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Abstract schedule) tasks onto machines in an HC system so as to op-

A distributed het i HC ¢ timize some figure of merit. The heuristics that match a task
istributed heterogeneous computing (HC) sys €M {5 a machine can vary in the information they use. For ex-

consists of diversely capable machm_es hgrnessed tOrqemémple, the current candidate task can be assigned to the ma-
er to execute a set of tasks that vary in their computation-

| : ts. Heuristi ded t ich dchine that becomes available soonest (even if the task may
al requirements. Heuristics are needed to map (match an take a much longer time to execute on that machine than

scf;edule) tasks%onto Tach|qes_r|hn an HC s%stemt S0 as t%Isewhere). In another approach, the task may be assigned
op |n?|ztedsar2e \gure o mtet:I - 1S tp;]aper ¢ a:r?jc enzeiato the machine where it executes fastest (but ignores when
simuiate environment by using the expected executiony, .+ machine becomes available). Or the current candidate

t|mers]_of the taskstthattr;l]mve Irt] the Sﬁﬁm c;nto tht_e d'f_feremtask may be assigned to the machine that completes the task
machines present in the system. IS information 1S ar- soonest, i.e., the machine which minimizes the sum of task

rangeld |fnt|r;1n (_axpelc_|tgd tm;e to cohmputtﬁ (E'It'C)_m_aFn)t(has 4 execution time and the machine ready time, where machine
model otthe given system, where the entry(i, j) is eex'readytime for a particular machine is the time when that

pectded d(atxegutlcinttlrgifof tatskchon m.achme Jt. 'It'h|s"modtel 'tsmachine becomes available after having executed the tasks
needed to simulate differen environments to allow tes “previously assigned to it (e.g., [13]).

ing of relative performance of different mapping heuristics . ) o
under different circumstances. In particular, the ETC mod- ~ The discussion above should reveal that more sophisti-
el is used to express the heterogeneity among the runtime§ated (and possibly wiser) approaches to the mapping prob-
of the tasks to be executed, and among the machines in thé€M require estimates of the execution times of all tasks (that
HC system. An existing range-based technique to generat&an be expected to arrive for service) on all the machines
ETC matrices is described. A coefficient-of-variation based Present in the HC suite to make better mapping decisions.
technique to generate ETC matrices is proposed, and com-One aspect of the research on HC mapping heuristics ex-
pared with the range-based technique. The coefficient-of-Plores the behavior of the heuristics in different HC envi-

variation-based ETC generation method provides a greater fonments. The ability to test the relative performance of

control over the spread of values (i.e., heterogeneity) in any different mapping heuristics under different circumstances
given row or column of the ETC matrix than the range- Necessitates that there be a framework for generating simu-
based method. lated execution times of all the tasks in the HC system on all

the machines in the HC system. Such a framework would,

in turn, require a quantification of heterogeneity to express
the variability among the runtimes of the tasks to be execut-

A distributed heterogeneous computing (HEystem ed, and among the capabilities. of the machines in the HC
consists of diversely capable machines harnessed togethgyStem' Th_e.goal.of this paper is t(_) present a r.nethodol.o.gy
er to execute a set of tasks that vary in their computation-°" Synthesizing simulated HC environments with quantifi-
al requirements. Heuristics are needed to rfraptch and able Ievel_s of task and machlne heterogengty._ This paper

— characterizes the HC environments so that it will be easier
This research was supported by the DARPA/ITO Quorum Program un- for the researchers to describe the workload and the ma-

der the NPS subcontract numbers N62271-98-M-0217 and N62271'98'M'Chines used in their simulations using a common scale.
0448, and under the GSA subcontract number GS09K99BH0250. Some

of the equipment used was donated by Intel. Given a set of heuristics and a characterization of HC

1. Introduction

0-7695-0556-2/00 $10.00 ® 2000 IEEE



environments, one can determine the best heuristic to use irexecution times of tasks on all machines are known (e.g.,
a given environment for optimizing a given objective func- [6, 10, 12, 16]). These estimates could be built from task
tion. In addition to increasing one’s understanding of the profiling and machine benchmarking, could be derived from
operation of different heuristics, this knowledge can help a the previous executions of a task on a machine, or could be
working resource management system select which mappeprovided by the user (e.g., [3, 6, 8, 14, 18]).
to use for a given real HC environment. The ETC model presented here can be characterized by
This research is part of a DARPA/ITO Quorum Pro- three parameters: machine heterogeneity, task heterogene-
gram project called MSHNpronounced “mission”) (Man- ity, and consistency. The variation along a row is referred
agement System for Heterogeneous Networks) [7]. MSHN to as the machinketerogeneitythis is the degree to which
is a collaborative research effort that includes the Naval the machine execution times vary for a given task [1]. A
Postgraduate School, NOEMIX, Purdue, and University of system’s machine heterogeneity is based on a combination
Southern California. It builds on SmartNet, an implemented of the machine heterogeneities for all tasks (rows). A sys-
scheduling framework and system for managing resourcesem comprised mainly of workstations of similar capabil-
in an HC environment developed at NRaD [5]. The techni- jties can be said to have “low” machine heterogeneity. A
cal objective of the MSHN project is to design, prototype, system consisting of diversely capable machines, e.g., a col-
and refine a distributed resource management system thection of SMP’s, workstations, and supercomputers, may
leverages the heterogeneity of resources and tasks to deliveie said to have “high” machine heterogeneity.
the requested qualities of service. The methodology devel- Similarly, the variation along a column of an ETC matrix
oped here for g.enerating simulated HC enviror?m.ents MaYyis referred to as the tasleterogeneitythis is the degree to
be used.to des[gn, analyze and evaluate heuristics for th&,nich the task execution times vary for a given machine [1].
Scheduling Advisor component of the MSHN prototype. o system’s task heterogeneity is based on a combination of
The rest of this paper is organized as follows. A mod- {he'task heterogeneities for all machines (columns). “High”

el for describing an HC system is presented in Section 2.i4qk heterogeneity may occur when the computational need-
Based on that model, two techniques for simulating an HC ¢ ¢ the tasks vary greatly, e.g., when both time-consuming

environment are described in Section 3. Section 4 briefly gjmlations and fast compilations of small programs are
dlscusses_ analyzing th_e task execution time |_nform_at|on performed. “Low” task heterogeneity may typically be seen
from real I|fe HC scenarios. Some related work is outlined , the jobs submitted by users solving problems of similar
in the Section 5. complexity (and hence have similar execution times on a
) ] given machine).
2. Modeling Heterogeneity Based on the above idea, four categories were proposed
To better evaluate the behavior of mapping heuristics, for the ETC matrix in [1]: (a) high task heterogeneity and
a model of the execution times of the tasks on the ma- high machine heterogeneity, (b) high task heterogeneity and
chines is needed so that the parameters of this model catow machine heterogeneity, (c) low task heterogeneity and
be changed to investigate the performance of the heuristicdligh machine heterogeneity, and (d) low task heterogeneity
under different HC systems and under different types of and low machine heterogeneity.
tasks to be mapped. One such model consists of an The ETC matrix can be further classified into two cat-
expected time to compu{&TC) matrix, where the entry;( egories, consistent and inconsistent [1], which are orthog-
j) is the expected execution time of taskn maching. The onal to the previous classifications. For a consisteRC
ETC matrix can be stored on the same machine where thematrix, if a machinemy, has a lower execution time than
mapper is stored, and contains the estimates for the expecta machinem, for a taskty, then the same is true for any
ed execution times of a task on all machines, for all the taskstaskt;. A consistent ETC matrix can be considered to rep-
that are expected to arrive for service over a given interval resent an extreme case of low task heterogeneity and high
of time. (Although stored with the mapper, the ETC infor- machine heterogeneity. If machine heterogeneity is high e-
mation may be derived from other components of a resourcenough, then the machines may be so much different from
management system (e.g., [7])). In an ETC matrix, the el- each other in their compute power that the differences in
ements along a row indicate the estimates of the expectedhe computational requirements of the tasks (if low enough)
execution times of a given task on different machines, andwill not matter in determining the relative order of execu-
those along a column give the estimates of the expected extion times for a given task on the different machines (i.e.,
ecution times of different tasks on a given machine. along a row). As a trivially extreme example, consider a
The exact actual task execution times on all machinessystem consisting of Intel Pentium Il and Intel 286. The
may not be known for all tasks because, for example, theyPentium Il will almost always run any given task from a
might be a function of input data. What is typically as- certain set of tasks faster than the 286 provided the compu-
sumed in the HC literature is that estimates of the expectedtational requirements of all tasks in the set are similar (i.e.,




low task heterogeneity), thereby giving rise to a consistent(1) forifrom O to (t—1)

ETC matrix. 2 1[i] =U (1, Rask)

In inconsistenETC matrices, the relationships among (3) for j from O to (m—1)
the task computational requirements and machine capabili{4) efi, j] = 1[i] x U (1, Rmach)
ties are such that no structure as that in the consistent caséb) endfor

is enforced. Inconsistent ETC matrices occur in practice (6) endfor
when: (1) there is a variety of different machine architec-
tures in the HC suite (e.g., parallel machines, superscalars,
workstations), and (2) there is a variety of different com-
putational needs among the tasks (e.g., readily paralleliz-
able tasks, difficult to parallelize tasks, tasks that are float-
ing point intensive, simple text formatting tasks). Thus, the
way in which a task’s needs correspond to a machine’s ca-partially-consistent ETC matrices could be obtained from
pabilities may differ for each possible pairing of tasks t0 ihe inconsistent ETC matrices.

machines.

Figure 1. The range-based method for gener-
ating ETC matrices.

A binati f th hich b Assumem is the total number of machines in the HC
combination of these two cases, which may be more suite, andt is the total number of tasks expected to be

realistic in many environments, is the partiatlgnsistent serviced by the HC system over a given interval of time.
ETC matrix, which is an inconsistent matrix with a consis- Let U(a, b) be a number sampled from a uniform dis-
tent sub-matrix [2, 13]. This sub-matrix can be composed tribumth a range froma to b. (Each invocation of
of any subset of rows and any subset of columns. As an exy (a, b) returns a new sampl_e ) L_Qta « andRacnbe nuUM-

) . S acl

ample, in a given partially-cons_istent ETC ”_‘at”x’ 500/9 of bers representing task heterogeneity and machine hetero-
the tasks and 25% of the machines may define a ConS'Stenbeneity respectively, such that higher valuesRagx and

sub—matri;:. h i ; q ) ) Rmach represent higher heterogeneities. Then an ETC ma-
Even though no structure is enforced on an inconsistent, ;. €0..(t — 1),0..(m— 1)), for a given task heterogeneity

ETC matrix, a given ETC matrix generated to b? INCONSIS- and a given machine heterogeneity, can be generated by the
tent may have the structure of a partially consistent ETC range-based method given in Figure 1, wheligj] is the

matrlx._ In this Sense, pqrually—consstem ETC mz_atrlces aré astimated expected execution time for the task the ma-
a special case of inconsistent ETC matrices. Similarly, con- hine
sistent ETC matrices are special cases of inconsistent ang As s.hown in Eigure 1. each iteration of the out@T100

partially-consistent ETC matrices. 9 ! P

It should be noted that this classification scheme is usedsamples a uniform distribution with a range from 1Rgs
. . : . . to generate one value for a vectorFor each element af
for generating ETC matrices. Later in this paper, it will

be shown how these three cases differ in generation pro—thus generated, tha iterations of the innefor loop (Line

cess. If one is given an ETC matrix, and is asked to classify3) generate one row of the ETC matrix. Fortih iteration

it among these three classes, it will be called a consistentOf the outerfor loop, each iteration of the innéor loop

ETC matrix only if it is fully consistent. It will be called pr'oduces one element of the ETC matrix b.y multlply_n{lg .
inconsistent if it is not consistent. with a random number sampled from a uniform distribution

Often an inconsistent ETC matrix will have some par- ranging from 1 tRmach . _
tial consistency in it. For example, a trivial case of partial- " the range-based ETC generation, it is possible to
consistency always exists; for any two machines in the HC ©Ptain high task heterogeneity low machine heterogeneity
suite, at least50% of the tasks will show consistent execu- ETC matrices with characteristics similar to that of low task
tion times. heterogeneity high machine heterogeneity ETC matrices if
Riask = Rmach In realistic HC systems, the variation that
. . tasks show in their computational needs is generally larg-
3. Generating the ETC Matrices er than the variation that machines show in their capabil-
3.1. Range Based ETC Matrix Generation ities. Therefore it is assumed here that requirements of

high heterogeneity tasks are likely to be more “heteroge-

Any method for generating the ETC matrices will require neous” than the capabilities of high heterogeneity machines
that heterogeneity be defined mathematically. In the range<(i.e., Riask > Rmnach). However, for the ETC matrices gen-
based ETC generation technique, the heterogeneity of a se¢rated here, low heterogeneity in both machines and tasks
of execution time values is quantified by the range of the is assumed to be same. Table 1 shows typical values for
executiontimes [2, 13]. The procedures given in this section Rask and Rmach for low and high heterogeneities. Tables 2
for generating the ETC matrices produce inconsistent ETCthrough 5 show four ETC matrices generated by the range-
matrices. It is shown later in this section how consistent and based method. The execution time values in Table 2 are




andViask. The input parametepask is used to set the av-

Table 1. Suggested values for Ri.sx and erage of the values ig. The input parameté;ask is the
R,,qch for a realistic HC system for high het- desired coefficient of variation of the valuesjnThe value
erogeneity and low heterogeneity. of Viask quantifies task heterogeneity, and is larger for high-
er task heterogeneity. Each element of the task vegtsr
high | low then used to produce one row of the ETC matrix such that
task 16 | 10t the desired cogfficient of variation of values in each row is
Vmach another input parameter. The valueVafach quanti-
machine | 12 | 10t fies maching heterogeneity, and is larger for higher machine
heterogeneity. ThuSask Viask aNdVmachare the three input

parameters for the CVB ETC generation method.
A direct approach to simulating HC environments should
i L i use the probability distribution that is empirically found to
much higher than the execution time values in Table 5. The o esent closely the distribution of task execution times.

difference 'n_ftT]e valuesfbetzveclan thes;htwo tables would 5 ever no standard benchmarks for HC systems are cur-
be reduced if the range for the low task heterogeneity was gy available. Therefore, this research uses a distribution

changed to 19to 10* instead of 1 to 10. .. which, though not necessarily reflective of an actual HC

. With th? range—based_method, IOV_V task hGtemgene_'tyscenario, is flexible enough to be adapted to one. Such a
high machine heterogeneity ETC matrices tend to have highgistrihytion should not produce negative values of task ex-
heterogeneity for both tasks and machines, due to methOdecution times (e.g., ruling out Gaussian distribution), and

used for Igeneraﬂon. IFor S);ample, In Tableh 5, ongrr]nal should have a variable coefficient of variation (e.qg., ruling
vector values were selected from 1 to 10. When eac entryOut exponential distribution).

is multiplied by a number from 1 to 100 for high machine The gamma distribution is a good choice for the CVB

heterogeneifty this generate_s a ta_sk heterogeneifcy compargrc generation method because, with proper constraints on
ble to machine heterogeneity. It is shown later in SeCtion jis «haracteristic parameters, it can approximate two other
3.2 how to _produce Iow.task hgterogeneﬁy high machine probability distributions, namely the Erlang-k and Gaussian
heterogeneity ETC matrices which do show low task het- inout the negative values) [11, 15]. The fact that it can
erogeneity. approximate these two other distributions is helpful because
this increases the chances that the simulated ETC matrices
could be synthesized closer to some real life HC environ-
ment.

s - ) The uniform distribution can also be used but is not as
A modification of the procedure in Figure 1 defines the o.inje a5 the gamma distribution for two reasons: (1) it

coefficient ?fhvarlatlon V, of _exeCUOtIIOF; the Va'”esfas 2 does not approximate any other distribution, and (2) the
measure of heterogeneity (instead of the range o EXECUTharacteristic parameters of a uniform distribution cannot

tloln tlm_e valk;Jes). The coefflcfler?t %f vana’gon .Of ‘;'1‘ set IOf take all real values (explained later in the Section 3.3).
values Is a better measure of the dispersion In the values g gamma distribution [11, 15] is defined in terms of

than the standard deviation because it expresses the stanq aracteristic shape parameter,and scale parametef

dard deviation 4 asba [;]ercentzge docfi the mean gf the valuesr o characteristic parameters of the gamma distribution can
[11]. Leto andp be the standard deviation and mean, re- be fixed to generate different distributions. For example,

spectively_, (_)faset of (_axe_:cution time values. Tlde_ﬁ o/p if a is fixed to be an integer, then the gamma distribution
The coefficient-of-variation-based ETC generation method becomes an Erlang-k distribution.dfis large enough, then

provides a greater control over spread of the execution time
values (i.e., heterogeneity) in any given row or column of
the ETC matrix than the range-based method.

The coefficieriof-variationbased(CVB) ETC genera-
tion method works as follows. A taslector, g, of expected

3.2. Coefficient-of-Variation Based ETC Matrix
Generation

the gamma distribution approaches a Gaussian distribution
(but still does not return negative values for task execution
times).

Figures 2(a) and 2(b) show how a gamma density func-
S s : A X tion changes with the shape parametenWhen the shape
execution times with the desired task heterogeneity must b&, ;.o yeter increases from two to eight, the shape of the dis-
generated. Essentiallgji] is the execution time of taslon iy tion changes from a curve biased to the left to a more

an “avgrage” machine in the HC suite. For example, if the balanced bell-like curve. Figures 2(a), 2(c) and 2(d) show
HC suite consists of an IBM SP/2, an Alpha server, and a

Sun SPARC 5 workstation, thepwould represent estimat-
ed execution times of the tasks on the Alpha server.
To generatay, two input parameters are needgd;sk




Table 2. A high task heterogeneity low machine heterogeneity matrix generated by the range-based
method using Riesk and R,,.qcn Values of Table 1.

my m mg my ms me my
t, | 333304 | 375636 | 198220 | 190694 | 395173 | 258818 | 376568
t, | 442658 | 400648 | 346423 | 181600 | 289558 | 323546 | 380792
t; | 75696 | 103564 | 438703 | 129944 | 67881 | 194194 | 425543
t, | 194421 | 392810 | 582168 | 248073 | 178060 | 267439 | 611144
ts | 466164 | 424736 | 503137 | 325183 | 193326 | 241520 | 506642
ts | 665071 | 687676 | 578668 | 919104 | 795367 | 390558 | 758117
t; | 177445 | 227254 | 72944 | 139111 | 236971 | 325137 | 347456
ts | 32584 | 55086 | 127709 | 51743 | 100393 | 196190 | 270979
to | 311589 | 568804 | 148140 | 583456 | 209847 | 108797 | 270100
tio | 314271 | 113525 | 448233 | 201645 | 274328 | 248473 | 170176
ti1 | 272632 | 268320 | 264038 | 140247 | 110338 | 29620 | 69011
t1 | 489327 | 393071 | 225777 | 71622 | 243056 | 445419 | 213477

Table 3. A high task heterogeneity high machine heterogeneity matrix generated by the range-based
method using Ryask and R,,.cn Values of Table 1.

m m mg my ms Mg my
ty | 2425808 | 3478227 | 719442 | 2378978 | 408142 | 2966676 | 2890219

tp | 2322703 | 2175934 | 228056 | 3456054 | 6717002 | 5122744 | 3660354
t3 | 1254234 | 3182830 | 4408801 | 5347545 | 4582239 | 6124228 | 5343661
ta | 227811 | 419597 13972 | 297165 | 438317 23374 | 135871
ts | 6477669 | 5619369 | 707470 | 8380933 | 4693277 | 8496507 | 7279100
ts | 1113545 | 1642662 | 303302 | 244439 | 1280736 | 541067 | 792149
tz | 2860617 161413 | 2814518 | 2102684 | 8218122 | 7493882 | 2945193
tg | 1744479 | 623574 | 1516988 | 5518507 | 2023691 | 3527522 | 1181276
to | 6274527 | 1022174 | 3303746 | 7318486 | 7274181 | 6957782 | 2145689
t10 | 1025604 | 694016 | 169297 | 193669 | 1009294 | 1117123 | 690846
t11 | 2390362 | 1552226 | 2955480 | 4198336 | 1641012 | 3072991 | 3262071
t12 96699 | 882914 63054 | 199175 | 894968 | 248324 | 297691




Table 4. A low task heterogeneity low machine heterogeneity matrix generated by the range-based
method using Riesk and R,,.qcn Values of Table 1.

m[m|m|[m|m|me]ny
t, | 22 |21 | 6| 16| 15 | 24 | 13
t,| 7|46| 5|28 45| 43| 31
t; | 64 | 83 | 45 | 23 | 58 | 50 | 38
t2| 53 | 56 | 26 | 42 | 53 | 9 | 58
ts | 11 |12 | 14| 7| 8] 3| 14
ts | 33 | 31 | 46 | 25 | 23 | 39 | 10
t, | 24 |11 | 17 | 14 | 25 | 35 | 4
ts | 20 | 17 | 23 | 4| 3| 18| 20
to| 13 | 28 | 14| 7| 34| 6] 29
to| 2| 5| 7| 7| 6] 3| 7
t11 | 16 | 37 | 23 | 22 | 23 | 12 | 44
t1o| 8|66 |47 | 11 | 47 | 55 | 56

Table 5. A low task heterogeneity high machine heterogeneity matrix generated by the range-based
method using Ryask and R,,.cn Values of Table 1.

M| M| Mg | My | M| Mg | Ny
ty | 440 | 762 | 319 | 532 | 151 | 652 | 308

tp | 459 | 205 | 457 | 92| 92 | 379 | 60
t3 | 499 | 263 | 92 | 152 | 75| 18| 128
t4 | 421 | 362 | 347 | 194 | 241 | 481 | 391
ts | 276 | 636 | 136 | 355 | 338 | 324 | 255
ts | 89| 139 | 37| 67 9| 53| 139
t7 | 404 | 521 | 54 | 295 | 257 | 208 | 539
tg | 49| 114 (279 | 22| 93| 39| 36
to | 59| 35| 184 | 262 | 145 | 287 | 277
t10 71235 | 44| 81330 | 5| 78
t11 | 716 | 601 | 75 | 689 | 299 | 144 | 457
t1o | 435 | 208 | 256 | 330 6 | 394 | 419
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Figure 2. Gamma probability density function for (a) a=2,=8,b)a=8,8=8,(c)a=2,3=16,
and (d) a=2, 8 =32.



(1) Otask= 1/Vtask2; Omach= 1/Vmach2§ (1) Otask= 1/Vtask2; Omach= 1/Vmach2§

Btask = Hask/ Atask Bmach= Mmach/ Omach
(2) forifromOto—1) (2) for jfromOto (m—1)
3) qli] = G(0task, Prask) 3) P[] = G(dmach Bmach
* q[i] will be used as mean * p[j] will be used as mean
of i-th row of ETC matrix */ of j-th column of ETC matrix */
4) Bmacri] = d[i]/Omach 4) Brasi] = P[i]/Atask
[* scale parameter for i-th row */ [* scale parameter for j-th column */
(5) for j from Oto (m— 1) (5) forifromOto t—1)
(6) €fi, j] = G(Amach BmacHi]) (6) €fi, j] = G(atask Braski])
@) endfor @) endfor
(8) endfor (8) endfor
Figure 3. The general CVB method for gener- Figure 4. The CVB method for generating low
ating ETC matrices. task heterogeneity high machine heterogene-

ity ETC matrices.

the effect on the distribution caused by an increase in the

scale parameter from 8 to 16 to 32. The two-fold increase in |ty ETC matrices, h|gh task heterogeneity low machine het-
the scale parameter does not change the shape of the graptrogeneity ETC matrices, and low task heterogeneity low
(the curve is still biased to the left); however the curve now machine heterogeneity ETC matrices, but cannot generate

has twice as large a domain (i.e., range on x-axis). low task heterogeneity high machine heterogeneity ETC
The gamma distribution’s characteristic parameters, matrices. To satisfy the heterogeneity quadrants of Section
and B, can be easily interpreted in terms sk, Viask 2, each column in the final low task heterogeneity high ma-

and Vimach  For a gamma distributiong = By/a , and chine heterogeneity ETC matrix should reflect the low task
1= Ba, so thatV = o/p= 1/ (anda = 1/V2). Then heterogeneity of the “parent” task vectpr This condition
Otask = 1/Viask® and Omach = 1/Vimact?. Further, because  would not necessarily hold if rows of the ETC matrix were
H=Ba, B=p/a, andPrask = Hkask/Otask- Also, for taski, produced with a high machine heterogeneity from a task
BmacHi] = d[i]/Amach vector of low heterogeneity. This is because a given col-
Let G(a, B) be a number sampled from a gamma dis- umn may be formed from widely different execution time
tribution with the given parameters. (Each invocation of values from different rows because of the high machine het-
G(a, B) returns a new sample.) Figure 3 shows the generalerogeneity. That is, any two entries in a given column are
procedure for the CVB ETC generation. based on different values gfi] andamach and may there-
Given the three input paramete¥sk, Vimach andpkask fore show high task heterogeneity as opposed to the intend-
Line (1) of Figure 3 determines the shape parame{gy ed low task heterogeneity. In contrast, in a high task het-
and scale parametBy,sk of the gamma distribution that will ~ erogeneity low machine heterogeneity ETC matrix the low
be later sampled to build the task vectpr Line (1) also heterogeneity among the machines for a given task (across
calculates the shape parametggcnto use laterin Line (6).  arow) is based on the sargg| value.
In thei-th iteration of the outefor loop (Line 2) in Figure One solution is to generate what is in effect a transpose
3, a gamma distribution with parametergsk and Brask is of a high task heterogeneity low machine heterogeneity ma-
sampled to obtaimi]. Thenq([i] is used to determine the trix to produce a low task heterogeneity high machine het-
scale parametéimaci] (to be used later in Line (6)). For erogeneity one. The transposition can be built into the pro-
thei-th iteration of the outefior loop (Line 2), eachiteration  cedure as shown in Figure 4. The procedure in Figure 4 is
of the innerfor loop (Line 5) produces one element of the  very similar to the one in Figure 3. The input parameter
th row of the ETC matrix by sampling a gamma distribution . is replaced withumach Here, first a machineector, p,
with parametersimach and Bmaci]. One complete row of  (with an average value @fnach) is produced. Each element
the ETC matrix is produced hyiterations of the innefor of this “parent” machine vector is then used to generate one
loop (Line 5). Note that while each row in the ETC matrix low task heterogeneity column of the ETC matrix, such that
has gamma distributed execution times, the execution timeshe high machine heterogeneity presenpiis reflected in
in columns are not gamma distributed. all rows. This approach for generating low task heterogene-
The ETC generation method of Figure 3 can be used toity high machine heterogeneity ETC matrices can also be
generate high task heterogeneity high machine heterogenedsed with the range-based method.




Tables 6 through 11 show some sample ETC matricesOnce the task vectar has been generated, théh row of
generated using the CVB ETC generation method. Tables 6the ETC matrix can be generated by samplingtitnes) a
and 7 both show high task heterogeneity low machine het-uniform distribution with the following parameters:
erogeneity ETC matrices. In both tables, the spread of the

execution time values in columns is higher than that in rows. amach= d[i](1 — Vinactv/3) 9)
The ETC matrix in Table 7 has a higher task heterogeneity _
(higherViagd) than the ETC matrix in Table 6. This can be Bmach= 2q[i] — @mach (10)

seen in a higher spread in the columns of matrix in Table 7

tha_P tbr1|at|r;3Tadee96.h hiah task het itv hiah tion, however, places a restriction on the valueg:gfi and
ables ¢ an show high task heterogeneity hig ma-Vmach Because botla,sx andamach have to be positive, it

ch!ne heterogene_ny and low t_ask heterog(_anelty low ma- follows from Equations (7) and (9) that the maximum value
chine heterogeneity ETC matrices, respectively. The exe-r . v/ hOF Viask iS 1/v/3. Thus, for the CVB ETC gen

H H H H macl as . 1 -
cution times in Table 8 are widely spaced along both rows eration, the gamma distribution is better than the uniform

and I?OHJTHS' ;—ht(:] sprlead of exdecutlon Emes in Table 9 'S distribution because it does not restrict the values of task or
smaller along both columns and rows, because bl machine heterogeneities.

andVmachare smaller.

Tables 10 and 11 show low task heterogeneity high ma-
chine heterogeneity ETC matrices. In both tables, the
spread of the execution time values in rows is higher than
that in columns. ETC matrix in Table 11 has a higher ma-
chine heterogeneity (high®nach than the ETC matrix in
Table 10. This can be seen in a higher spread in the rows o
matrix in Table 11 than that in Table 10.

The CVB ETC generation using the uniform distribu-

3.4. Producing Consistent ETC Matrices

The procedures given in Figures 1, 3, and 4 produce
inconsistent ETC matrices. Consistent ETC matrices can
Pe obtained from the inconsistent ETC matrices generated
above by sorting the execution times for each task on all
machines (i.e., sorting the values within each row and do-
ing this for all rows independently). From the inconsistent
ETC matrices generated above, partially-consistent matri-
ces consisting of anx k sub-matrix could be generated by
sorting the execution times across a random subdetraf-

3.3. Uniform Distribution in the CVB Method

The uniform distribution could also be used for the CVB
ETC generation method. The uniform distribution’s charac- chines for each task in a random subsettaiks.

teristic parametera (lower bound for the range of values) It should be noted from Tables 10 and 11 that the greater
gndb (uppde_r bound for the range o:;values), can Itl)eheasny the difference in machine and task heterogeneities, the high-
{;nerpirete In terms ds/m‘aSk’_V‘as'“ an VmaChF (Recal _ft al  erthe degree of consistency in the inconsistent low task het-
dt.aSk.B G.taSk/“‘jSkzn maf/hl__z Gm"’(‘;:r/ﬂm%’h)' O;afg' ogm erogeneity high machine heterogeneity ETC matrices. For
r:strl ution,0 = (b—-a)/ andp = (b+a)/2 [15]. So example, in Table 11 all tasks show consistent execution
that times on all machines except on the machines that corre-

a+b=2u 1) spond to columns 3 and 4. As mentioned in Section 1, these

Ch_ degrees and classes of mixed-machine heterogeneity can be
a-b=-0V12 (2) used to characterize many different HC environments.

Adding Equations (1) and (2),

4. Analysis and Synthesis

a=u—0v3 (3)

Once the actual ETC matrices from a real life scenario
a=pu1l- (G/LJ.)\/C_’:) 4) are obtained, they can be analyzed to estimate the prob-

ability distribution of the execution times, and the values

a=u1-Vvv3) (5) of the model parameters (i.8Viask, Vinach and pask (Or
Mmach if @ low task heterogeneity high machine heterogene-
Also, ; - . ! .
b=2u—a (©6) ity ETC matrix is desired)) appropriate for the given real

life scenario. The above analysis could be carried out using

The Equations (5) and (6) can be used to generate the taskoOmmon statistical procedures [9]. Once a model of a par-

vectorq from the uniform distribution with the following  ticular HC system is available, the effect of changes in the
parameters: workload (i.e., the tasks arriving for service in the system)

Atask = Meask(1 — Viask/3) ) and the system (i.e., the machines presentin the HC system)
can be studied in a controlled manner by simply changing
Brask = 2lkask— @ask (8) the parameters of the ETC model.



Table 6. A high task heterogeneity low machine heterogeneity matrix generated by the CVB method.
Viask = 037 Vmach =0.1.

m|[ m|[ m] m] m] mg[ my | mg| mo| myp
t, | 628 | 633 | 748 | 558 | 743 | 684 | 740 | 692 | 593 | 554
t, | 688 | 712 | 874 | 743 | 854 | 851 | 701 | 701 | 811 | 864
ts | 965 | 1029 | 1087 | 1020 | 921 | 825 | 1238 | 934 | 928 | 1042
.| 891 | 866 | 912 | 896 | 776 | 993 | 875 | 999 | 919 | 860
ts | 1844 | 1507 | 1353 | 1436 | 1677 | 1691 | 1508 | 1646 | 1789 | 1251
to | 1261 | 1157 | 1193 | 1297 | 1261 | 1251 | 1156 | 1317 | 1189 | 1306
t, | 850 | 928 | 780 | 1017 | 761 | 900 | 998 | 838 | 797 | 824
ts | 1042 | 1291 | 1169 | 1562 | 1277 | 1431 | 1236 | 1092 | 1274 | 1305
to | 1309 | 1305 | 1641 | 1225 | 1425 | 1280 | 1388 | 1268 | 1290 | 1549
tio| 881 | 865 | 752 | 893 | 883 | 813 | 892 | 805| 873 | 915

Table 7. A high task heterogeneity low machine heterogeneity matrix generated by the CVB method.
Viask = 057 Vmach =0.1.

m mp m3 my Mg Me my mg Mg Mo
t1 377 476 434 486 457 486 431 417 429 428

tp| 493 | 370 | 400 | 420 | 502 | 472 | 475 | 440 | 483 | 576
ts3| 745 | 646 | 922 | 650 | 791 | 878 | 853 | 791 | 756 | 788
ta | 542 | 490 | 469 | 559 | 488 | 498 | 509 | 431 | 547 | 542
ts | 625 | 666 | 618 | 710 | 624 | 615 | 618 | 599 | 522 | 540
ts | 921 | 785 | 759 | 979 | 865 | 843 | 853 | 870 | 939 | 801
tz | 677 | 767 | 750 | 720 | 797 | 728 | 941 | 717 | 686 | 870
tg | 428 | 418 | 394 | 460 | 434 | 427 | 378 | 427 | 447 | 466
to | 263 | 289 | 267 | 231 | 243 | 222 | 283 | 257 | 240 | 247
tio | 1182 | 1518 | 1272 | 1237 | 1349 | 1218 | 1344 | 1117 | 1122 | 1260
t11 | 1455 | 1384 | 1694 | 1644 | 1562 | 1639 | 1776 | 1813 | 1488 | 1709
t1o | 3255 | 2753 | 3289 | 3526 | 2391 | 2588 | 3849 | 3075 | 3664 | 3312




Table 8. A high task heterogeneity high machine heterogeneity matrix generated by the CVB method.
Viask = 067 Vmach =0.6.

m mp ms my ms Mg my mg Mo Mo
t1 | 1446 | 1110 | 666 | 883 | 1663 | 1458 | 653 | 1886 | 458 | 1265

tp | 1010 | 588 | 682 | 1255 | 3665 | 3455 | 1293 | 1747 | 1173 | 1638
ts | 1893 | 2798 | 1097 | 465 | 2413 | 1184 | 2119 | 1955 | 1316 | 2686
t4 | 1014 | 1193 | 275 | 1010 | 1023 | 1282 | 559 | 1133 | 865 | 2258
ts | 170 | 444 | 500 | 408 | 790 | 528 | 232 | 303 | 301 | 480
ts | 1454 | 1106 | 901 | 793 | 1346 | 703 | 1215 | 490 | 537 | 1592
tz | 579 | 1041 | 852 | 1560 | 1983 | 1648 | 859 | 683 | 945 | 1713
tg | 2980 | 2114 | 417 | 3005 | 2900 | 3216 | 421 | 2854 | 1425 | 1631
to | 252 | 519 | 196 | 352 | 958 | 355 | 720 | 168 | 668 | 1017
tio| 173 | 235 | 273 | 176 | 110 | 127 93| 276 | 390 | 103
ti1 | 115 74| 251 71| 107 | 479 | 153 | 138 | 274 | 189
tio| 305 | 226 | 860 | 554 | 394 | 344 68 86 | 223 120

Table 9. A low task heterogeneity low machine heterogeneity matrix generated by the CVB method.
Viask = 017 Vmach =0.1.

m mp ms my ms Mg my Mg Mo Mo
tp | 985 | 1043 | 945 | 835 | 830 | 1087 | 1009 | 891 | 1066 | 1075

tp| 963 | 962 | 910 | 918 | 1078 | 1091 | 881 | 980 | 1009 | 981
ts3| 782 | 837 | 968 | 960 | 790 | 800 | 947 | 1007 | 1115 | 845
ta | 999 | 953 | 892 | 986 | 958 | 1006 | 1039 | 1072 | 1090 | 1030
ts | 971 | 972 | 913 | 1030 | 891 | 873 | 898 | 994 | 1086 | 1122
ts | 1155 | 1065 | 800 | 1247 | 980 | 1103 | 1228 | 1062 | 1011 | 1005
tz | 1007 | 1191 | 964 | 860 | 1034 | 896 | 1185 | 932 | 1035 | 1019
tg | 1088 | 864 | 972 | 984 | 736 | 950 | 944 | 994 | 970 | 894
to | 878 | 967 | 954 | 917 | 942 | 978 | 1046 | 1134 | 985 | 1032
tip | 1210 | 1120 | 1043 | 1093 | 1386 | 1097 | 1202 | 1004 | 1185 | 1226
ti1 | 910 | 958 | 1046 | 1062 | 952 | 1054 | 1020 | 1175 | 850 | 1060
tip| 930 | 935 | 908 | 1155 | 991 | 997 | 828 | 1062 | 886 | 831




Table 10. A low task heterogeneity high machine heterogeneity matrix generated by the CVB method.
Viask = 017 Vmach =0.6.

M | M mg | My ms Mg | Mz | Mg | Mg | Myo
ty | 1679 | 876 | 1332 | 716 | 1186 | 1860 | 662 | 833 | 534 | 804

tp | 1767 | 766 | 1327 | 711 | 957 | 2061 | 625 | 626 | 642 | 800
ts3 | 1870 | 861 | 1411 | 932 | 1065 | 1562 | 625 | 976 | 556 | 842
t4 | 1861 | 817 | 1218 | 865 | 1096 | 1660 | 587 | 767 | 736 | 822
ts | 1768 | 850 | 1465 | 764 | 1066 | 1585 | 663 | 863 | 579 | 757
ts | 1951 | 807 | 1177 | 914 | 939 | 1483 | 573 | 961 | 643 | 712
t7 | 1312 | 697 | 1304 | 921 | 1005 | 1639 | 562 | 831 | 633 | 784
tg | 1665 | 849 | 1414 | 795 | 1162 | 1593 | 577 | 791 | 709 | 774
to | 1618 | 753 | 1283 | 794 | 1153 | 1673 | 639 | 787 | 563 | 744
tio | 1576 | 964 | 1373 | 752 | 950 | 1726 | 699 | 836 | 633 | 764
t11 | 1693 | 742 | 1454 | 758 | 961 | 1781 | 721 | 988 | 641 | 793
t1o | 1863 | 823 | 1317 | 890 | 1137 | 1812 | 704 | 800 | 479 | 848

Table 11. A low task heterogeneity high machine heterogeneity matrix generated by the CVB method.
Viask = 017 Vmach =20.

m | m mg my ms | Mg | Ny Mg | Mg | Mo
ty | 4784 | 326 | 1620 | 1307 | 3301 | 10 | 103 | 4449 | 228 | 40

tp | 4315 | 276 | 1291 | 1863 | 3712 | 11 | 91 | 5255 | 200 | 47
t3 | 6278 | 269 | 1493 | 1181 | 3186 | 12 | 93 | 4604 | 235 | 46
ta | 4945 | 294 | 1629 | 1429 | 2894 | 14 | 87 | 4724 | 231 | 45
ts | 5276 | 321 | 1532 | 1516 | 2679 | 12 | 102 | 4621 | 205 | 46
ts | 4946 | 293 | 1467 | 1609 | 2661 | 10 | 96 | 3991 | 255 | 39
tz | 4802 | 327 | 1317 | 1668 | 2982 | 10 | 90 | 5090 | 252 | 42
tg | 5381 | 365 | 1698 | 1384 | 3668 | 12 | 99 | 5133 | 242 | 38
to | 5011 | 255 | 1491 | 1386 | 3061 | 10 | 94 | 3739 | 216 | 42
tip | 5228 | 296 | 1489 | 1515 | 3632 | 12 | 107 | 4682 | 203 | 38
t11 | 5367 | 319 | 1332 | 1363 | 3393 | 12 | 72 | 4769 | 221 | 43
tio | 4621 | 258 | 1473 | 1501 | 3124 | 12 | 96 | 4091 | 199 | 44




This experimental set-up can then be used to find outFurther, the model in [17] does not take into account the
which mapping heuristics are best suited for a given set of consistency of the task execution times.
model parameters (i.€Viask Vimach and [kask (OF Hmach)-
This information can be stored in a “look-up table,” so as 6. Conclusions
to facilitate the choice of a mapping heuristic given a set
of model parameters. The look-up table can be part of the
toolbox in the mapper.

The ETC model of Section 2 assumes that the machine

To describe different kinds of heterogeneous environ-
ments, an existing model based on the characteristics of
the ETC matrix was presented. The three parameters of
o . . this model (task heterogeneity, machine heterogeneity,
heterogeneity is the same fqr ‘7’1” tgsks, €., dlﬁerent t.aSkSand consistency) can be changed to investigate the per-
show t_he same general varlatlor_1 N t_helr execution tlmesformance of mapping heuristics for different HC systems
over d|ffe_rent_ machines. _In “?a"ty this may not be true; and different sets of tasks. An existing range-based
thg variation in the executlon times of one task on all ma- method for quantifying heterogeneity was described, and a
chines may be very different from some other task. To mod- new coefficient-of-variation-based method was proposed.

el the .""a”a“o.” in machine heterogeneity” along d|ﬁerept Corresponding procedures for generating the ETC matrices
rowlsd(lbe.{for c(ijlfferznttasks), ancl)thgrlivel of heterogeneity representing various heterogeneous environments were
;(t)ign ir?sltr(]atzgg (;chﬁa\./i[rjgr:?‘(ii? dp\(/ae,lllSet f;ﬁ]:;:?orE;ﬁ: trgzner presented. S_ample ETC matrices were provided fqr poth
' : . ETC generation procedures. The coefficient-of-variation-
tasks{ the value dfmacnfor a given task COL.”.d be. va_nab]e, based ETC generation method provides a greater control
eg, It CO[.JId be sampled from a propgbnny dilstrl.butlon. over the spread of values (i.e., heterogeneity) in any given
ane again, the.nature of the prpbablllty dllstnbuuon and row or column of the ETC matrix than the range-based
its parameters will need to be decided empirically. method. This characterization of HC environments will
allow a researcher to simulate different HC environments,
5. Related Work and then evaluate the behavior of the mapping heuristics
To the best of the authors’ knowledge, there is currently under different conditions of heterogeneity.
no work presented in the open literature that addresses the
problem of modeling of execution times of the tasks in an Acknowledgments The authors thank Anthony A.
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