V.K. Prasanna, M.E. Shaaban, and C. Wang, “Hetero-
geneous Computing: Challenges and Opportunities,” Computer,
vol. 26, no. 6, pp. 18-27, June 1993.

[28] J.-K. Kim, H.J. Siegel, A.A. Maciejewski, and R. Eigenmann, “Dy-
namic Resource Management in Energy Constrained Heterogeneous
Computing Systems Using Voltage Scalling,” IEEE Trans. Parallel and
Distributed Systems, Special Issue on Power-Aware Parallel and Distribut-
ed Systems, vol. 19, no. 11, pp. 1445-1457, Nov. 2008.

[29] Y. Lin and L. He, “Dual-VDD Interconnect with Chip-Level Time
Slack Allocation for FPGA Power Reduction,” IEEE Trans. Computer-
Aided Design of Integrated Circuits and Systems, vol. 25, no. 10,
pp- 2023-2034, Oct. 2006.

[30] J.R. Lorch and A.J. Smith, “Improving Voltage Scaling Algorithms
With PACE,” ACM SIGMETRICS Performance Evaluation Rev.,
vol. 29, no. 1, pp. 50-61, June 2001.

AL-QAWASMEH ET AL.: POWER AND THERMAL-AWARE WORKLOAD ALLOCATION IN HETEROGENEOUS DATA CENTERS 491

[31] M. Maheswaran, T.D. Braun, and H.]. Siegel, “Heterogeneous Dis-
tributed Computing,” Encyclopedia of Electrical and Electronics Engi-
neering. New York: John Wiley & Sons, vol. 8, pp. 679-690, 1999.

[32] J. Moore, J. Chase, P. Ranganathan, and R. Sharma, “Making
Scheduling ‘Cool”: Temperature-Aware Workload Placement in
Data Centers,” Proc. USENIX Ann. Technical Conf. (ATEC'05),
10 pp., 2005.

[33] T. Mukherjee, G. Varsamopoulos, S.K.S. Gupta, and S. Rungta,
“Measurement-Based Power Profiling of Data Center Equipment,”
Proc. IEEE Int’l Conf. Cluster Computing, pp. 476-477, Sep. 2007.

[34] E. Pakbaznia, M. Ghasemazar, and M. Pedram, “Temperature-
Aware Dynamic Resource Provisioning in a Power-Optimized Da-
tacenter,” Proc. Conf. Design, Automation and Test in Europe 2010,
pp- 124-129, 2010.

[35] V.Pallipadiand A. Starikovsky, “The On-Demand Governor,” Proc.
2006 Linux Symp., pp. 215-229, 2006.

[36] L.Parolini, N. Tolia, B. Sinopoli, and B. H. Krogh, “A Cyber-Physical
Systems Approach to Energy Management in Data Centers,” Proc.
1st ACM/IEEE Int’l Conf. Cyber-Physical Systems, pp. 168-177, 2010.

[37] H.Singhand A. Youssef, “Mapping and Scheduling Heterogeneous
Task Graphs using Genetic Algorithms,” Proc. 5th IEEE Heteroge-
neous Computing Workshop (HCW'96), pp. 86-97, 1996.

[38] Standard Performance Evaluation Corporation (SPEC). SPECpower_
ssj2008, http://www .spec.org/power_ssj2008, last accessed, 2011.

[39] Q. Tang, T. Mukherjee, S.K.S. Gupta, and P. Cayton, “Sensor-Based
Fast Thermal Evaluation Model for Energy Efficient High-Perfor-
mance Datacenters,” Proc. 4th Int’l Conf. Intelligent Sensing and
Information Processing (ICISIP 2006), pp. 203-208, Dec. 2006.

[40] N. Tolia, Z. Wang, P. Ranganathan, C. Bash, and M. Marwah,
“Unified Thermal and Power Management in Server Enclosures,”
Proc. ASME/Pacific Rim Technical Conf. Exhibition on Packaging and
Integration of Electronic and Photonic Systems, MEMS, and NEMS
(InterPACK), 10 pp., July 2009.

[41] C. Xian, Y.-H. Lu, and Z. Li, “Dynamic Voltage Scaling for Multi-
tasking Real-Time Systems with Uncertain Execution Time,” IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems,
vol. 27, no. 8, pp. 1467-1478, Aug. 2008.

[42] D. Xu, K. Nahrstedt, and D. Wichadakul, “QoS and Contention-
Aware Multi-Resource Reservation,” Cluster Computing,vol.4,no.2,
pp- 95-107, Apr. 2001.

[43]]. Yang, I. Ahmad, and A. Ghafoor, “Estimation of Execution Times
on Heterogeneous Supercomputer Architectures,” Proc. Int’l Conf.
Parallel Processing, vol. 1, pp. 219-225, Aug. 1993.

[44]]. Yang, A. Khokhar, S. Sheikh, and A. Ghafoor, “Estimating Execu-
tion Time for Parallel Tasks in Heterogeneous Processing (HP)
Environment,” Proc. Heterogeneous Computing Workshop, pp. 23-28,
Apr. 1994.

[45] B.D. Young, J. Apodaca, L.D. Bricefio, J. Smith, S. Pasricha, A.A.
Maciejewski, H.J. Siegel, B. Khemka, S. Bahirat, A. Ramirez, and
Y. Zou, “Deadline and Energy Constrained Dynamic Resource
Allocation in a Heterogeneous Computing Environment,” J. Super-
computing, vol. 63, no. 2, pp. 326-347, Feb. 2013.

[46] H.Yu, B. Veeravalli, and Y. Ha, “Dynamic Scheduling of Imprecise-
Computation Tasks in Maximizing QoS under Energy Constraints
for Embedded Systems,” Proc. 2008 Asia and South Pacific Design
Automation Conf. (ASPDAC’08), pp. 452-455, Mar. 2008.

Abdulla M. Al-Qawasmeh received the BS
degree in computer science and information
systems from Jordan University of Science and
Technology, Irbid, Jordan, in 2005, the MS degree
in computer science from the University of
Houston Clear Lake, in 2008, and the PhD degree
in computer engineering from Colorado State
University. He currently holds the position of se-
nior software developer at Service Logix and Lead
Software Developer at step2compliance. His work
is focused on Web and cloud-based applications.
His research interests include robust, power, and energy-efficient sched-
uling techniques in heterogeneous computing systems and data centers
and the characterization of heterogeneous computing systems.

Sudeep Pasricha (M’02) received the BE degree
in electronics and communication engineering
from Delhi Institute of Technology, Delhi, India,
in 2000, and the MS and the PhD degrees in
computer science from the University of Califor-
nia, Irvine, in 2005 and 2008, respectively. He is
- . currently an assistant professor of Electrical and
‘*,“.\‘ v 9 Computer Engineering at Colorado State Univer-
A g8 sity, Fort Collins, with a joint appointment in the
Department of Computer Science. His research
interests are in the areas of energy efficiency and
fault tolerant design for high performance computing, embedded systems,
and mobile computing. He is currently an advisory board member of ACM
SIGDA, information director of the ACM Transactions on Design Automa-
tion of Electronic Systems (TODAES), editor of the ACM SIGDA E-news,
organizing committee member of the NOCS, RTCSA, AICCSA, and
ICECS conferences and ICCAD CADathalon, and technical program
committee member of the DAC, DATE, CODES+ISSS, ISQED, NOCS,
NoCArc, VLSI Design, and GLSVLSI conferences and the SIGDA DAC
PhD Forum. He holds an affiliate faculty member position at the Center for
Embedded Computer Systems, University of California, Irvine. He was the
recipient of the AFOSR Young Investigator Award in 2012, and Best Paper
Awards at the IEEE AICCSA 2011, IEEE ISQED 2010, and ACM/IEEE
ASPDAC 2006 conferences.

-y ¥ 2
~ s TEE I~ .
e ‘\\-ﬁ‘ :

Anthony A. Maciejewski received the BSEE,
MS, and PhD degrees from The Ohio State
University, in 1982, 1984, and 1987, respectively.
From 1988 to 2001, he was a professor of Electri-
cal and Computer Engineering at Purdue Univer-
sity, West Lafayette. He is currently a professor
and head of the Department of Electrical and
Computer Engineering at Colorado State Univer-
sity. He is a fellow of the IEEE, with research
interests that include robotics and high perfor-
mance computing. His complete vita is available
at: http://www.engr.colostate.edu/~aam.

Howard Jay Siegel received the BS degree from
the Massachusetts Institute of Technology (MIT),
and the MA, MSE, and PhD degrees from Prince-
ton University. He was appointed the Abell En-
dowed chair distinguished professor of Electrical
and Computer Engineering at Colorado State
University (CSU) in 2001, where he is also a
professor of computer science. From 1976 to
2001, he was a professor at Purdue University.
He is a fellow of the IEEE and a fellow of the ACM.
He has coauthored over 400 technical papers. His
research interests include robust computing systems, resource allocation
in computing systems, heterogeneous parallel and distributed computing
and communications, parallel algorithms, and parallel machine intercon-
nection networks. He was a co-editor-in-chief of the Journal of Parallel and
Distributed Computing, and was on the Editorial Boards of both the IEEE
Transactions on Parallel and Distributed Systems and the IEEE Transac-
tions on Computers. He has been an international keynote speaker and
tutorial lecturer and has consulted for industry and government. Home-
page: www.engr.colostate.edu/~hj.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

