
FAULT LOCATION IN DISTRIBUTED CONTROL
INTERCONNECTION NETWORKS

Nathaniel J. Davis IV
William Tsun-Yuk Hsu

Howard Jay Siegel

PASM Parallel Processing Laboratory
School of Electrical Engineering

Purdue University
West Lafayette, Indiana 47907

Abstract — One class of networks suitable for use in parallel
processing systems is the multistage cube network. Unfor-
tunately, the cube network is not fault tolerant and any single
failure within the network can prevent some source-
destination communications. Cube networks with "extra"
stages can be constructed that permit faults to be bypassed —
providing the exact location of the fault is known. This paper
focuses on fault location procedures suitable for use in net-
works that employ distributed routing control through the use
of routing tags and message transmission protocols. Faults
occurring in the data lines can corrupt message routing tags
transmitted over them and thereby cause misrouting of mes-
sages. Protocol lines (used in handshaking between network
sources and destinations), if faulty, can prevent a message
path from being established or can cause the path to "lock-
up" once transmission of data has begun. These faults have
more pronounced effects on the network performance than
faults previously considered for centralized routing control
systems. The fault location procedures presented form a logi-
cal superset to those of the centralized control systems (where
message routing is dictated by the actions of a global control
unit) and can be adapted for use in both circuit and packet
switching networks.

1. Introduction
With the advent of very large scale integrated circuit

technology, relatively inexpensive hardware systems and sub-
systems are now readily available. The result has been the
greater use of multiple-processor system designs that employ
processing elements, operating in parallel, to achieve high lev-
els of computational power. The ability of these parallel sys-
tems to continue operations, despite the occurrence of faults,
is of critical importance.

One class of interconnection networks suitable for use in
parallel processing systems is the multistage cube network.
This class includes topologically equivalent networks such as
the baseline [1], the indirect binary n-cube [2], the generalized
cube [3], the omega [4], the STARAN flip [5], and the SW-
banyan (S=F=2) [6j. Differences in the networks are due to
the control schemes, the inclusion of the broadcast capability,
and the numbering of the input and the output ports [7]. The
generalized cube will be used as a model of this network class.
The cube network is not fault tolerant. Any single point
failure in the network will prevent some source-destination
pair of functional subsystems from communicating.

Fault tolerance can be introduced into the network
through the use of one or more "extra" stages of switches [8, 9,
10]. The extra stages create redundant paths between sources
and destinations that can be used to route communications
around faults within the network. Effective use of the redun-
dant paths in the network requires that each source know the
exact location of any network faults. In most cases, the loca-
tion of the faults can be determined explicitly through the use
of "off-line" test procedures.

Previous work in fault location has concentrated on net-
works operating under a centralized control scheme [11, 12,
This research was supported by the Rome Air Development Center, under
contract number F30602-83-K-0118.

13). Systems such as PASM [14, IS] and Ultracomputer [16]
implement the network using a distributed control methodol-
ogy. Network faults in a distributed system, especially faults
occurring in the interconnecting links within the network, can
cause much more severe errors in network operations than
could a similar fault in a centralized control system (a result of
message misrouting due to the corruption of data tags). In
addition, faulty protocol lines (used in handshaking between
network sources and destinations) can prevent a path from
being established or can cause the path to "lock-up" once the
transmission of data has begun. In this paper, the fault loca-
tion procedures necessary for distributed control networks are
considered. These procedures form a logical superset to those
of the centralized systems.

In Section 2, the system and network models are defined
and the fault model is presented. Section 3 overviews the cen-
tralized control fault location procedures of [11]. An outline of
the testing procedure for use in a distributed control network
is presented in Section 4. Potential network faults, their ensu-
ing effects on the network, and the testing procedure outputs
they would produce are presented in Section 5. Section 6
discusses fault location techniques based on the output
responses of the testing procedures. Section 7 summarizes
these results.

2. The interconnection network model
Consider a parallel processing system consisting of N

functional subsystems, where N=2". The subsystems will be
assumed to be processing elements (PEs), processors paired
with their own local memories. The interconnection network
will have N inputs (sources) and N outputs (destinations). PE
i will be connected to network input i and output i. The gen-
eralized cube network [3, 7] consists of n stages with each stage
being composed of N/2 2-by-2 interchange boxes. Interchange
boxes in stage i pair I/O lines with link labels that differ only
in the i-th bit position. The same labeling is used for both the
input and output lines connected to an interchange box. A
generalized cube network is shown in Figure 1, with N=8,
Each data path through the network will be m-bits wide,
where m is a function of the system hardware used. Circuit
switched data transmission is assumed, where a complete path
linking the source and destination PEs must be established
before the actual data transfer can begin.

Figure 1. A generalized cube network, with N=8, and the
allowable box settings.

0190-3918/85/0000/0403$01.00 © 1985 IEEE
403

Two different approaches can be used to govern the
manner in which connections are made in the network - cen-
tralized routing control or distributed routing control. In cen-
tralized control, a global network controller is used to mediate
between message requests and establish the desired network
connections. In contrast, distributed control removes this
serial bottleneck by allowing the individual interchange boxes
to establish their own connections based on the use of routing
tags associated with each message.

Two functionally equivalent forms of routing tags are the
destination address tag [4] and the excluiive or tag [3], Distri-
buted routing control using destination address routing tags is
assumed for the rest of this paper. The routing tag is equal to
the binary expansion of the destination address. Interchange
boxes in stage i examine bit i of the routing tags for the mes-
sages at its input ports and makes the switching connections
accordingly. A "0" in bit i of the routing tag indicates a con-
nection to the upper output port is desired, while a "1" indi-
cates connection to the lower output port. Conflicting connec-
tion requests can be resolved using conflict resolution schemes
such as those discussed in [17]. A message will have the fol-
lowing format. The first word of the message will contain the
message routing tag. The remaining words constitute the
actual data that is to be transmitted.

Message transmission in the network is controlled
through the use of two types of asynchronous protocols. The
first is a message request/grant protocol that is used in the
establishment of a path connecting source and destination
PEs. The message request is the combination of the routing
tag and a message request signal, REQ. The second type of
asynchronous control is the handshaking signals generated by
the input/output ports interfacing the PEs to the network.
Data is transferred between the two ports using an asynchro-
nous "data available — data received" protocol. The actual
data transmission will not begin until the message grant signal
and the data received signal for the routing tag are returned to
the source PE — indicating that a complete path has been
established to the desired destination.

Figure 2 shows representative block diagrams for the
source-to-network and the network-to-destination interface
ports [18]. Parity generation and checking logic can be used to

Figure 2. Block diagram representations for PE-network
interfaces, (a) Source PE to network, (b) Network to destina-
tion PE.

Figure 3. Block diagram of an interchange box.

validate the data received at the output port. For the first
word of a transmission (the routing tag) a comparison is also
made to the known destination address of the port to validate
the routing of the message path. Correct parity and routing
results in both the message grant and the data received signals
being returned to the source, disabling the routing and data
timers. Thus, in normal operations, blockages and potential
faults in the network are detected when a routing and/or data
timer does not detect the anticipated return protocol signals in
a prescribed time period (non-acknowledge signals could also
be used in place of the timers). Detection of a possible fault
will initiate the execution of the fault location diagnostic
routine.

A block diagram of a representative interchange box is
shown in Figure 3. The box consists of a 2-by-2 switching ele-
ment plus the necessary control hardware. The actual width
of the information path through the box will be m bits plus
one bit for each of the protocol signals and parity bits. The
actions of the control unit are determined by the routing infor-
mation present at its input ports, as stated earlier. This infor-
mation is "pulled off" of the data path, as depicted in the
figure.

A fault within the interconnection network can occur in
either an interchange box or in one of the interconnection
links within the information paths. All faults will be assumed
to be non-transient. As delineated in [11], there are 16 possi-
ble ways of connecting the inputs of an interchange box to its
outputs, as shown in Table 1. Only the straight and the
exchange connection patterns, labeled Sj0 and S6, are con-
sidered to be valid connections (broadcast states S3 and S12 are
not considered valid states for this model) [11]. A faulty box
can become stuck in one particular invalid state, regardless of
the routing information at its input ports, or it can respond
incorrectly (but consistently) to the routing information. For

Table 1. Sixteen possible settings for a 2-by-2 interchange
box.

404

an example of the later situation, it is possible for a box to
respond correctly when the straight state (Slo) is requested,
but incorrectly when the exchange state (S6) is requested.
Furthermore, a faulty box may enter one incorrect state (say,
Sj j) in response to a straight state request, and enter a
different incorrect state (say, S12) in response to an exchange
state request.

A link fault occurs in an information line when it
becomes stuck at either logical "0° or "1 , " regardless of the
actual input signal that is applied to it. In centralized control,
link faults only occur on lines used to carry data and, as a
result, cannot affect message routing. This is a subset of the
possible faults when distributed control is used, where faults
can occur in either the data lines themselves or the lines carry-
ing the protocol and parity bit signals. As will be seen in Sec-
tion 4, link faults in distributed control systems can create a
large number of network errors due to the corruption of rout-
ing tags as they are transmitted over links or the failure of the
message handling protocol procedures.

3. Fault location in centralized
control networks

In [11], Feng and Wu present a comprehensive method
for detecting and locating both link and box faults in a cen-
tralized control interconnection network. A two-phase testing
strategy is developed to detect faults within the network. The
testing of the network is performed in an SIMD (synchronous)
operating mode under the direction of a global system control
unit. This procedure is illustrated in Figure 4 and described
below.

In phase 1, all interchange boxes are set to the straight
connection. A logical "0" and a logical " 1 " are transmitted
over each data link through the network. The transmitted
data is arranged at the input of the network in such a manner
as to insure that, without faults, data at the two inputs of any
interchange box is complementary. If the two data items are
the same, an error can be assumed to have occurred in a previ-
ous stage that caused one of the items to change value. By
comparing the received output words (at the destinations)
with the known correct output specified by the system control
unit, the presence of a fault can be readily determined. In
phase 2, the process is repeated with the interchange boxes set
to exchange. This two-phase process requires the transmission

Figure 4. Example network response to test messages in a
faulty environment, (a) Link fault detected by intersection of
faulty paths, (b) Box fault, erroneous state S3 in phase 2.

of exactly four data words and has been shown to detect all
single faults within the network.

The two-phase test also provides the necessary informa-
tion to specify the location of any link fault. The location can
be obtained by comparing the paths on which detected errors
occurred. The paths intersect in exactly one link, identifying
the fault location. Interchange box faults can cause one or
more errors to be detected at the destination ports. This is a
result of the potential misrouting of messages by a faulty box
and the ensuing blockages that could then occur (a properly
functioning network will not have blockages in either of the
two test phases). A binary tree search algorithm can be used
to isolate the box faults in no more than
max(12, 6 + 2flog(logN)l) tests. Complete details of the test-
ing procedures can be found in [11].

4. Network fault detection in
distributed control systems

The set of possible fault patterns in a distributed control
network is more complex than that of a centralized control
network. This is because the routing tags which direct the
path establishment through the network and the data
transmission protocol lines are carried over the same informa-
tion paths as the data. For example, a link fault may produce
an erroneous routing tag which, in turn, may cause the mes-
sage to be misrouted — an error that is not possible in a cen-
tralized control system.

The procedures and methodology described here for
detecting and locating faults in a distributed control network
are based on the network model of Section 2 but can be
adapted for other cube-type interconnection networks and for
different formats of the data path and protocol lines. Specific
examples will refer to a generalized cube network, with 1Θ PEs
and a 16-bit data path. The routing tag word will contain the
four-bit destination address in bits 3 to 0 of the word. The
other bits in the word (bits 15 to 4) are not used. There are
two parity bits, a high order bit for bits 15 to 8, and a low
order bit for bits 7 to 0 of the 16-bit word. This format is
similar to the routing tag format used in the PASM prototype
network [18].

The fundamental testing procedure remains similar to
that described in [111. To check for link stuck-at faults, each
set of links carrying data or parity bits must have two bit-wise
complementary words transmitted over it. Any link that is
stuck at logical " 1 " or "0" will cause a fault message to be gen-
erated. The links carrying the protocol signals for distributed
routing control are not considered to be fault-free. Procedures
for isolating these types of faults will be discussed in Section 5.
To test for faults in the interchange boxes, we shall attempt to
set each box to the valid states Sl o and S5 (straight and
exchange). Faults will be detected by examining the test pat-
terns which propagate through the network and are received
by the destination PEs and combining this information with
the blockage/timeout information available from the source
PEs.

The basic testing procedure is divided into two phases. In
each phase we shall attempt to detect if there are one or more
faulty paths and, through their intersection, isolate the faulty
component. In phase 1, all boxes are preset to the "straight"
setting through the actions of routing tags submitted to the
network by the source PEs. Call the process of sending rout-
ing tags through the network to preset all paths the setup.

The setup in phase 1 involves several steps. Each source
PE sends its own address as the destination address tag. In a
generalized cube network, this is equivalent to having the PEs
request that all the interchange boxes be set to straight (set-
ting Slo). All unused bits in the routing tag data word are set
to "0" for convenience.

If some block or routing error is detected (via a timeout
or other means), all paths are immediately dropped (by negat-
ing REQ) and phase 2 of the test is begun. If, however, no
block or routing error occurred, each PE will begin the data
transfer testing sub phase of phase 1. The first data word to be

405

transmitted will be the bit-wise complement of the routing
word If again no error is detected, a second data word, with
different parity, is sent through the network to ensure the
links carrying the parity bits have been tested properly. This
is necessary because, for a data path with an even number of
bits (as assumed here), the parity bit values will remain the
same for the destination tag in setup and the first data word.
As an example, consider a binary word with an even number
of bits. There are either an even number of both "l"s and
"0"s or an odd number of both "l"s and "0"s. Complement-
ing such a word does not change its parity bit. Hence the
routing tag word has the same parity as the first data word.
The second data word is formed by complementing bits 0 and
8 of the first data word, i.e., the low order bit from each byte.

As an example of this phase of the testing procedure,
consider a 16 PE system. PE 6 would have a phase 1 routing
tag word of 0000000000000110 with parity bits 00. The first
data word would be 1111111111111001 with parity bits 00.
The second data word would be 1111111011111000 with par-
ity bits 11. Every data and parity link in the information path
will have had both logical "0" and logical "1" signal levels
transmitted over it.

In phase S, the setup procedure involves having each
source PE send the complement of its address as the destina-
tion tag. This is equivalent to requesting that all interchange
boxes be set to exchange (setting S5). As in phase 1, all
unused bits are set to "0" for convenience. If no block or rout-
ing error occurs in the setup subphase, the processing elements
will send as the first data word the bitwise complement of the
routing word.

If no error is detected with the transmission of the first
data word, an extra data word with different parity is sent
through the network to ensure that the links carrying the par-
ity bits have been properly tested. This second data word is
formed in the same way as that in phase 1, i.e., by comple-
menting bits 0 and 8 of the first data word. Continuing with
the example from phase 1, PE 6 would have a phase 2 routing
tag word of 0000000000001001 with parity bits 00. The first
data word would be 1111111111110110 with parity bits 00.
The second data word would be 1111111011110111 with par-
ity bits 11.

Thus, in each test phase, the word received by a destina-
tion PE during setup should be all "0"s except for the low
order bits, which will contain the destination's address. The
first data word should be all "l"s except for the low order bits,
which will contain the bitwise complement of the destination's
address. The second data word received should be the same as
the first data word except bits 0 and 8 and the parity bits are
complemented. The destination's network interface verifies
the message routing during setup (by ex am ing the destination
address portion of the received setup word) and the parity for
every received word. It, in turn, generates the return protocol
signals for the source PE. The effects of a fault occurring in
the network will depend on its exact location. These effects
are discussed in detail in the next section.

5. The effects of network faults
Faults occurring in a network that uses distributed con-

trol can cause much more serious operational errors than in a
comparable centralized control network. Faults and their con-
comitant error patterns are discussed below for both link and
box faults.

6.1 Error patterns for link stuck faults
Two types of link faults can occur: faults in the data

path or parity bit links, or faults in the links which carry the
message protocol signals. Table 2 is a complete listing of the
errors caused by each type of link fault. In the table, columns
"one phase" and "other phase" record the received error sig-
nals (if any) and do not necessarily correspond to the phase 1 -
phase 2 testing sequence.

Table 2. Fault patterns for link stuck faults.

5.1.1 Type 1: Faults on the data path and parity
bits. Link faults on the data path and link faults on the par-
ity bits generate very similar types of fault patterns, and can
be grouped together. Functionally, Type 1 faults can be
divided into four cases:
• Case 1: Fault in an unused bit. This is a bit which is not
used in the routing word as a bit of the destination tag. No
matter how the unused bits are scrambled, messages will still
be routed to their correct destinations. Since all unused bits
are set to "0" in setup, if a link carrying one of these bits is
stuck at "1 , " there will only be one parity error in each test
phase (Type 1 Case la of Table 2). If a link carrying the bit is
stuck at "0," no error will occur during setup. When the first
data word is sent through the network, all unused bits are set
to " 1 . " Parity checks will then result in one error in each
phase (Type 1 Case lb of Table 2). Since unused bits are set
to specific values, this case is easily recognized by examining
the test words received at each destination PE.
• Case 2: Destination bit which does not affect routing. This
refers to a bit in a word which has already been examined for
routing purposes before it became scrambled by a stuck link.
For example, if a link carrying bit 3 of the destination tag has
a stuck-at fault between stage 1 and stage 0, the message rout-
ing word will not be affected (for routing purposes, bit 3 would
have already been examined at stage 3). This type of fault
produces the same fault patterns as case 1; the stuck bit pro-
duces only one parity error during setup in each phase (Type 1
Case 2a of Table 2), or only one error in each phase when
transferring the first data word (Type 1 Case 2b of Table 2).
• Case 3: Destination bit which affects routing. In this case, a
bit is scrambled before it has been examined in the setup pro-
cess. Since a link of this nature carries a "1" in the setup of
one phase and a "0" in the setup of the other, in one of the
phases there will be no setup error but an error will occur
when transferring the first data word. In the other phase,
there will be an error in setup. Two routing possibilities may
happen. The erroneous bit may successfully request an
erroneous path and, in turn, block an otherwise good path —
causing a block and a routing error (Type 1 Case 3b of Table

406

2), or, if the good path has already been established, the
erroneous path will be blocked and the only error in that
phase would be a block (Type 1 Case 3a of Table 2).
• Case 4: Faults on links carrying parity bits. Here, a link car-
rying a parity bit is stuck at " 1 " or "0." In both test phases,
this will either be detected during setup or when transmitting
one of the two data words. There will either be errors in both
phases when doing data transfers (Type 1 Case 4a of Table 2),
routing errors in setup in both phases (Type 1 Case 4b of
Table 2), or an error in the setup in one phase and an error in
data transfer in the other phase (Type 1 Case 4c of Table 2).

E.I.2 Type 2: Link faults in control links. There
are four control lines which can be stuck at asserted or
negated: message request, message grant, data available, and
data received.
• Case 1: Request stuck at negated. A link carrying a message
request signal is stuck in the negated state. To set up an
interchange box, a message's request signal must be asserted.
If not, the message will not propagate through the box, caus-
ing a blocking error to be detected. This will occur in both
test phases (Type 2 Case 1 of Table 2).
• Case 2: Grant stuck at negated. A link carrying a message
grant signal is stuck in the negated state. A block error will be
detected in each phase (Type 2 Case 2 of Table 2). This is
immediately identifiable because the routing tag arrives and is
gated into the destination, but the source does not receive the
grant signal.
• Case 3: Data Available stuck at negated. A link carrying a
data available signal is stuck in the negated state. A routing
error will occur in each phase because the assertion of the data
available signal is never detected by the destination port and,
as a result, the data received signal is never returned to the
source PE (Type 2 Case 3 of Table 2). This is immediately
detected and identified since the source port will receive the
message grant signal, indicating that the tag does get to the
destination port and should have been gated in.
• Case 4: Data Received stuck at negated. A link carrying a
data received signal is stuck in the negated state. This will
result in one routing error in each phase since no data received
signal returns to indicate that the correct message has been
received (Type 2 Case 4 of Table 2).
• Case 5: Message Request stuck at asserted. A link carrying a
message request signal is stuck in the asserted state. Because
message request is always asserted, the last path established
before the link failed will not be dropped and will remain held
through the fault isolation procedure. Depending on what this
last path was, there are several different fault patterns. If the
held path consists of all straight or all exchange box settings,
there will be no routing errors or blocks in one phase but a
routing error and a block in the other phase (Type 2 Case 5a
of Table 2). If the held path consists of a combination of
straights and exchanges, there will be a routing error and one
or more blocks in each phase (Type 2 Case 5b of Table 2). For
example, if the request signal for the upper input of a box is
stuck at asserted and is holding the box in the straight setting,
this box will appear to be operating correctly in the phase 1
testing. In phase 2, however, the straight setting is still held,
causing the request on the lower input (which wants to estab-
lish an exchange setting) to become blocked.
• Case 6: Message Grant stuck at asserted. A link carrying
the message grant signal is stuck in the asserted state. This
will produce no errors or blocks in the normal fault location
procedure. The only way to detect this is to deliberately
attempt to set up paths which will be blocked in the network
and check for the signal being stuck (Type 2 Case 6 of Table
2)
• Cases 7 and 8: Data available stuck at asserted. A link car-
rying the data available signal is stuck at the asserted state.
Assume that the data available signal is edge-sensitive and
that active low logic is being used in the network implementa-
tion (both reasonable assumptions for typical port handshak-
ing signals). The errors that can be generated will depend on
whether the stuck link is before or after stage zero.

In Case 7, a Data available link is stuck at asserted
before stage zero (recall from Figure 1 that stage 0 is the net-
work output stage). Since the stuck link is before stage zero,
an edge is still produced on subsequent links when the path is
first set up. Hence in both phases, no error or block occurs in
setup, but errors will occur when transmitting the first data
word, since the destination port will not receive the required
negated-to-asserted edge on the data available line to gate the
data word in (Type 2 Case 7 of Table 2). This is immediately
recognized because when transmitting data words, the path
has already been set up properly and the data word should
always get gated in at the destination.

For Case 8, a Data available link is stuck at asserted
after stage zero (on the line connecting stage 0 to its respective
network-destination interface port). As a result of the fault,
the port never detects an edge transition being produced on
this control link. In each phase, there will be one routing error
only. The fault patterns generated here are identical to those
in Case 3 (Type 2 Case 8 of Table 2).
• Cases 9 and 10: Data received stuck at asserted. Similar to
Cases 7 and 8, the errors generated depend on whether the
bad link is before stage n -1 .

In Case 9, assume that a Data received link is stuck at
asserted after stage n-1 (the input stage of the network). As
with the data available signal, assume that the data received
signal is edge sensitive. An edge will be produced when the
path is first established. Hence in both phases, no error or
block occurs in setup, but errors will occur when transmitting
the first data word, since the source port will not receive the
required negated-to-asserted edge on the data received line
(Type 2 Case 9 of Table 2).

For Case 10, let a Data received link be stuck asserted
before stage n—1. Since the stuck link is between stage n—1
and the source port, no edge is ever produced on this bad link.
In each phase, there will be one routing error only (Type 2
Case 10 of Table 2).

5.2 Error patterns for interchange box faults
Interchange box faults in interconnection networks with

distributed routing schemes are handled in much the same
way as are Feng and Wu's switching element faults in [11].
Differences lie primarily in the additional effects of the m-bit
data path and the routing and protocol schemes not addressed
in [11]. This class of faults will be described briefly with
emphasis being placed on these differences.

Two groups will be considered: a faulty state when S10 is
the desired state and a faulty state when S5 is desired. The
possible fault patterns for interchange box faults are summar-
ized in Table 3. In the analysis, it is assumed that a box fault
will effect all lines of an input port in the same way.

5.2.1 Faulty state in S10. This refers to the condition
where the combination of the routing tag and REQ signals
request setting a box to S10 but, because of a fault in the inter-
nal logic of the box, it is set to some other state instead.

From Table 1, there are 15 possible erroneous states.
Erroneous states So, S,, S2, S4, S6 and S8 are straightforward —
messages are either misrouted or blocked, and error-checking
hardware at the PEs detect routing errors or blocks. For
erroneous states S3 and Si2, one of the messages requesting
passage through the faulty box is blocked, while the other
message is sent to both output lines. The effect of this will be
a blocked message and a routing error signal from the second
incorrect output. The box input port hardware is assumed to
perform a logical AND operation on the returning protocol sig-
nals from each of the box output ports to detect the presence
of an error signal from either output link. The error signal is,
in turn, propagated towards the respective source PE. The
error patterns resulting from these erroneous states are similar
to those of [11].

407

The remaining seven erroneous states, S6, S7, S9, Sn, SJJ,
Sj4, and S15, may involve changes to the routing tags and,
therefore, new considerations come to bear. The routing tags
can become corrupted when one of the messages at the output
links of the faulty box is the result of the two input messages
overwriting each other. The effect of having two input bits
write to the same output bit is defined similarly to Feng and
Wu in [11]. If the two input bits are identical, the output bit
would be equal to either one of the inputs. However, if the
input bits are different, the output bit would always be a " 1 "
or always a "0," i.e., a overwritten bit position always sticks at
the same value. When two m-bit routing tags are transferred
to the same output link, some bits in the resulting tag may be
scrambled by the overwrite. Depending on the message at the
output link of the faulty box, there are two resultant subcases.

In the first case, the message is changed by the overwrite
so that an error in the bits of the setup word which specify the
destination address is generated. A routing error is detected.
For example, in erroneous state S6, bit i of the setup word
using the lower input should be a " 1 . " Assume the two setup
words entering the box are merged so that bit i is overwritten
and is stuck at "0." Thus, a destination with a " 1 " in its i"
address bit position will receive a setup word with a "0" in the
i bit position. The source PEs requesting a path through the
faulty interchange box will detect this error since the error sig-
nal is propagated back to both PEs.

In the second case, the message can be changed by the
overwrite so that an error in the destination address part of
the setup word is not generated as a result of the overwritten
bits (e.g., bit i of the message at the lower output of S6 in
Table 1 should be " 1 " and is stuck at the same value because
of the overwrite). One of the setup words (e.g., the lower
input in erroneous state S6) arrives successfully at its expected
destination, and the proper return protocol signals are pro-
pagated back to both of the source PEs. In this case, no rout-
ing error or block is detected in the setup for S6, S8, S n , SM

and S15. However, the first data word is a bitwise complement
of the routing tag, while the overwritten bits always stay at
the value they took in the setup. When the first data word
propagates through the network, some of its bits are different
from what they are expected to be. An error results from the
parity check and both source PEs receive the error signal. The
result is two routing errors. However, in the setup for S7 and
S13, one of the messages is misrouted regardless of whether the
overwritten message was scrambled For example, the message
at the upper output of S7 in Table 1 is misrouted, and the
lower input performs a logical AND operation on both return-
ing protocol signals and informs the PE connected to the lower
input of the error. In these two states, a single routing error in
the setup will result.

Overwrites may also occur on the message request and
data available control lines. If the returning message grant
and data received control lines are run through a multiplexer,
overwrites will not occur. For the message request and data
available lines, if the signal resulting from the overwrite is in
the asserted state, no extra anomalies will occur. If the result-
ing signal is in the negated state, two blocks or two routing
errors will occur, depending on which of the message request
and data available lines are changed by the overwrite.

5.2.2 Faulty s tate in Ss . This refers to the condition
where the combination of the routing tag and REQ signals
request setting the interchange box to S6 but the box is set to
some other state instead. As for the case where the desired
state was Slo, there are 15 possible erroneous states. The way
in which fault patterns are generated are very similar to those
of Slo. Refer to Table 3 for a complete description of the fault
patterns generated by each type of fault.

6. Isolation of single faults
Tables 2 and 3 summarize the errors resulting from the

different types of faults after the two phases of the testing pro-
cedures. The principle behind the testing procedure is to
determine the fault type, i.e., whether a link or an interchange
box is faulty, and the location of the fault. This is done by
recording the path on which faults are detected in each phase
and intersecting the faulty paths.

Notice that in the condition denoted by "EB" in the
tables, i.e., one PE detects a routing error with one or more
PEs detecting blocks, only the path which resulted in the rout-
ing error is considered to be the faulty path. This is because
the blocked path may be fault free, but it was blocked by a
misrouted message. If no routing errors are detected in a test
phase but blocks occurred (i.e., in the conditions denoted by
"B" and "2B"), paths with blocks are considered faulty paths.
This is because there is no detected error in the network which
could have caused a fault-free path to be blocked. The excep-
tion to this rule is for faults belonging to Group 3, as
explained below. In the conditions denoted by "2E," two
paths are considered to be faulty paths.

Looking over the tables of results for link faults and box
faults, the faulty responses can be divided into several groups.
These are considered below.

0.1 Group 1: Two faulty paths in either the setup or
data transfer of a single phase

This refers to situations where the error conditions
denoted by "2E" and "2B" are detected, either in the setup or
in the data transfer. Referring to Tables 2 and 3, these condi-
tions will only be registered if an interchange box were faulty,
i.e.,

(a) if the desired state is Slo, and the erroneous state is So, S6,
56, S7 subcase (a), S9, S11(S13 subcase (a),S14 and S16, or

(b) if the desired state is S6, and the erroneous state is So, S6 ,
57, S9, S10, S n subcase (a), S13 ,S14 subcase (a), and S16.

Since two faulty paths were registered in a single phase, inter-
section of these two paths will pinpoint the faulty box.

408

Table 3. Fault patterns for interchange box faults.

6.2 Group 2: No setup errors in one or both phases,
data transfer error in phase(s) where no setup error
occurred

In this group, no setup errors occur in one or both setup
subphases. Where the setup is valid, a single error will be
detected in the ensuing data transfer. This group includes
link faults of Type 1 Cases lb, 2b, 3, 4a and c, and Type 2
Cases 7 and 9. Interchange box faults are not in Group 2 since
they never generate a single error in data transfer in one or
both phases (see Table 3).

Referring to Table 2, a Group 2 link fault always gen-
erates one faulty path in each phase. Since fault patterns of
this type can be definitely identified as being caused by link
faults, intersection of the faulty path obtained in phase 1 and
that obtained in phase 2 will isolate the faulty link.

6.3 Group 3: No anomaly in one phase, only one faulty
path in the other phase

This group includes all those conditions where no ano-
maly (i.e., no routing error, parity error or block) was detected
in one phase, but an error and/or block in setup or data
transfer was detected in the other phase. Hence if faulty test
patterns of this group were detected, only one faulty path will
be registered and further tests are necessary to isolate the
fault.

From Table 2, only one type of link fault might produce
fault patterns of this group: Type 2 Case 5a. The fault pat-
tern produced here in the faulty phase is the condition
denoted by "EB". If the fault were in an interchange box,
several types of faults would generate patterns belonging to
this group.

(a) The faulty box works normally if it were set to S10 in
the phase 1 test, but in the phase 2 test, instead of being set to
S6, it is set to S1(S2, S3, S4, S8, Sub, S12 or S14b. Of these eight
possibilities, Sj, S4 ,Sjjb, and S14b do not produce the condi-
tion denoted by "EB" and are thus easily recognized as box
faults instead of a link fault of Type 2 Case 5a.

(b) The faulty box works normally if it were set to S6 in
the phase 2 test, but in the phase 1 test, instead of being set to
S10, it is set to S1(S2, S3, S4, S7b, S8, S12 or Sj3b. Of these eight
possibilities, S2, Sg, S7b and S13b do not produce the condition
denoted by "EB" and are thus easily recognized as box faults
instead of a link fault of Type 2 Case 5a.

For faults belonging to this group, the path that
obtained the block error for a condition "EB" can be used to
locate the fault because the types of faults that cause fault
patterns of Group 3 are all "localized". If an interchange box
fault caused an "EB" condition, the location of the faulty
component is exactly pinpointed by the intersection of the two
paths on which the routing/parity error and the block lie. If
the "EB" condition were caused by link fault Type 2 Case 5a,
the intersection of the faulty path and the blocked path will
give the interchange box immediately after the stuck link. In
this type of fault, if more than one block is detected, each
blocked path is intersected with the path with the
routing/parity error, and the component(s) obtained by the
intersection that is closest to the input stage of the network is
considered to be the faulty component. Hence for faults in
this group, if the phase with the faulty path produced an
"EB" condition, the faulty component is either the inter-
change box indicated by the intersection of the two bad paths,
or an input link on that box.

For the remaining faults in this group (the non-"EB"
cases), a very detailed discussion is given in [11] under the sec-
tion on "Switching Element Faults," case 2.

6.4 Group 4: Anomalies in the setup of both phases
In this group, one faulty path is generated in the setup of

both phase 1 and phase 2. This group covers all the remaining
link faults, and also the interchange box faults in which a par-
ticular box is set to an erroneous state(s) in both phase 1 and
phase 2. The three error conditions possible in the setup are

Table 4. Group 4 fault patterns.

"E," "EB," and "B." All possible combinations of these condi-
tions are summarized in Table 4. From Table 2, it can be
observed that link faults which generate fault patterns in the
setup of both phases always produce identical fault patterns in
both phases. Hence, combinations of fault patterns which are
not identical in both phases (Table 4, subgroups 2,3,4,0,7 and
8) are immediately identifiable as interchange box faults.
Since two faulty paths are obtained after the two-phase test,
the intersection of the faulty paths will locate either the faulty
box or a pair of interchange boxes connected by a link. The
latter condition requires special procedures to further isolate
the faulty component. These procedures, which involve trying
to pinpoint the fault by setting boxes in different stages to
different valid states, are described in detail in [11].

Three subgroups from Table 4 are left. These are han-
dled as follows.

(a) For fault patterns of subgroup 1, the faulty component is
either a link fault (Type 1 Cases la or 2a, Type 2 Cases 3, 4, 8,
or 10), or a faulty interchange box (which in phase 1 takes on
the erroneous states S13b or S7b instead of the desired state
Sj0, and in phase 2 takes on the erroneous states Sjjb or S]4b
instead of the desired state Ss). The intersection of the faulty
paths would narrow the fault location to a pair of interchange
boxes and their connecting links. In this one particular
instance, the testing procedure should be repeated, sending
the data words despite the setup errors. If the faulty com-
ponent were an interchange box, the fault type can be deter-
mined immediately by sending the first data word through the
network after the faulty setup. Referring to Section 5.2 on
box faults, one of the data words will be overwritten so that a
parity error will result. This error will be detected by both
source PEs which are accessing the faulty interchange box.
The error condition of having two routing/parity errors in the
same phase (i.e., the "2E" condition) is similar to the Group 1
faults, and the intersection of the two bad paths will pinpoint
the faulty interchange box. If a link fault were responsible for
the fault patterns, only one error would be detected in each
phase. Intersection of the two faulty paths obtained from the
two test phases will isolate the bad link.

(b) For fault patterns of subgroup 5, the faulty component is
either a link fault of Type 2 Case 5b or an interchange box
which is not set correctly in both phases (settings Sj, S3, S4, or
S]2 instead of S10 in phase 1, and setting S2, S3, S8, or S12

instead of Ss in phase 2). In some cases it is impossible to
correctly determine the fault location in this subgroup. The
faulty component can only be isolated down to a pair of inter-
change boxes and a link joining the pair, as described in [11]
for their faulty box subset of network faults.

(c) For fault patterns of subgroup 9, the faulty component is
either a link fault of Type 2 Cases 1 or 2 or a faulty box which
takes on settings S2 or S8 in phase 1 and settings Sj or S4 in
phase 2. The faulty component for subgroup 9 (one block in
each phase) can only be isolated down to a pair of interchange
boxes and a link joining the pair, a condition described in [11].
Only if the error were caused by a link fault of Type 2 Case 2
can the faulty component be further isolated. In this case an
illegal combination of control signals is received by the source
PE. The lack of message grant implies that a path was not

409

successfully set up through the network, yet the data received
signal is returned to the source PE, indicating that the routing
tag did arrive successfully at the destination PE. This implies
that the link carrying the message grant signal is faulty.
Intersection of the faulty paths obtained would locate the bad
link. Otherwise, it is difficult to tell if the fault were a link
fault of Type 2 Case 1 or some combination of interchange
box faults in both phase 1 and phase 2.

After the two-phase test, it is possible to detect all single
faults and correctly locate the faulty component (by examin-
ing the combination of error signals) or, at worst case, narrow
the location down to a pair of interchange boxes and their con-
necting links. Group 4 presents the most difficult combination
of error patterns. In those cases where the fault has not been
completely isolated, the special procedures described in [11]
are necessary to further isolate the fault.

B.5 Group 5: No anomalies detected
In this group, no errors are detected in any phase of the

testing procedure. This indicates the presence of a Type 2
Case 6 link fault (a message grant protocol line is stuck
asserted). Knowing the source PE that requested the diagnos-
tic testing and the path that it was trying to set up when the
initial network error was detected (the fault was in that par-
ticular path), the location of the fault can be determined. As
indicated in Section 5.1 2, blocking paths can be systemati-
cally established in the network that are known to conflict
with the path containing the fault. If the faulty path and a
blocking path intersect before the fault location, the grant sig-
nal should become negated (as a result of the blockage). If the
paths intersect after the fault location, the grant signal will
remain asserted, despite the path being blocked. The fault is
identified as being in a particular link when a block in the
preceding interchange box causes the grant signal to be
negated while a block in the succeeding box does not negate
the signal. The search for the fault location can be performed
in a binary tree search fashion and will require O(log n) steps
to complete.

7. Summary
As integrated circuit technology has matured, the design

and construction of complex parallel processing systems has
become feasible. In these systems, it is crucial to insure that
operations can continue in the presence of faults that might
occur. This is particularly important in the interconnection
networks supporting such systems. A number of techniques
exist to introduce fault tolerance into the multistage cube net-
works class. To be effective, however, the location of a net-
work fault must be explicitly known.

In this paper, an existing fault detection and location
procedure for centralized routing control networks has been
overviewed. Networks that employ distributed routing con-
trol transmit both message routing and protocol information
and data through the network. The errors that could occur in
these networks were analyzed and shown to be a superset of
the errors occurring in a centrally controlled system. Faults
occurring in the data lines could corrupt the message routing
tags transmitted over them and thereby cause the misrouting
of messages. Additionally, protocol lines used in the
handshaking between source-destination PE pairs, if faulty,
could prevent a message path from being established or could
cause the path to become "locked-up" once the transmission
of data had begun. A fault detection and location procedure,
patterned after the one presented in [11], was developed. The
procedure is executed in two phases, where each phase
involved the transmission of routing control information to set
up the desired network connections and the transmission of up
to two data words to test the integrity of the paths. Response
patterns to the test messages were derived for link faults in
the data path as well as in the protocol links. Interchange box
faults and their associated fault patterns were also investi-
gated.

While the procedures described in this paper were
specifically targeted to a circuit switched network implemen-
tation, the approach could be modified for packet switched
networks using similar control protocol structures. In packet
switching, protocol lines connect interchange boxes in adja-
cent stages rather than the sources and destinations in circuit
switching. As a result, the effects of faults in these lines will
tend to be more localized than in the circuit switched net-
works discussed in this paper.

References
[I] C-L. Wu and T. Y. Feng, "On a class of multistage

interconnection networks," IEEE Trant. Comp., Vol.
C-29, Aug. 1980, pp. 694-702.

[2] M. C. Pease III, "The indirect binary n-cube micropro-
cessor array," IEEE Trant. Comp., Vol. C-26, May
1977, pp. 458-473.

[3] H. J. Siegel and R. J. McMillen, "The multistage cube:
a versatile interconnection network," Computer, Vol.
14, Dec. 1981, pp. 65-70.

[4] D. H. Lawrie, "Access and alignment of data in an
array processor," IEEE Tram. Comp., Vol. C-24, Dec.
1975, pp. 1145-1155.

[5] K. E. Batcher, "The flip network in STARAN," 1976
Intl. Conf. Parallel Processing, Aug. 1976, pp. 65-71.

[6] G. R. Goke and G. J. Lipovski, "Banyan networks for
partitioning multiprocessor systems," 1st Symp. Comp.
Arch , Dec. 1973, pp. 21-28.

[7] H. J. Siegel, Interconnection Network* for Large-Scale
Parallel Processing: Theory and Case Studies, Lexing-
ton Books, Lexington, MA, 1985.

[8] G. B. Adams III and H. J. Siegel, "The extra stage cube:
a fault-tolerant interconnection network for Supersys-
tems," IEEE Tram. Comp., Vol. C-31, May 1982, pp.
443-454.

[9] K. Padmanabhan and D. H. Lawrie, "A class of redun-
dant path multistage interconnection networks," IEEE
Tram. Comp., Vol. C-32, Dec. 1983, pp. 1099-1108.

[10] C-Y. Chin and K. Hwang, "Packet switching networks
for multiprocessors and data flow computers," IEEE
Tram. Comp., Vol. C-33, Nov. 1984, pp. 991-1003.

[II] T. Y. Feng and C-L. Wu, "Fault-diagnosis for a class of
multistage interconnection networks," IEEE Tram.
Comp., Vol. C-30, Oct. 1981, pp. 743-758.

[12] D. P. Agrawal, "Testing and fault tolerance of multis-
tage interconnection networks," Computer, Vol. 15,
Apr. 1982, pp. 41-53.

[13] W. Y-P. Lim, "A test strategy for packet switching net-
works," 1982 Intl Conf. Parallel Processing, Aug.
1982, pp. 96-98.

[14] H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T.
Mueller, Jr., H. E. Smalley, Jr., and S. D. Smith,
"PASM: a partitionable SIMD/MIMD system for image
processing and pattern recognition," IEEE Trant.
Comp., Vol. C-30, Dec. 1981, pp. 934-947.

[15] D. G. Meyer, H. J. Siegel, T. Schwederski, N. J. Davis
IV, and J T. Kuehn, "The PASM parallel system pro-
totype," IEEE Comp. Soc. Spring Compcon 85, Feb.
1985, pp. 429-434.

[16] A. Gottlieb, R. Grishman, C. P. Kruskal, K. P.
McAuliffe, L. Rudolph, and M. Snir, "The NYU Ultra-
computer — designing an MIMD shared-memory paral-
lel computer," IEEE Tram. Comp., Vol. C-32, Feb.
1983, pp. 175-189.

[17] M. Lee and C-L. Wu, "Performance analysis of circuit
switching baseline interconnection networks," 11th
Symp. Comp. Arch., June 1984, pp. 82-90.

[18] N. J. Davis IV and H. J. Siegel, "The PASM prototype
interconnection network," 1985 Nat'I. Comp. Conf, to
appear, July 1985.

410

