
Future Generation Computer Systems 37 (2014) 321–334
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Pareto frontier for job execution and data transfer time in
hybrid clouds
Javid Taheri a,∗, Albert Y. Zomaya a, Howard Jay Siegel b, Zahir Tari c
a School of Information Technologies, The University of Sydney, Australia
b Department of Electrical and Computer Engineering, Colorado State University, United States
c School of Computer Science, RMIT University, Australia

h i g h l i g h t s

• Particle Swarm Optimization to find the Pareto frontier of data-aware job scheduling.
• Pareto frontier of execution of jobs vs. transfer time of their required data-files.
• Analysis of the influence of Big-data and/or Private-data presence in hybrid clouds.
• Significant outperformance in comparison with current algorithms.
• Fast convergence speed; usually a few minutes for typical hybrid clouds.

a r t i c l e i n f o

Article history:
Received 10 July 2013
Received in revised form
14 October 2013
Accepted 3 December 2013
Available online 18 December 2013

Keywords:
Big data
Private data
Cloud bursting
Particle swarm optimization
Pareto frontier

a b s t r a c t

This paper proposes a solution to calculate the Pareto frontier for the execution of a batch of jobs versus
data transfer time for hybrid clouds. Based on the nature of the cloud application, jobs are assumed to
require a number of data-files from either public or private clouds. For example, gene probes can be used
to identify various infection agents such as bacteria, viruses, etc. The heavy computational task of aligning
probes of a patient’s DNA (private-data)with normal sequences (public-data)with various data sizes is the
key to this process. Such files have different characteristics – depends on their nature – and could be either
allowed for replication or not in the cloud. Files could be too big to replicate (big data), others might be
small enough to be replicated but they cannot be replicated as they contain sensitive information (private
data). To show the relationship between the execution time of a batch of jobs and the transfer time needed
for their required data in hybrid cloud,we firstmodel this problemas a bi-objective optimization problem,
and thenpropose a Particle SwarmOptimization (PSO)-based approach, called here PSO-ParFnt, to find the
relevant Pareto frontier. The results are promising and provide new insights into this complex problem.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Cloud computing is a service oriented computing paradigm that
has significantly revolutionized computing through its many ser-
vices – Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS) – as well as some of the re-
cently added ones: Database as a Service and Storage as a Service.
A large number of application domains have leveraged such ser-
vices andprovided a variety of cloud-based solutions [1]. As a result
of such a shift, data have been produced and consumed at much
higher rates when compared to traditional grid or cluster systems.
Scalable job scheduling and database management systems for

∗ Corresponding author. Tel.: +61 290369718.
E-mail addresses: javid.taheri@sydney.edu.au (J. Taheri),

albert.zomaya@sydney.edu.au (A.Y. Zomaya), HJ@ColoState.edu (H.J. Siegel),
zahir.tari@rmit.edu.au (Z. Tari).

0167-739X/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.future.2013.12.020
both CPU-intensive workloads as well as data-intensive applica-
tions have thus become a critical part of current cloud infrastruc-
tures [1].

Along with public clouds (e.g., Microsoft Azure [2], and Ama-
zon EC2 [3]), many companies have constructed their own private
cloud infrastructure through transforming many of their legacy
systems. Although having a private cloud is an advantage for
many organizations, sudden needs for extra computing capabil-
ities might lead some of these organizations to outsource por-
tions of their computation needs. This leads to another application
development model, known as cloud bursting, where an applica-
tion is run in a private cloud and bursts into (i.e. expands into) a
public cloud should the demand for computing exceed available
resources. Experts, however, recommend cloud bursting only for
non-sensitive applications, for example, those applications that do
not require private/sensitive data to run. Because of such security
issues, organizations tend to use their private clouds even when
performing all computation in public clouds is cheaper. It is also
believed that cloud bursting works best when either an applica-

http://dx.doi.org/10.1016/j.future.2013.12.020
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2013.12.020&domain=pdf
mailto:javid.taheri@sydney.edu.au
mailto:albert.zomaya@sydney.edu.au
mailto:HJ@ColoState.edu
mailto:zahir.tari@rmit.edu.au
http://dx.doi.org/10.1016/j.future.2013.12.020

322 J. Taheri et al. / Future Generation Computer Systems 37 (2014) 321–334
tion does not have complex interdependency with other applica-
tions, or when applications aremoved to public clouds so that local
resources are spared for more business-critical applications [1].

Big-data is another reason why many computations must be
performed externally to one’s private cloud. Although the defini-
tion of big-data has not been fully agreed upon yet, it is always
used to describe a voluminous amount of unstructured or semi-
structured data, usually on the order of terabytes and beyond, cre-
ated fromone ormultiple sources. Big-data is usually defined using
the following ‘‘4-V’s’’ [4]: Volume, Variety, Velocity, andVariability.
Volume refers to data that is large in size; Variety refers to a data set
composed of many sources and which is probably unstructured;
Velocity refers to change of the data rate coming to a process; and
Variability refers to the fact that sometimes it is almost impossible
to predict value of information that may come to you tomorrow.
All these V’s imply that computation must be usually performed
where the data resides; Volume of data also further restricts it to
a no-replication policy for big-data sometimes. However, from the
security point of view, organizations may still decide to replicate
big-data on their private clouds for further analysis because they
might not be able to tolerate delays of such large transfers from
public clouds to their private infrastructure.

From the scheduling point of view, providing solutions that con-
sider all the aforementioned restrictions (i.e. security for private
data and size for big-data) and efficiently execute a batch of jobs
in a hybrid (private plus public) cloud is far more difficult than the
original data-dependent job scheduling problem in grids. In fact,
such solutions must consider not only location of data-files in ad-
dition to computational capacity of clouds in scheduling decisions,
but also the privacy and unusual size of few very large-sized data-
files in a system. Because of such extra difficulties in dealing with
both complex restrictions, many proposed schedulers of such hy-
brid systems are usually over-simplified to produce the fastest and
mostly the simplest solutions.

After close examination of many already proposed schedulers,
we noticed that no proper investigation is ever conducted for hy-
brid clouds to discover the inter-relationship between the execu-
tion time of a batch of jobs and the transfer time required to deliver
(cache or replicate) their required data when the size of data is
large [5–13,15,16]. Prior investigations for grids showed that these
two objectives usually contradict each other where minimizing
one usually results in compromising the other [13,15,17]. For ex-
ample, minimizing the execution time of a batch of jobs requires
scheduling jobs to clouds with more computing cores, whereas
minimizing the transfer time of data requires scheduling jobs to
clouds where the needed data already reside.

We have also realized that most of such techniques are usually
tailor-made to either minimize the execution time of jobs or the
transfer time of all data-files in a system, with very few exceptions
that consider both. We also realized that it is impossible to mea-
sure the true performance of such algorithms when migrated to
clouds without knowing their optimal (either theoretical or com-
putational) scheduling solutions. PSO-ParFnt is a technique we
designed to address this issue, because it is designed to compu-
tationally find the Pareto frontier of hybrid clouds and reveal the
true performance of different algorithms in various situations. All
programs that may require cloud-bursting of some or all of their
processes can directly benefit from the outcome of PSO-ParFnt to
balance the execution time of their jobs versus the amount of data
that must be transfered to/from the cloud. Astronomy applications
such as Montage [18], bioinformatics applications such as DNA se-
quencing [19], and climate modeling applications [20] are among
many applications with such nature.

This paper proposes an approach to model such complex re-
lationship and analyze its trade-offs. To this end, we first model
the problem as a bi-objective optimization problem and then use
our proposed Particle SwarmOptimization (PSO) approach to com-
pute the Pareto frontier of the trade-offs. The Pareto fronts for our
case studies are then alignedwith several already proposed hybrid
scheduling algorithms to (1) validate the quality of our computed
Pareto fronts, and (2) validate the quality of a few already proposed
solutions by measuring their distance from the calculated Pareto
fronts.

This work is organized as follows. Section 2 highlights related
work followed by preliminaries of the proposed approach in Sec-
tion 3. Section 4 details the solution for the computation of the
Pareto front. Section 5 overviews the simulation setup and details
the results of the simulation studies. Section 6 analyses the results
and summarizes the important outcomes. Finally, Section 7 con-
cludes our work and highlights future directions for study.

2. Related work

Thework in this paper is closely related to threemain aspects of
cloud computing: big-data transfer complexities, data privacy, and
scheduling data dependent jobs in hybrid clouds. Because compre-
hensive literature reviews for each of these topics are beyond the
scope of this study, we provide sufficient details on each aspect by
covering only issues directly related to our proposed solutions.
Big-data: In information technology, big-data [21,22] consists of
data sets that usually grow too large and become complex to han-
dle using current database management tools; capture, storage,
search, share, analytics, and visualization are among some of the
well-known issues [23]. Despite its many challenges, the trend
of incorporating big-data is still continuing as it has the poten-
tial to provide deeper analysis to detect business trends, prevent
diseases, combat crime, and others [24]. Data sets are continu-
ally growing in size as they are usually collected from a variety
of sources, such as ubiquitous information-sensing mobile de-
vices, aerial sensory technologies (remote sensing), software logs,
cameras, microphones, radio-frequency identification readers, and
wireless sensor networks [25]. As a result, the world’s technolog-
ical capacity to store information has roughly doubled every 40
months [26]. Alongwith this trend, database requirements are also
vastly different from one organization to another. Greenplum [27]
is an example of such databases where the emphasis is to pro-
vide very fast data loading to other applications. Fig. 1 conceptually
shows how different data-file systems can be categorized accord-
ing to their structure and scaling capabilities [28]. As capacity
needs grow, in scale-up storage systems, disks are added behind
an already existing storage controller; in scale-out systems, com-
plete storage elements are added to the system. Loosely structured
and scale-out architectures are essential and favored for big-data
initiatives.
Private-data: Fujitsu conducted a global survey in October 2010 to
study consumer attitudes and concerns about having their per-
sonal data in a cloud [29]. The survey revealed that although
consumers are excited and intrigued by opportunities that arise
from cloud computing, they are also deeply concerned about their
data privacy and risks involved in sharing data. There have been
several legal studies to properly define ‘‘personal data’’ in the
cloud [30]. Serious questions remain as to whether databases
containing anonymized, pseudoanonymized, encrypted, and frag-
mented data in transmission and/or storage should still be consid-
ered as ‘‘private’’ or not. As a result of this, many service providers,
such as financial institutions, prefer not to take the risk of using
cloud bursting in order not to compromise the safety of their data.
Data aware job scheduling: For jobs with file dependencies, espe-
cially data-intensive ones, scheduling not only involves computa-
tional concerns, but also the data management to access required
data-files. Data replication techniques have been around for many

J. Taheri et al. / Future Generation Computer Systems 37 (2014) 321–334 323
Fig. 1. Positioning of databases for the Big-data Era.

years, for example, to facilitate accessibility of jobs to data. Natu-
rally, clouds can also benefit from the use of efficient algorithms
to manage data during out-bursting or anonymizing calculations
when performing private computations in public clouds. Because
grids and clouds share many underlying concepts, many algo-
rithms to replicate data in grids can be easily extended to work
in clouds.

Six major classes of replica strategies presented in [31] can be
easily deployed for clouds; they are: (1) no-replication, (2) best-
client, (3) cascading, (4) plain-caching, (5) caching plus cascad-
ing, and (6) fast-spread. In the no-replication policy, data-files are
never replicated or cached; they are always downloaded upon re-
quest. In the best-client policy, data-files are replicated on storage
nodes that have the highest number of requests for the file. In cas-
cading, once popularity of a data-file exceeds a certain threshold
in a given time interval, it is replicated to the best-client storage.
In plain-caching, every client that requests a file also stores a copy
of it. In caching plus cascading, plain-caching and cascading are si-
multaneously performed. In fast-spread, data-files are proactively
replicated along the path between storage nodes and clients. Also,
several techniques have been proposed to not only replicate data
but also schedule jobs to grid nodes [31]; the following four classes
of algorithms have been identified: (1) JobRandom, (2) JobLeast-
Loaded, (3) JobDataPresent, and (4) JobLocally. In JobRandom, jobs
are randomly distributed among computing nodes. In JobLeast-
Loaded, jobs are scheduled to nodes with the least queue lengths;
i.e., with the least number of jobswaiting to run. In JobDataPresent,
jobs are scheduled to nodeswhich either already have the required
data or can download them faster in comparison with others. In
JobLocally, each job is run at the cluster where it is submitted re-
gardless of the amount of data to be downloaded.

Based on the above, the following scheduling systems are prob-
ably the most comprehensive grid/cloud schedulers to simulta-
neously assign jobs and replicate data-files. Data Intensive and
Network Aware (DIANA) scheduling [32,33] is designed based on
the real GILDA [34] and CMS [35] grid systems. In this approach,
jobs are first assessed to determine their execution category. For
data-intensive applications, jobs are migrated to computing nodes
(CNs) with minimum access (download) time to their required
data-files. For computationally intensive jobs, on the other hand,
data-files aremigrated/replicated to storage nodes (SNs)withmin-
imum access (upload) time to their dependent jobs. In both cases,
the decision is made based on: (1) capacity of SNs, (2) speed and
number of computers/processors in CNs, and (3) network links
connecting SNs and CNs. BestMap [17] uses two alternative mech-
anisms to iteratively (1) minimize execution time of jobs, and
(2)minimize delivery time of all data-files through replication. Un-
like DIANA, BestMap does not categorize jobs, but always tries to
find the most suitable CN or SN to schedule a job or replicate its
dependent data-files at each stage. JDS-BC [13] is a heuristic ap-
proach to solve the stated problem. JDS-BC uses information about
already scheduled jobs or replicated data-files in making decisions
for scheduling or replicating current jobs or data-files. JDS-BC,
which is based on the bee colony optimization technique, models
jobs as bees and CNs as hives. Here, upon scheduling any job, the
scheduled job reports its received ‘‘benefit’’ froma given allocation.
Such benefit is designed so that schedulers concurrently balance
the execution time of jobs and reduce the overall delivery time of
all data-files. Chameleon [36], also known as FLOP, targets CNs that
can start executing jobs straight away; i.e., it always migrates jobs
to CNs that can start executing them faster than others. Although
Chameleon/FLOP does not initially consider data-file download
times during its scheduling process, it always replicates data-files
upon scheduling jobs to provide faster upload times to them.

3. Preliminaries

This section summarizes some preliminary information re-
quired to better explain our approach.We first mathematically de-
fine the stated bi-objective optimization problem. This is followed
by an explanation of the PSO technique before detailing how we
used it in our approach. Finally, a Pareto frontier curve is mathe-
matically defined.

3.1. Framework

In this work, we made an attempt to incorporate as many fea-
tures as possible from previous approaches and design of the pro-
posed framework to consist of heterogeneous: (1) private clouds,
(2) public clouds, (3) storage clouds, (4) interconnecting network,
(5) schedulers, (6) users, (7) jobs, and (8) data-files. Private clouds
are assumed to be independent and do not share information with
each other; each private cloud has enough computational power
and storage capability to perform its local jobs and store its private
data. Public clouds’ computational and storage capabilities can be
used by private clouds for out-bursting their computations. Private
clouds can also replicate their data to public clouds to improve ac-
cess to their data. Storage clouds do not have computational pow-
ers and can only provide data to public/private clouds should they
require.

To better model different cloud types, we designed the follow-
ing two basic elements: cloud computing component (CCs) and
cloud storage component (SCs). Public and private clouds are each
made of a CC attached to a SC; storage clouds only have a SC. CCs
in our framework represent heterogeneous computing environ-
ments with various CPU types; they are assumed to have enough
local cache to hold data-files for executing a batch of jobs. SCs host
data-files required by jobs. Although from the optimization point
of view there is no difference between SCs attached to CCs and the
ones isolated, attached SCs can upload data-files to their associ-
ated CCs must faster than the isolated ones; whereas isolated SCs
usually have more capacity than the attached ones. CCs and SCs
are connected through an interconnection network comprised
of individual links. Each link in this system has its own charac-
teristics and is modeled using two parameters: delay and band-
width. These links are assumed independent; and thus, different
CCs/SCs can simultaneously transfer data-files to each other. At-
tached CCs and SCs are assumed to have LAN connections; all other
links are assumed to have WAN connections. Schedulers are de-
cision makers of the whole system; they accept jobs and data-
files fromusers/systems and schedule or replicate them to relevant
CCs and SCs, respectively. Users generate jobs and submit them to
schedulers to be executed by CCs. Jobs have heterogeneous exe-
cution times along with a heterogeneous list of required data-files.

324 J. Taheri et al. / Future Generation Computer Systems 37 (2014) 321–334
Table 1
Summary of notation.

NCC ,NSC ,NJ ,ND Total number of CCs, SCs, jobs, and data-files in a systems
NR Maximum number of replicas for each datafile
Dsize
i , SC size

j Size of datafile #i, and SC #j
JSTi , JEXi , JTTi Start, execution, and transfer time to download all data-files

required to execute job #i
DSsizej Total size of data-files addressed by data file-set #j

Data-files are assumed to be owned by SCs and are allowed to have
a predefined number of replicas in a system. Schedulers can only
delete or move replicas; the original copies are always kept intact.
Data-files are also assumed to contain private-, big-, or normal-
data (neither private nor big). Private data is stored in SCs of private
clouds only; these files cannot be replicated. Big-data and normal-
data can be stored on both private and/or public clouds; there is no
restriction in replicating these two types of data.

3.2. Problem statement

Data aware job scheduling (DAJS), inspired by grids, is a bi-
objective optimization problem and is defined as assigning jobs
to CCs and replicating data-files on SCs to concurrently minimize
(1) the overall execution time of a batch of jobs as well as (2) the
transfer time of all data-files to their dependent jobs [13,15,17,
32,33]. Because these two objectives are usually independent, and
in many cases even conflicting, minimizing one objective usually
results in compromising the other. For example, achieving lower
execution time requires scheduling jobs to clouds with more free
cores, whereas achieving lower transfer times requires using links
with higher bandwidths in a system. Similar to other approaches,
we also assume that if several jobs in a CC require the same data-
file, the requested data-file will be downloaded once and then
stored in a local repository (cache) for further local requests [15–
17,33,36,37]. Table 1 summarizes the notation we use throughout
this work.

To mathematically formulate DAJS, assume that jobs should be
partitioned into several job-sets,


JS1, JS2, . . . , JSNCC


, to be ex-

ecuted by CCs, and data-files should be partitioned into several
data-file-sets,


DS1,DS2, . . . ,DSNSC


, to be replicated onto SCs. For

example, if NJ = 9 and NCC = 3, then JobSets = {{1, 5, 7}, {2, 4, 8,
9}, {3, 6}} means jobs in JS1 = {J1, J5, J7}, JS2 = {J2, J4, J8, J9}, and
JS3 = {J3, J6} are assigned to be executed in CC1, CC2, and CC3,
respectively. Based on this model, DAJS is defined as finding ele-
ments of job-sets and data-file-sets to minimize the following two
objective functions.

1. MIN
NCC
MAX
i=1

JSEXi

2. MIN
NCC
i=1

JSTTi

s.t.
DSsizei ≤ SC size

i ; i = 1, . . . ,NSC .

(1)

Here, if JS i = {J1, J2, . . . , JK } contains K jobs scheduled to be exe-
cuted by CC i, then the execution time and the total transfer time of
this job-set can be calculated as follows:

JSEXi =
K

MAX
k=1


JSTk + JEXk


(2)

JSTTi =

K
k=1

JTTk . (3)

In DAJS formulation, the constraint is to guarantee that the total
size of all data-files each SC hosts is less than its total capacity.
For local schedulers inside each CC, the overall execution time of
a set of jobs greatly depends on each CC’s local scheduling pol-
icy;wehowever chose First-Come-First-Servedwith backfilling for
this purpose as it usually results in near-optimal deployment of re-
sources when a large number of jobs are submitted [38].

3.3. Particle swarm optimization

Particle Swarm Optimization (PSO) is among the most well-
known nature-inspired techniques to find optimal solutions of
complexproblems [39]. PSOoriginates from the following two con-
cepts: (1) swarm intelligence usually observed in population based
animals such as birds to achieve global interests such as find food
sources; and (2) evolutionary computing where several solutions
are combined to produce higher quality ones. In PSO, several solu-
tions (particles) of a given problemare usually randomly generated
to initialize a ‘‘swarm’’; then, iteration by iteration, swarm parti-
cles try to improve their quality bymoving toward better particles/
solutions already found—either by themselves or by other parti-
cles. Based on such information, each particle calculates its next
location by using the following formula:

x(t + 1) = x(t) + v(t) (4)

where x(t) is a vector to represent the current location of a particle,
and v(t), also a vector, is the velocity of the particle at time t and
is calculated at each iteration as follows:

v(t) = wvrvv(t − 1) + wlrl(xbest(t) − x(t))

+ wg rg(gbest(t) − x(t)). (5)

Here, xbest(t) and gbest(t) represent the best solutions found by the
particle itself or the swarmas awhole up to time t , respectively.wv ,
wl, and wg are three weights (scalars) to engage the previous ve-
locity, the best local solution, and the best global solution, respec-
tively. rv , rl, and rg are random numbers in [0.0, 1.0]. Algorithm 1
shows steps of a typical PSO-based solution.

Algorithm 1: A typical PSO optimization procedure

3.4. Pareto frontier curve

Pareto efficiency, or Pareto optimality, is a concept in economics
with applications in engineering and social sciences [15]. It is de-
fined as allocating goods among individuals where no individ-
ual can improve his/her situation without worsening another’s; a
Pareto frontier is a set of Pareto efficient choices. Connectingmem-
bers of such set generates a Pareto frontier curve (Pareto front for
short). The Pareto front is particularly useful in engineering where
designers can make trade-offs within sets, rather than considering
the full range of every parameter.

To formally define a Pareto front, consider a design space with
n real parameters andmmeasurement criteria for each design. Let
f : Rn

→ Rm be the function that assigns a criteria space point f (x)
to each design space point x. Also let X and Y = f (X) be the set
of all feasible solutions in Rn and their measured values in Rm, re-
spectively. The Pareto front (Y ∗) is a subsetwithmaximal elements
of points in Y where no point is strictly dominates the others. For
minimization problems, point y∗ dominates y if


∀i : y∗

i ≤ yi

and

∃i : y∗

i < yi

. Fig. 2 shows an example of such frontier curve for a

two-dimensional criteria space.

J. Taheri et al. / Future Generation Computer Systems 37 (2014) 321–334 325
Fig. 2. A Pareto frontier curve.

4. PSO for finding DAJS’s Pareto front

4.1. Overview

This section provides details of the proposed algorithm, namely
PSO-ParFnt, to find the Pareto front for the execution time of a
batch of data dependent jobs versus the transfer time of their re-
quired data in hybrid clouds. Because the original PSO is designed
to optimize one objective only, we carefully modified it so that it
suits our specific needs for solving the bi-objective DAJS problem
here. Also, to obtain a well-distributed Pareto front across both
objectives of our DAJS problem, we designed several swarms to
collaboratively explore different sections of such Pareto frontier
curve. Each swarm works independently and regularly exchanges
particles with other swarms. The Pareto frontier of a DAJS problem
is computed based on the union of all particles from all swarms.
Algorithm 2 and Fig. 3 describe/show the PSO-ParFnt procedure.

4.2. Generate random particles

To initialize swarms (Step 1 in Algorithm 2), we first need to de-
sign particles able to represent all possible solutions of the stated
problem. In PSO-ParFnt, each particle consists of two parts for jobs
and data-files. The first part is to represent where each job must
be executed; the second part determines replica locations for each
data-file. It is defined as follows:

Prtcl =

x1, x2, . . . , xNJ


⟨y11, y

1
2, . . . , y

1
NR⟩,

⟨y21, y
2
2, . . . , y

2
NR⟩,

. . . ,

⟨yND1 , yND2 , . . . , yNDNR ⟩,

 (6)

where, xi ∈ [1,NCC] represent the CC that is responsible to execute
the ith job (Ji) and ykj ∈ [1,NSC]


{−1} addresses where the jth

replica of the kth data-file (Dk) must be stored; ykj = −1 means no
replication. Note that the original copy of each data-file is always
accessible even if no replica is made for it. For example,

Prtcl =

1, 2, 2, 1, 2, 3, 4, 4, 3, 1

⟨1, −1⟩, ⟨1, 3⟩, ⟨2, 3⟩,
⟨2, −1⟩, ⟨3, −1⟩


(7)

implies that job sets {J1, J4, J10}, {J2, J3, J5}, {J6, J9}, and {J7, J8} must
be executed by CC1, CC2, CC3, and CC4, respectively; also, D1 must
have only one replica on SC1 (two copies in total to be accessed by
all jobs), D2 must have two replicas on SC1 and SC3, D3 must have
two replicas on SC2 and SC3, D4 must have only one replica on SC2,
and D5 must have one replica at SC3.
Algorithm 2: PSO-ParFnt optimization procedure

Fig. 3. PSO-ParFnt’s procedure.

The initial random population (Step 1 in Algorithm 2) consists
of several particles; each generated through Algorithm 3, where
Step 1 allocates enoughmemory to save a particle. Step 2 randomly
assigns/schedule jobs to CCs. Step 3 randomly replicates data-files
on SCs; here, if the size of a data-file is larger than its randomly
selected SC or it is non-replicable, then no replication is performed.

Algorithm 3: Generating a sample particle

326 J. Taheri et al. / Future Generation Computer Systems 37 (2014) 321–334
Table 2
Notation for swarms and particles.

SwTgET
s , SwTgTT

s , SwTgW
s Execution time target, transfer time target, and

target’s bandwidth for swarm #s
SwTgType

s , Swsize
s Type and size of swarm #s

Sws = {P t
1, . . . , P

t
K } Locations of (K = Swsize

s) particles compose swarm
#s at time t

∥P1, P2∥ Distance between two particles
|P| Length of a particle equals to NJ + ND × NR

P(x) xth element of a particle

4.3. Swarms

Because of the complexity of the stated problem, we decided to
design several swarms to cooperativelywork in finding the desired
Pareto front. The various experiments we conducted showed that
having multiple less-crowded swarms with individual targets are
more efficient than a single crowded one to find the Pareto
frontier of the stated DAJS. These experiments also showed that
for the stated DAJS problem in particular, a single swarm could
not homogeneously explore all sections of the desired Pareto front.
As a result, we observed that most particles are superfluously
targeting specific regions of a Pareto front, whilst its other sections
were harshly ignored. Table 2 summarizes the notation we use to
describe different characteristics of swarms and particles in this
work.

There are three type of swarms in PSO-ParFnt: ExeTm, TransTm,
and Both. The first swarm type (ExeTm), only focuses on reducing
the execution time of all particles of a swarm, while keeping their
data-file transfer times within a predefined band; i.e., minimizing
the first objective of DAJS, while restricting the other. This can be
mathematically formulated as follows:

MIN
NCC
MAX
i=1

JSEXi
s.t.

TTMIN
≤

NCN
i=1

JSTTi ≤ TTMAX

DSsizei ≤ SC size
i ; i = 1, . . . ,NSC .

(8)

Fig. 4(a) shows five SW TgET swarmswith such individual targets.
As can be seen, these swarms were able to efficiently push back
their targeted section of the Pareto front across several iterations.
The second swarm type (TransTm) follows the same procedure,
but to reduce the transfer time of all particles, while keeping
their execution times within a predefined band. The third swarm
type (Both) aims to reduce the summation of execution time and
transfer time of all particles in a swarm. Fig. 4(b)–(c) shows how
TransTm and Both swarm types push back their targeted sections
of a Pareto front over several iterations.

Algorithm 4 shows how the randomly generated particles
(RndPrtcls) are used to initialize several swarms and set their
targets. In this algorithm, Steps 1–2 find the minimum and the
maximum execution time and transfer time of all particles in a
list of randomly generated particles. Step 3 restricts the maximum
value to be at most three times the minimum value. Doing this
will help the generated swarms to avoid outlier particles; the
ratio of three is set empirically. Step 4 finds two bandwidths to
homogeneously split sections of a desired Pareto front among the
requested number of swarms of each type. Steps 5–7 set targets for
the generated swarms and add them to the swarm list. After setting
the targets for each swarm, they must be filled with appropriate
particles to help them achieve their desired targets. Algorithm 5
details how each swarm is filled and trimmed with most suitable
particles from a list of available particles.
Algorithm 4: Generate targeted swarms

Algorithm 5: Fill and Trim procedure

4.4. PSO-ParFnt optimization cycle

Step 3 of Algorithm 2 performs the main optimization of PSO-
ParFnt after its initialization. In this step, which is repeated for

J. Taheri et al. / Future Generation Computer Systems 37 (2014) 321–334 327
(a) ExeTm. (b) TransTm.

(c) Both.

Fig. 4. Pareto frontier shift of ExeTm-/TransTm-/Both-Targeted swarms after 500 iterations.
a predefined number of iterations, particles of all swarms are
combined first, and then used to find the Pareto front. In Step 3.1,
the combined particles are also used to set new targets for each
swarm.Here, because a Pareto front is usually shifted toward lower
values, for both objectives, after several iterations, it is necessary
to adjust new targets. Here, we follow the same steps already
described in Algorithm 4 to set a new target, but without adding
new swarms; i.e., the range of all particles is used to readjust
targets of already existing swarms.

Step 3.3 of Algorithm 2 highlights how each swarm is updated
iteration by iteration to achieve its target. As already explained,
first all particles are updates, then possible redundant particles are
removed to avoid dominant solutions. After that, updated particles
are filled and trimmed again to avoid diverging; finally, the best
global particle of each swarm is updated.

Algorithm 6 explains how particles of a swarm are updated. It
is also worth noting that because of the discrete nature of DAJS,
the velocity of particles in PSO-ParFnt is calculated (Step 2) and
used differently (Step 3) to update particles of a swarm.Here, based
on the velocity for each particle, elements of a particle are either
copied from the best particle of a swarm (Step 3.1) or randomly
set to other values (Step 3.2). The lower the velocity of a particle,
the greater chance it has for its elements to being filled with ran-
dom values. Such a reverse mechanism to always force particles
towardmoremovements allows generation ofmore variety of par-
ticles and consequently a greater chance of finding higher quality
particles. Steps 3.3 and 3.4 make certain that the resulted particles
are feasible. In Step 2, the distance between two particles, ∥P1, P2∥,
is calculated as

∥P1, P2∥ =


i


1 if P1(i) = P2(i)
0 otherwise


|P1|

, (9)

where |P1| is the length of a particle; i.e., NJ + ND × NR.
Algorithm 6: Update particles in a swarm

5. Simulation results

Three artificial hybrid clouds are generated to check the per-
formance of PSO-ParFnt using our exclusively designed/modified

328 J. Taheri et al. / Future Generation Computer Systems 37 (2014) 321–334
Table 3
Characteristics of the generated test clouds.

Test-Cloud-1 Test-Cloud-2 Test-Cloud-3

Number of
Public/Private/Storage clouds

1/1/1 2/2/2 3/3/3

Number of CCs/SCs 2/3 4/6 6/9
Number of jobs 200 400 600
Execution time of all jobs 67362 s (0 d:18 h:42 min: 42 s) 140287 s (1 d:14 h:58 min:07 s) 209035 s (2 d:10 h: 03 min:55 s)
Number of data-files Total: 224; Ba: 4, P: 20, N: 200 Total: 448; B: 8, P: 40, N: 400 Total: 672; B: 12, P: 60, N: 600
Size of data-files Total: 47.5 TB; B: 23.0 TB, P: 13.1 TB, N:

11.4 TB
Total: 93.1 TB; B: 48 TB, P: 22.6 TB, N:
22.5 TB

Total: 135 TB; B: 70 TB, P: 31.4 TB, N: 33.7 TB

Public storage clouds 54 TB storage each Each: 54 TB storage each Each: 54 TB storage each
Public clouds 512 cores, 48 TB storage Each: 512 cores, 48 TB storage Each: 512 cores, 48 TB storage
Private clouds 128 cores, 30 TB storage Each: 128 cores, 30 TB storage Each: 128 cores, 30 TB storage
a B: Big-data, P: Private-Data, N: Normal-data.
Fig. 5. Test-Cloud-2.

simulator also used in [12,13,15–17] and properly documented
in [14]. These clouds are generated based on the direct observa-
tions from [32,33,35,40]. In this simulator, different clouds are gen-
erated through setting proper characteristics of their environmen-
tal parameters. Table 3 shows the characteristics of these systems.
Fig. 5 shows the overall structure of the second test-cloud in our
system. For example, Test-Cloud-1 presents a hybrid cloud envi-
ronment consisting of one public computational cloud with 512
cores and 48 TB of storage, one private cloud with 128 cores and
30 TB of storage, and one public storage cloud with 54 TB of stor-
age. 200 jobs with overall execution time of 18 h:42 min:42 s are
created for this setup. These jobs required a total of 47.5 TB of data-
files to be executed: 23 TB as big-data, 13.1 TB as private-data and
11.4 TB as normal-data.

It is also worth noting that these parameters are chosen based
on the initial empirical studies we performed in our group during
preparation of this work. We intentionally chose the parameters
to observe the severe cases where different scheduling decisions
for jobs or replication of data made significant differences in the
overall performance of each system. For example, if the number of
jobs were increased – with the same size and distribution of data –
the system would be more skewed toward job scheduling and less
caring about the location of data. The opposite observation would
have also been noticed when the amount of data was doubled for
the samenumber of jobs. In that case, the systemwasmore skewed
toward replication of data rather than scheduling of jobs.With this
balance of settings however, both objectives of the stated problem
would be equally important for the system where none of them
could be either ignored or favored over the other. The configuration
of the other two is similar but in different scales (details of these
clouds for further analysis of this work and/or designing similar
approaches can be obtained by contacting the authors).
5.1. Algorithm comparison

To the best of our knowledge, except for GA-ParFnt [15,16]
which is designed for grids, such a Pareto front has never been
computed for clouds with the detailed complications explained in
previous sections. Thus, we could only compare our results with
GA-ParFnt which uses a Genetic Algorithm to find the Pareto fron-
tier of executing data dependent jobs versus transfer time of data-
files in grid environments. Unlike PSO-ParFnt, GA-ParFnt does not
consider privacy constraints of data-files as it assumes all data-files
are replicable. Besides direct comparison of PSO-ParFnt with GA-
ParFnt, we could also compare its results with other scheduling al-
gorithms to (1) check the performance of PSO-ParFnt, and (2) verify
the quality of answers found by the already designed algorithm
for the DAJS problem. BestMap [17], DIANA [32,33], JDS-BC [13],
Chameleon/FLOP [36], MinTrans [37,41–43], and MinExe [41,42]
are six approaches that support the batchmode for scheduling, and
thus are selected to also evaluate the performance of PSO-ParFnt.

In summary, BestMap [17] checks the detailed status of all CCs
and SCs to decide where each job or data-file must be executed or
replicated. DIANA [32,33] categorizes the submitted jobs as either
computationally intensive or data intensive. For a computationally
intensive job, DIANA migrates it to a CC that can provide the low-
est execution time compared with other CCs; for a data intensive
job, DIANA either migrates the job to a CC with the fastest data-
file download time, or replicates the data-files to SCs with faster
upload times compared with other SCs. Chameleon/FLOP [36] tar-
gets CCs that can start executing jobs straight away; it then repli-
cates data-files upon scheduling jobs to provide the fastest upload
times to them. MinTrans represent a collection of approaches that
schedule jobs to CCs with already cached data-files, including Job-
DataPresent in [41], Data-Present in [42], TLSS + TLRS in [43], and
an extension made to SAMGrid using Condor-G in [37]. These ap-
proaches are inspired by the fact that obtaining data-files is usually
the costlier portion of executing a job, and thus if jobs are sent to
CCs with already cached data-files, the overall performance of a
system should improve. MinExe represents another group of ap-
proaches that schedule jobs to CCs that can execute them faster,
including JobLeastLoaded in [41] and Shortest-Turnaround-Time
in [42]. Such approaches aremotivated by the fact that cache repos-
itories of powerful CCs are gradually enriched as more types of
jobs are scheduled on them, and thus it is the running portion of
jobs that would eventually dominate the overall performance of a
system. Achieving lower execution time and transfer time is the
second priority in MinTrans and MinExe, respectively. All afore-
mentioned scheduling algorithms and GA-ParFnt are carefully
modified to not copy/replicate private data.

5.2. Test clouds

Three artificial test clouds are generated to represent various
scenarios, ranging from single out-bursting hybrid cloud to three

J. Taheri et al. / Future Generation Computer Systems 37 (2014) 321–334 329
Fig. 6. Distribution of data files according to their (a) number and (b) size.

concurrent ones. Table 3 shows characteristics of these clouds as
well as the overall characteristics of their jobs and big-/private-
/normal-data-files.

For these test clouds, we assumed that cloud clients have pri-
vate clouds with 128 cores and 30 terabyte (TB) of storage. They
may also decide to out-burst their computation to (1) public clouds
and rent 512 cores and 48 TB of storage, and (2) public cloud stor-
age and rent 54 TB of capacity. We also assume that each sub-
mitted job to the cloud takes between 2 and 30 min to run and
needs between 0 and 5 data-files. Data-files were comprised of
three groups: big, private, and normal. Big and normal data-files
can be stored on either public or private clouds, whereas private
data-files are only stored on private storage (storage attached to
a private cloud). We also assumed that size of big, private, and
normal data is between 1–10 TB, 100–1000 MB, and 10–100 MB,
respectively. During the generation of our hybrid clouds, we also
assumed that the total size of all big-data-files in a system is al-
most half of the total size of all data-files; the other half is roughly
split betweenprivate andnormal data. Fig. 6 shows thedistribution
pattern of data-files according to their size and number for Test-
Cloud-1; the distribution patterns for the other two larger cloud
scenarios are very similar to that of Test-Cloud-1. For better simu-
lation of our work we also assumed that a computing cloud is con-
nected through LAN links to its local storage, and through WAN
links to other clouds/storage.

6. Discussion and analysis

For Test-Clouds-1/2/3, Figs. 7–9 show the performance of the
proposed algorithm (PSO-ParFnt) to find the Pareto frontier of
executing a batch of jobs versus transferring time of their required
data-files when replication of big-data is allowed or not-allowed.
The results for our test clouds are further analyzed to extract vital
information about (1) execution behavior of data-file dependent
jobs in hybrid clouds as well as (2) execution performance of PSO-
ParFnt compared with other techniques.
Table 4
Estimation functions for test clouds.

Estimation function MSE

Test-Cloud-1 0.03 + 0.96e−63.56x 0.0141
0.07e−2.19x

+ 0.93e−68.19x 0.0152

Test-Cloud-2 0.03 + 0.85e−27.13x 0.0041
0.74e−17.49x

+ 0.26e−12544.97x 0.0014

Test-Cloud-3 0.03 + 0.81e−13.38x 0.0024
0.70e−8.78x

+ 0.23e−16132.76x 0.0006

6.1. The shape of Pareto front for hybrid clouds

Figs. 7–9 show subtle differences among Pareto frontiers for
these test clouds despite their very similar overall shape. For bet-
ter comparative analysis, we first scale all points to be between
[0, 1] and then fit two exponential functions to them: Func1Exp
and Func2Exp with the overall shape of α + β × e−ωt and α ×

e−ω1t + β × e−ω2t , respectively. We empirically chose exponen-
tial functions as they showed lowermean square error (MSE) com-
paredwith other regression functions such as linear or logarithmic.
Table 4 presents estimated functions for each test cloud alongwith
its measured MSE. Fig. 10 graphically shows the estimated func-
tions in Table 4 along with the original curve found by PSO-ParFnt
for all test clouds.

Results in Fig. 10 and Table 4 show sharply curved Pareto
fronts for Test-Cloud-1, consisting of one private plus one public
cloud; this test cloud is very similar to the out-bursting case of
an individual company. As more companies collaborate in mak-
ing their hybrid clouds (Test-clouds-2/3) such Pareto frontier be-
comes smoother. As shown in Table 4, the dominant decay factor
(Func1Exp) for Test-Cloud-1 is 63.56, almost double the decay fac-
tor for Test-Cloud-2 (27.13), and the decay factor of Test-Cloud-2
is also almost double that of Test-Cloud-3 (13.38). This observation
shows that should more companies collaborate in sharing their
computing infrastructure, such Pareto frontier will become
smoother and consequently provide them more options to grad-
ually switch from one priority such as execution time of jobs to
another such as transfer time of data-files and vice versa. Note that
such sharing does not violate the privacy issues of each company
as private data are still kept in private storage elements of each in-
dividual.

Fig. 10 and Table 4 also show that the Pareto frontier curve of
hybrid clouds are most probably smoother than those of grids pre-
viously studied in GA-ParFnt [15,16]; in [15,16] it has been shown
that Fun1Exp type functions are generally not adequate for esti-
mating the overall Pareto frontier shape of grids, whereas they are
quite accurate for hybrid clouds.

6.2. Comparing PSO-ParFnt with GA-ParFnt

Figs. 7–9 show results of GA-/PSO-ParFnt techniques, both de-
signed to find the Pareto frontier of executing jobs versus trans-
ferring time of their required data-files. These figures clearly show
(a) Allowed. (b) Not allowed.

Fig. 7. Pareto frontier of Test-Cloud-1 when replication of Big-data is either allowed (a) or not allowed (b).

330 J. Taheri et al. / Future Generation Computer Systems 37 (2014) 321–334
(a) Allowed. (b) Not allowed.

Fig. 8. Pareto frontier of Test-Cloud-2 when replication of Big-data is either allowed (a) or not allowed (b).
(a) Allowed. (b) Not allowed.

Fig. 9. Pareto frontier of Test-Cloud-3 when replication of Big-data is either allowed (a) or not allowed (b).
(a) Test-Cloud-1. (b) Test-Cloud-2.

(c) Test-Cloud-3.

Fig. 10. PSO-ParFnt-(B)p aligned with exponential estimation functions.
that both techniques have similar performance in finding the low-
est possible execution time of jobs, whereas the lowest possible
transfer time of data-file GA-ParFnt estimates is almost double of
that of PSO-ParFnt.
To be more specific, Fig. 7(a) shows that the lowest possible
execution time of jobs for all jobs in Test-Cloud-1 is almost 300 s –
foundby both techniques –whereasGA-ParFnt approximates 300 s
as the lowest possible transfer timeof data-files against PSO-ParFnt
that approximates this value to be around 150 s. Such observation

J. Taheri et al. / Future Generation Computer Systems 37 (2014) 321–334 331
(a) Test-Cloud-1. (b) Test-Cloud-2.

(c) Test-Cloud-3.

Fig. 11. Pareto frontier of Test-Cloud-1/2/3 aligned with solutions found by scheduling algorithms.
can also be seen in other curves in Figs. 8–9, namely that PSO-
ParFnt’s estimation of the lowest possible transfer time of all data-
files is almost half that of GA-ParFnt.

The other observation relates to the distribution of chromo-
somes in GA-ParFnt and swarm particles in PSO-ParFnt as the ex-
ploring agents in finding accurate Pareto frontiers for these test
clouds. As can be seen in Figs. 7–9, GA-ParFnt’s chromosomes are
mostly populated over the ‘‘knee’’ section of each Pareto front,
while swarm particles of PSO-ParFnt are almost homogeneously
spread over all sections of these curves. This is the main reason
whyPSO-ParFntwasmore effective in exploring all sections of such
Pareto front and consequently produced superior results with al-
most half the data-file transfer time compared with GA-PatFnt.

6.3. Comparing PSO-ParFnt with scheduling algorithms

Although PSO-ParFnt’s overall aim is different than that of the
aforementioned scheduling algorithms, we improvised such com-
parison to reveal two facts: (1) the accuracy of the Pareto frontier
curves calculated by PSO-ParFnt, and (2) the efficiency of schedul-
ing algorithms. Finding any solution by these scheduling algo-
rithms as a single point in these plates below the calculated Pareto
front conflicts with the concept of a Pareto frontier and thus
devalues the PSO-ParFnt altogether. Furthermore, comparing the
distance between each scheduling algorithm to the calculated
Pareto front can also reveal the efficiency of each scheduling policy
in finding the optimal solution for the stated DAJS problem. Fig. 11
shows such solutions, aligned with the Pareto frontier curve found
by PSO-ParFnt for each test cloud.

Results in Fig. 11 reveal intriguing facts regarding the accuracy
of these techniques for different hybrid clouds. For Test-Cloud-1
in Fig. 11(a), solutions can be split into two groups: (1) MinTrans
and BestMap that produced optimal solutions very close to the
Pareto front, and (2) the rest of the scheduling algorithms with
identical execution time of jobs. The transfer time of the second
group is almost triple that of the first group. For Test-Cloud-2 in
Fig. 11(b), solutions of these scheduling algorithms are not forming
any group, but distributing along the transfer time axiswith almost
identical execution time of jobs. In this case, MinTrans and DIANA
produce optimal solutions, while BestMap slightly distances from
the Pareto frontier curve. For this test cloud, JDS-BC produces the
lowest quality solutionwith almost triple the transfer time of data-
files. For Test-Cloud-3 in Fig. 11(c), MinTrans still produced an
optimal solution; BestMap eliminates its distance with the Pareto
front and also produced an optimal solution, DIANA noticeably dis-
tances from the Pareto front with almost double the transfer time
of files, the rest produce answers with at least quadruple transfer
time of files. JDS-BC still produced the worse solution!

Further investigation into how each of these scheduling algo-
rithms produces its solution reveals invaluable facts for better de-
sign of scheduling algorithms for clouds. The most noteworthy
observation in all cases was the almost identical execution time of
jobs produced by all scheduling techniques regardless of the size
of cloud: almost triple the lowest possible execution time of jobs
foundbyPSO-ParFnt. This proves that single-element scheduling of
jobs/data-files (as the common factor among all these algorithms)
is probably not effective in hybrid clouds. We chose to refer to all
these algorithms ‘‘single-element’’ scheduling as they all try to find
the best computing element for executing a job or the best stor-
age element for replicating a data-file one-at-a-time during their
scheduling procedure. It is worth noting that this procedure differs
from dynamic scheduling where a made decision is irreversible.
These algorithms in fact, run a series of decisionmakingprocedures
where, in each step, the scheduling decision of their previous step
could be altered; however, they make such decisions for a single
element (job or data-file) at a time. Their transfer time of data-files
also greatly differs from one algorithm to another as well as across
different clouds.

BestMap always tries to find the best location of each job/data-
file one at a time. This procedure seems also to work for clouds
as it usually resulted in very close proximity to the Pareto fronts.
DIANA categorizes jobs/data-files; this policy seems to be inef-
fective where a large number of jobs/data-files exist in a system.
DIANA shows very similar inefficient results when deployed for
large grids [12,13,15–17]. JDS-BC schedules jobs/data-files based
on their similarities with the ones already scheduled/replicated.
Although this policy showed acceptable results for grid environ-
ments where more variety of computing/storage elements is gen-
erally available, it proved to be ineffective for clouds. The main
reason for this observation is most probably behind the differ-
ent topological nature of grids and clouds: grids generally consist
of more grid nodes with smaller number of computing elements
in each node versus clouds that generally consists of less num-
ber of nodes with much higher computing elements in each node.
For example, 1000 computing cores in a grid could be provided
by 20 grid nodes, each including 50 cores, whereas in clouds, it

332 J. Taheri et al. / Future Generation Computer Systems 37 (2014) 321–334
(a) Test-Cloud-1. (b) Test-Cloud-2.

(c) Test-Cloud-3.

Fig. 12. Pareto frontier of Test-Cloud-1/2/3 for relaxed replication policies.
could be provided by two clouds with 500 cores each. As can be
rationalized, in grids, the similarity between a job/data-file and
the ones already scheduled/replicated could provide crucial infor-
mation about many possible grid nodes and their possible perfor-
mance for the job/data-file in hand; whereas in clouds with only
very fewoptions, the deduced information as a result of these com-
parisons could be less informative as also shown in Fig. 11. FLOP
always tries to find the first computing element that can start exe-
cution of a job. This policy also seems inefficient for cloud environ-
mentwhere availability of cores seems less important as compared
with availability of the required data-files. MinExe also showed
very similar results to FLOP as they both aim to execute jobs as
fast as possible. Although MinExe and FLOP produced different so-
lutions for grids, they seem to produce identical results for clouds.
MinTrans always schedules jobs and replicates data-files to achieve
the lowest possible transfer time of files; this procedure also seems
to be very effective in clouds where the main bottleneck seems to
be the data transfer rather than the computation power.

6.4. Effect of data nature on the Pareto front

In this section we further study the relationship between the
nature of data and the Pareto frontier of a cloud. To this end, we
first relaxed the privacy policy for private-data in clouds and ran
four different replication policies for each cloud. Fig. 12 shows the
resulting Pareto frontier curves for these policies. In this figure, the
XY section of a PSO-ParFnt-XY represents its replication policy:
capital letters in parentheses mean the replication was allowed;
small letters mean the opposite. Table 5 explains all legends.
Among these four policies, only PSO-ParFnt-bp/(B)p policies are
feasible and hence are shown in darker colors in this figure; the
lighter color lines are only to investigate hypothetical cases where
private-data are also allowed to be replicated.

Fig. 12 shows that the size of the hybrid cloud has a great impact
on the shape and relative location of Pareto frontiers for these
four replication policies against each other. For Test-Cloud-1, as
expected, PSO-ParFnt-(B)(P) where both big and private data are
allowed to have replicas in the system, transfer time of all data-
files could be as low as 50 s. For PSO-ParFnt-b(P)/(B)p where only
one of these data-files classes is allowed to have replicas, allowing
replication of private data reduces the overall transfer time of data-
files almost twice that of only allowing replication of big-data. It is
also worth noting that the amount of data transfer time that can be
saved by allowing each of these two classes to replicate is almost
linear!; i.e., the lowest possible transfer time of data-file for PSO-
ParFnt-b(P), PSO-ParFnt-(B)p, and PSO-ParFnt-(B)(P) is almost 30 s,
60 s, and 85 s (≈30 s + 60 s) lower than that of PSO-ParFnt-bp,
respectively.

For larger hybrid clouds that consist of two or more individ-
ual hybrid clouds, a different phenomenon is observed. For Test-
Cloud-2, PSO-ParFnt-bp/b(P) achieved the lowest possible transfer
time; this shows that despite the general impression that copy-
ing/replicating big-data could help reduce the overall transfer time
of all data-files in a system, it might also worsen it! Here for exam-
ple, through such replication, some precious capacity of storage
nodes is probably inefficiently occupied and eventually resulted
in downloading more data-files in the system. For Test-Cloud-2,
Fig. 12(b) also shows that PSO-ParFnt-(B)p/(B)(P) are also fairly
close to each other, implying that replicating private-data – even if
allowed – has not much effect on the overall transfer time of the
system when big-data is allowed to be replicated: a policy that
most probably results in unproductive occupation of many valu-
able storage capacities. For Test-Cloud-3, these differences could
be more clearly observed. Here, for example, no replication pol-
icy (PSO-ParFnt-bp) for both data classes (big and private) results
in the lowest possible transfer time of files. It is very intriguing to
see that adding replication policies would actually increase – in-
stead of decrease – the overall transfer time of data-files; i.e., about
100 s and 200 s for PSO-ParFnt-b(P) and PSO-ParFnt-(B)p, respec-
tively. It is also noteworthy to see that allowing both policies at the
same time (PSO-ParFnt-(B)(P)) increases the lowest possible trans-
fer time of data-files to almost 700 s and not (100 s + 200 s)!

J. Taheri et al. / Future Generation Computer Systems 37 (2014) 321–334 333
Table 5
Legends for Fig. 12.

Legend Big-data replication
policy

Private-data replication
policy

PSO-ParFnt-bp Not-allowed Not-allowed
PSO-ParFnt-b(P) Not-allowed Allowed
PSO-ParFnt-(B)p Allowed Not-allowed
PSO-ParFnt-(B)(P) Allowed Allowed

Table 6
PSO-ParFnt’s execution time.

Cloud Time

Test-Cloud-1 0h:32min:25 s
Test-Cloud-2 1h:15min:45 s
Test-Cloud-3 2h:48min:12 s

Based on further analysis of the results in Fig. 12, we can also
hypothesize that allowing replication of Big-data could only be
effective in lowering the transfer time of all data-files when simple
hybrid clouds are implied. For larger/more complicated hybrid
cloudswheremore than one entity share resourceswith each other
as well as take advantage of public cloud facilities, replicating big-
data has an inverse effect for better scheduling of jobs/data-files.
On that note, we can also conclude that although replication of
private data – even if allowed – can reduce the overall transfer time
of systems, it could also slow it down for cooperative hybrid clouds
sometimes.

6.5. Execution time of PSO-ParFnt

PSO-ParFnt was developed as an extension to our already de-
signed simulator documented in [14]. For these test clouds, PSO-
ParFnt was run on a typical dual-core i7 desktop PC with 16 GB of
RAM. Table 6 shows the convergence time for each test cloud. It
is worth noting that the SchMng program we used to perform our
evaluation is written to only use one core of a PC – even if it has
many to offer. As a result, SchMng could not take full advantage of
the i7 technology and/or the large RAM provided to it. This table
also shows that our designed algorithm is able to find the Pareto
frontier curve even for our largest test cloud with 600 jobs, 672
data-files, and a hybrid system with 1920 cores in less than 3 h.

7. Conclusion and future work

This paper introduced a particle swarm optimization technique
(PSO-ParFnt) to explore the Pareto frontier curve of the execu-
tion time of a batch of jobs versus the transfer time of their re-
quired data-files in hybrid clouds. To this end, we first modified
the generic PSO technique to have collections of targeted swarms
instead of a generic large swarm as usually used in PSO-based ap-
proaches. Three test clouds were designed to gauge the efficiency
of PSO-ParFnt through comparing it with other techniques. Results
were intriguing and revealed invaluable insights into the complex
DAJS problem for hybrid clouds. In this study,weparticularly found
that, despite general impressions that replication of data-files al-
ways reduces the overall transfer time of files in a system, it some-
timesworsens it;mainly because itmaywaste precious capacity of
storages nodes sometimes. We also observed that the scheduling
dynamic of individual hybrid clouds differs from those consisting
of several hybrid clouds shared by different entities.

Our future work will focus on the following two directions.
Firstly, we wish to modify the developed simulator (SchMng) to
leverage parallelization techniques and converge to its solutions
faster. Secondly, using direct observation of this study, we will de-
sign exclusive cloud schedulers for hybrid clouds and experimen-
tally test them using the private cloud at our university.
References

[1] D. Agrawal, S. Das, A.E. Abbadi, Big data and cloud computing: current state
and future opportunities, in: Proceedings of the 14th International Conference
on Extending Database Technology, Uppsala, Sweden, 2011, pp. 530–533.

[2] Microsoft. (Visited 2013). http://www.windowsazure.com/.
[3] Amazon. (Visited 2013). www.aws.amazon.com/ec2/.
[4] myNoSQL. (Visited 2013). http://nosql.mypopescu.com/post/6361838342/

bigdata-volume-velocity-variability-variety.
[5] A. Delgado Peris, J. Hernandez, E. Huedo, I.M. Llorente, Data location-aware

job scheduling in the grid. Application to the GridWay metascheduler, J. Phys.
Conf. Ser. 219 (2010) 062043.

[6] J. Kołodziej, S. Khan, Data scheduling in data grids and data centers: a short
taxonomy of problems and intelligent resolution techniques, in: N.-T. Nguyen,
J. Kołodziej, T. Burczyński, M. Biba (Eds.), Transactions on Computational
Collective Intelligence X. vol. 7776, Springer, Berlin, Heidelberg, 2013,
pp. 103–119.

[7] C. Augonnet, J. Clet-Ortega, S. Thibault, R. Namyst, Data-aware task schedul-
ing on multi-accelerator based platforms, in: 2010 IEEE 16th International
Conference on Parallel and Distributed Systems, ICPADS, 2010, pp. 291–298.

[8] G. Lee, B.-G. Chun, H. Katz, Heterogeneity-aware resource allocation and
scheduling in the cloud, in: Presented at the Proceedings of the 3rd USENIX
Conference on Hot Topics in Cloud Computing, Portland, OR, 2011.

[9] T. Kosar, Data-aware distributed batch scheduling, in: Handbook of Research
on Grid Technologies and Utility Computing: Concepts for Managing Large-
Scale Applications, IGI Global, 2009, pp. 41–48.

[10] K. Hasham, A.D. Peris, A. Anjum, D. Evans, S. Gowdy, J.M. Hernandez, E. Huedo,
D. Hufnagel, F. Van Lingen, R. McClatchey, S. Metson, CMSworkflow execution
using intelligent job scheduling and data access strategies, IEEE Trans. Nucl.
Sci. 58 (2011) 1221–1232.

[11] J. Kolodziej, M. Szmajduch, S.U. Khan, L. Wang, D. Chen, Genetic-based
solutions for independent batch scheduling in data grids, in: European Council
for Modeling and Simulation, ECMS 2013, 2013.

[12] J. Taheri, A.Y. Zomaya, P. Bouvry, S.U. Khan, Hopfield neural network for
simultaneous job scheduling and data replication in grids, Future Gener.
Comput. Syst. 29 (2013) 1885–1900.

[13] J. Taheri, Y. Choon Lee, A.Y. Zomaya, H.J. Siegel, A bee colony based
optimization approach for simultaneous job scheduling and data replication
in grid environments, Comput. Oper. Res. 40 (2013) 1564–1578.

[14] J. Taheri, A. Zomaya, S.U. Khan, Grid simulation tools for job scheduling and
datafile replication, in: Samee U. Khan, A.Y. Zomaya, L. Wang (Eds.), Scalable
Computing and Communications: Theory and Practice, JohnWiley & Sons, Inc.,
Hoboken, New Jersey, 2013.

[15] J. Taheri, A.Y. Zomaya, A Pareto frontier for optimizing data transfer and job ex-
ecution in grids, in: Presented at the 2012 IEEE 26th International Parallel and
Distributed Processing SymposiumWorkshops & Ph.D. Forum, IPDPSW, 2012.

[16] J. Taheri, A.Y. Zomaya, S.U. Khan, Genetic algorithm in finding Pareto frontier
of optimizing data transfer versus job execution in grids, in: Concurrency and
Computation: Practice and Experience, 2012, pp. n/a–n/a.

[17] J. Taheri, Y.C. Lee, A.Y. Zomaya, Simultaneous job and data allocation in grid
environments, The University of Sydney, Sydney, Australia, TR 6712011.

[18] Montage. (visited 2013). http://montage.ipac.caltech.edu/.
[19] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B.P. Berman, P. Maech-

ling, Scientific workflow applications on Amazon EC2, in: 2009 5th IEEE
International Conference on E-Science Workshops, 2009, pp. 59–66.

[20] V. Nefedova, R. Jacob, I. Foster, Z. Liu, Y. Liu, E. Deelman, G. Mehta, M.-H. Su,
K. Vahi, Automating climate science: large ensemble simulations on the tera-
grid with the GriPhyN virtual data system, in: Presented at the Proceedings of
the Second IEEE International Conference on E-Science and Grid Computing,
2006.

[21] MIKE2.0. (Visited 2013). Big Data Definition (http://mike2.openmethodology.
org/wiki/Big_Data_Definition).

[22] T.White, Hadoop: The Definitive Guide, Original edition, O’Reilly Media, 2009.
[23] ZDNET. (Visited 2013). http://www.zdnet.com/blog/virtualization/what-is-

big-data/1708.
[24] The-Economist. (Visited 2013). http://www.economist.com/node/15557443?

story_id=15557443.
[25] T. Segaran, J. Hammerbacher, Beautiful Data, O’Reilly Media, Inc., 2009.
[26] IBM. (Visited 2013). What is big data? http://www-01.ibm.com/software/

data/bigdata/.
[27] GREENPLUM. (Visited 2013). http://www.greenplum.com/.
[28] Wikibon. (Visited 2013). http://wikibon.org/wiki/v/Enterprise_Big-data.
[29] FUJITSU, Personal data on the cloud: a global survey of customer atti-

tudes (http://www.fujitsu.com/global/news/publications/dataprivacy.html),
Visited 2013.

[30] W.K. Hon, C. Millard, I. Walden, The problem of ‘personal data’ in cloud
computing:what information is regulated?—the cloud of unknowing, Int. Data
Priv. Law 1 (2011) 211–228.

[31] R.-S. Chang, J.-S. Chang, S.-Y. Lin, Job scheduling and data replication on data
grids, Future Gener. Comput. Syst. 23 (2007) 846–860.

[32] A. Anjum, R. McClatchey, A. Ali, I. Willers, Bulk scheduling with the DIANA
scheduler, IEEE Trans. Nucl. Sci. 53 (2006) 3818–3829.

[33] R. McClatchey, A. Anjum, H. Stockinger, A. Ali, I. Willers, M. Thomas, Data
Intensive and Network Aware (DIANA) grid scheduling, J. Grid Comput. 5
(2007) 43–64.

[34] GILDA. (Visited 2013). https://gilda.ct.infn.it/.

http://www.windowsazure.com/
http://www.aws.amazon.com/ec2/
http://nosql.mypopescu.com/post/6361838342/bigdata-volume-velocity-variability-variety
http://nosql.mypopescu.com/post/6361838342/bigdata-volume-velocity-variability-variety
http://nosql.mypopescu.com/post/6361838342/bigdata-volume-velocity-variability-variety
http://nosql.mypopescu.com/post/6361838342/bigdata-volume-velocity-variability-variety
http://nosql.mypopescu.com/post/6361838342/bigdata-volume-velocity-variability-variety
http://nosql.mypopescu.com/post/6361838342/bigdata-volume-velocity-variability-variety
http://nosql.mypopescu.com/post/6361838342/bigdata-volume-velocity-variability-variety
http://refhub.elsevier.com/S0167-739X(13)00284-7/sbref5
http://refhub.elsevier.com/S0167-739X(13)00284-7/sbref6
http://refhub.elsevier.com/S0167-739X(13)00284-7/sbref9
http://refhub.elsevier.com/S0167-739X(13)00284-7/sbref10
http://refhub.elsevier.com/S0167-739X(13)00284-7/sbref11
http://refhub.elsevier.com/S0167-739X(13)00284-7/sbref12
http://refhub.elsevier.com/S0167-739X(13)00284-7/sbref13
http://refhub.elsevier.com/S0167-739X(13)00284-7/sbref14
http://refhub.elsevier.com/S0167-739X(13)00284-7/sbref16
http://montage.ipac.caltech.edu/
http://mike2.openmethodology.org/wiki/Big_Data_Definition
http://mike2.openmethodology.org/wiki/Big_Data_Definition
http://mike2.openmethodology.org/wiki/Big_Data_Definition
http://mike2.openmethodology.org/wiki/Big_Data_Definition
http://mike2.openmethodology.org/wiki/Big_Data_Definition
http://mike2.openmethodology.org/wiki/Big_Data_Definition
http://mike2.openmethodology.org/wiki/Big_Data_Definition
http://mike2.openmethodology.org/wiki/Big_Data_Definition
http://refhub.elsevier.com/S0167-739X(13)00284-7/sbref22
http://www.zdnet.com/blog/virtualization/what-is-big-data/1708
http://www.zdnet.com/blog/virtualization/what-is-big-data/1708
http://www.zdnet.com/blog/virtualization/what-is-big-data/1708
http://www.economist.com/node/15557443?story_id=15557443
http://www.economist.com/node/15557443?story_id=15557443
http://www.economist.com/node/15557443?story_id=15557443
http://www.economist.com/node/15557443?story_id=15557443
http://www.economist.com/node/15557443?story_id=15557443
http://www.economist.com/node/15557443?story_id=15557443
http://www.economist.com/node/15557443?story_id=15557443
http://www.economist.com/node/15557443?story_id=15557443
http://refhub.elsevier.com/S0167-739X(13)00284-7/sbref25
http://www-01.ibm.com/software/data/bigdata/
http://www-01.ibm.com/software/data/bigdata/
http://www-01.ibm.com/software/data/bigdata/
http://www-01.ibm.com/software/data/bigdata/
http://www-01.ibm.com/software/data/bigdata/
http://www-01.ibm.com/software/data/bigdata/
http://www-01.ibm.com/software/data/bigdata/
http://www.greenplum.com/
http://wikibon.org/wiki/v/Enterprise_Big-data
http://www.fujitsu.com/global/news/publications/dataprivacy.html
http://refhub.elsevier.com/S0167-739X(13)00284-7/sbref30
http://refhub.elsevier.com/S0167-739X(13)00284-7/sbref31
http://refhub.elsevier.com/S0167-739X(13)00284-7/sbref32
http://refhub.elsevier.com/S0167-739X(13)00284-7/sbref33
https://gilda.ct.infn.it/

334 J. Taheri et al. / Future Generation Computer Systems 37 (2014) 321–334
[35] CERN. (Visited 2013). Compact Muon Solenoid (CMS) http://public.web.cern.
ch/public/en/lhc/CMS-en.html.

[36] P. Sang-Min, K. Jair-Hoom, Chameleon: a resource scheduler in a data grid
environment, in: Proceedings of 3rd IEEE International Symposium on Cluster
Computing and the Grid, CCGRID’03, 2003, pp. 258–265.

[37] W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger, K. Stockinger, Data
management in an international data grid project, in: R. Buyya,M. Baker (Eds.),
Grid Computing, vol. 1971, Springer-Verlag, New York, 2000, pp. 77–90.

[38] S. Hongzhang, L. Oliker, R. Biswas, Job superscheduler architecture and perfor-
mance in computational grid environments, in: Proceedings of the ACM/IEEE
SC2003 Conference, SC’03, 2003, pp. 44–58.

[39] J. Blondin, Particle swarm optimization: a tutorial, (www.cs.armstrong.edu/
saad/csci8100/pso_tutorial.pdf), 2009.

[40] X.C. Liu, X.G. Qiu, B. Chen, Q. He, K.D. Huang, Scheduling parallel discrete event
simulation jobs in the cloud, in: IET Conference Publications, vol. 2012, 2012,
pp. 72–72.

[41] K. Ranganathan, I. Foster, Decoupling computation and data scheduling in
distributed data-intensive applications, in: Proceedings of 11th IEEE Inter-
national Symposium on High Performance Distributed Computing, HPDC’02,
2002, pp. 352–358.

[42] M. Tang, B.-S. Lee, X. Tang, C.-K. Yeo, The impact of data replication on job
scheduling performance in the data grid, Future Gener. Comput. Syst. 22
(2006) 254–268.

[43] S. Abdi, S. Mohamadi, Two level job scheduling and data replication in data
grid, Int. J. Grid Comput. Appl. 1 (2010) 23–37.

Javid Taheri received his Bachelor and Masters of Elec-
trical Engineering from Sharif University of Technology,
Tehran, Iran in 1998 and 2000, respectively. He received
his Ph.D. in the field of Mobile Computing from the School
of Information Technologies (SIT) in the University of Syd-
ney, Australia. Since 2006, he has been actively working
in several fields, including networking, bioinformatics, and
parallel computing. He is currently working as a Postdoc-
toral research fellow at SIT/USyd in designing scheduling
algorithms for cloud and green computing.

Albert Y. Zomaya is currently the Chair Professor of High
Performance Computing & Networking in the School of
Information Technologies, The University of Sydney. He
is also the Director of the Centre for Distributed and High
Performance Computing which was established in late
2009. Professor Zomaya is the author/co-author of seven
books, more than 450 papers, and the editor of 14 books
and 20 conference proceedings. He is the Editor in Chief
of the IEEE Transactions on Computers and serves as an
associate editor for 20 leading journals, such as, the ACM
Computing Surveys, IEEE Transactions on Cloud Computing,

and Journal of Parallel and Distributed Computing. Professor Zomaya served as
General and Program Chair for more than 60 events and served on the committees
of more than 600 ACM and IEEE conferences. He delivered more than 130 keynote
addresses, invited seminars and media briefings. Professor Zomaya is the recipient
of the IEEE Technical Committee on Parallel Processing Outstanding Service Award and
the IEEE Technical Committee on Scalable Computing Medal for Excellence in Scalable
Computing, both in 2011.He is a Chartered Engineer, a Fellowof AAAS, IEEE, IET (UK).
Professor Zomaya’s research interests are in the areas of parallel and distributed
computing and complex systems.

Howard Jay (‘‘H.J.’’) Siegel has been the Abell Endowed
Chair Distinguished Professor of Electrical and Computer
Engineering at Colorado State University (CSU) since 2001,
where he is also a Professor of Computer Science. From
2002 to 2013, he was the first Director of the CSU
Information Science and Technology Center (ISTeC), a
university-wide organization for promoting, facilitating,
and enhancing CSU’s research, education, and outreach
activities pertaining to the design and innovative appli-
cation of computer, communication, and information sys-
tems. From 1976 to 2001, he was a professor at Purdue

University. Prof. Siegel is a Fellow of the IEEE and a Fellow of the ACM. He received
a B.S. degree in electrical engineering and a B.S. degree in management from the
Massachusetts Institute of Technology (MIT), and theM.A., M.S.E., and Ph.D. degrees
from the Department of Electrical Engineering and Computer Science at Princeton
University. He has co-authored over 400 technical papers. His research interests
include robust computing systems, resource management in computing systems,
energy-aware computing, heterogeneous parallel and distributed computing and
communications, parallel algorithms, and parallel machine interconnection net-
works. He was a Coeditor-in-Chief of the Journal of Parallel and Distributed Com-
puting, and was on the Editorial Boards of both the IEEE Transactions on Parallel and
Distributed Systems and the IEEE Transactions on Computers. He has been an inter-
national keynote speaker and tutorial lecturer, and has consulted for industry and
government. For more information, please see www.engr.colostate.edu/~hj.

Zahir Tari is a full professor in Distributed Systems
at RMIT University (Australia). He received a bachelor
degree in Mathematics from University of Algiers (USTHB,
Algeria) in 1984, MSc in Operational Research from
University of Grenoble (France) in 1985 and Ph.D. degree
in Computer Science from University of Grenoble (France)
in 1989. Tari’s expertise is in the areas of system
performance (e.g. Web servers, P2P, Cloud) and system
security (e.g. SCADA security). He is the co-author of
six books (John Wiley, Springer) and he has edited over
twenty five conference proceedings.He has been Program

Committee chair of several international conferences. Prof Tari is also a recipient of
over 5M$in funding from theARC and various Australian software industries.Prof
Tari is an associate editor of the IEEE Transactions on Computers (TC) and IEEE
Transactions on Parallel and Distributed Systems (TPDS).

http://public.web.cern.ch/public/en/lhc/CMS-en.html
http://public.web.cern.ch/public/en/lhc/CMS-en.html
http://public.web.cern.ch/public/en/lhc/CMS-en.html
http://public.web.cern.ch/public/en/lhc/CMS-en.html
http://public.web.cern.ch/public/en/lhc/CMS-en.html
http://public.web.cern.ch/public/en/lhc/CMS-en.html
http://public.web.cern.ch/public/en/lhc/CMS-en.html
http://public.web.cern.ch/public/en/lhc/CMS-en.html
http://public.web.cern.ch/public/en/lhc/CMS-en.html
http://public.web.cern.ch/public/en/lhc/CMS-en.html
http://refhub.elsevier.com/S0167-739X(13)00284-7/sbref37
www.cs.armstrong.edu/saad/csci8100/pso_tutorial.pdf
www.cs.armstrong.edu/saad/csci8100/pso_tutorial.pdf
www.cs.armstrong.edu/saad/csci8100/pso_tutorial.pdf
www.cs.armstrong.edu/saad/csci8100/pso_tutorial.pdf
www.cs.armstrong.edu/saad/csci8100/pso_tutorial.pdf
www.cs.armstrong.edu/saad/csci8100/pso_tutorial.pdf
www.cs.armstrong.edu/saad/csci8100/pso_tutorial.pdf
www.cs.armstrong.edu/saad/csci8100/pso_tutorial.pdf
www.cs.armstrong.edu/saad/csci8100/pso_tutorial.pdf
http://refhub.elsevier.com/S0167-739X(13)00284-7/sbref40
http://refhub.elsevier.com/S0167-739X(13)00284-7/sbref42
http://refhub.elsevier.com/S0167-739X(13)00284-7/sbref43
http://www.engr.colostate.edu/~hj

	Pareto frontier for job execution and data transfer time in hybrid clouds
	Introduction
	Related work
	Preliminaries
	Framework
	Problem statement
	Particle swarm optimization
	Pareto frontier curve

	PSO for finding DAJS's Pareto front
	Overview
	Generate random particles
	Swarms
	PSO-ParFnt optimization cycle

	Simulation results
	Algorithm comparison
	Test clouds

	Discussion and analysis
	The shape of Pareto front for hybrid clouds
	Comparing PSO-ParFnt with GA-ParFnt
	Comparing PSO-ParFnt with scheduling algorithms
	Effect of data nature on the Pareto front
	Execution time of PSO-ParFnt

	Conclusion and future work
	References

