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Abstract

A distributed heterogeneous computing (HC) system
consists of diversely capable machines harnessed togeth-
er to execute a set of tasks that vary in their computation-
al requirements. Heuristics are needed to map (match and
schedule) tasks onto machines in an HC system so as to
optimize some figure of merit. This paper characterizes a
simulated HC environment by using the expected execution
times of the tasks that arrive in the system onto the different
machines present in the system. This information is ar-
ranged in an “expected time to compute” (ETC) matrix as a
model of the given HC system, where the entry(i, j) is the ex-
pected execution time of task i on machine j. This model is
needed to simulate different HC environments to allow test-
ing of relative performance of different mapping heuristics
under different circumstances. In particular, the ETC mod-
el is used to express the heterogeneity among the runtimes
of the tasks to be executed, and among the machines in the
HC system. An existing range-based technique to generate
ETC matrices is described. A coefficient-of-variation based
technique to generate ETC matrices is proposed, and com-
pared with the range-based technique. The coefficient-of-
variation-based ETC generation method provides a greater
control over the spread of values (i.e., heterogeneity) in any
given row or column of the ETC matrix than the range-
based method.

1. Introduction

A distributed heterogeneous computing (HC) system
consists of diversely capable machines harnessed togeth-
er to execute a set of tasks that vary in their computation-
al requirements. Heuristics are needed to map(match and
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schedule) tasks onto machines in an HC system so as to op-
timize some figure of merit. The heuristics that match a task
to a machine can vary in the information they use. For ex-
ample, the current candidate task can be assigned to the ma-
chine that becomes available soonest (even if the task may
take a much longer time to execute on that machine than
elsewhere). In another approach, the task may be assigned
to the machine where it executes fastest (but ignores when
that machine becomes available). Or the current candidate
task may be assigned to the machine that completes the task
soonest, i.e., the machine which minimizes the sum of task
execution time and the machine ready time, where machine
readytime for a particular machine is the time when that
machine becomes available after having executed the tasks
previously assigned to it (e.g., [13]).

The discussion above should reveal that more sophisti-
cated (and possibly wiser) approaches to the mapping prob-
lem require estimates of the execution times of all tasks (that
can be expected to arrive for service) on all the machines
present in the HC suite to make better mapping decisions.
One aspect of the research on HC mapping heuristics ex-
plores the behavior of the heuristics in different HC envi-
ronments. The ability to test the relative performance of
different mapping heuristics under different circumstances
necessitates that there be a framework for generating simu-
lated execution times of all the tasks in the HC system on all
the machines in the HC system. Such a framework would,
in turn, require a quantification of heterogeneity to express
the variability among the runtimes of the tasks to be execut-
ed, and among the capabilities of the machines in the HC
system. The goal of this paper is to present a methodology
for synthesizing simulated HC environments with quantifi-
able levels of task and machine heterogeneity. This paper
characterizes the HC environments so that it will be easier
for the researchers to describe the workload and the ma-
chines used in their simulations using a common scale.

Given a set of heuristics and a characterization of HC
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environments, one can determine the best heuristic to use in
a given environment for optimizing a given objective func-
tion. In addition to increasing one’s understanding of the
operation of different heuristics, this knowledge can help a
working resource management system select which mapper
to use for a given real HC environment.

This research is part of a DARPA/ITO Quorum Pro-
gram project called MSHN(pronounced “mission”) (Man-
agement System for Heterogeneous Networks) [7]. MSHN
is a collaborative research effort that includes the Naval
Postgraduate School, NOEMIX, Purdue, and University of
Southern California. It builds on SmartNet, an implemented
scheduling framework and system for managing resources
in an HC environment developed at NRaD [5]. The techni-
cal objective of the MSHN project is to design, prototype,
and refine a distributed resource management system that
leverages the heterogeneity of resources and tasks to deliver
the requested qualities of service. The methodology devel-
oped here for generating simulated HC environments may
be used to design, analyze and evaluate heuristics for the
Scheduling Advisor component of the MSHN prototype.

The rest of this paper is organized as follows. A mod-
el for describing an HC system is presented in Section 2.
Based on that model, two techniques for simulating an HC
environment are described in Section 3. Section 4 briefly
discusses analyzing the task execution time information
from real life HC scenarios. Some related work is outlined
in the Section 5.

2. Modeling Heterogeneity

To better evaluate the behavior of mapping heuristics,
a model of the execution times of the tasks on the ma-
chines is needed so that the parameters of this model can
be changed to investigate the performance of the heuristics
under different HC systems and under different types of
tasks to be mapped. One such model consists of an
expected time to compute(ETC) matrix, where the entry(i,
j) is the expected execution time of taski on machinej. The
ETC matrix can be stored on the same machine where the
mapper is stored, and contains the estimates for the expect-
ed execution times of a task on all machines, for all the tasks
that are expected to arrive for service over a given interval
of time. (Although stored with the mapper, the ETC infor-
mation may be derived from other components of a resource
management system (e.g., [7])). In an ETC matrix, the el-
ements along a row indicate the estimates of the expected
execution times of a given task on different machines, and
those along a column give the estimates of the expected ex-
ecution times of different tasks on a given machine.

The exact actual task execution times on all machines
may not be known for all tasks because, for example, they
might be a function of input data. What is typically as-
sumed in the HC literature is that estimates of the expected

execution times of tasks on all machines are known (e.g.,
[6, 10, 12, 16]). These estimates could be built from task
profiling and machine benchmarking, could be derived from
the previous executions of a task on a machine, or could be
provided by the user (e.g., [3, 6, 8, 14, 18]).

The ETC model presented here can be characterized by
three parameters: machine heterogeneity, task heterogene-
ity, and consistency. The variation along a row is referred
to as the machineheterogeneity; this is the degree to which
the machine execution times vary for a given task [1]. A
system’s machine heterogeneity is based on a combination
of the machine heterogeneities for all tasks (rows). A sys-
tem comprised mainly of workstations of similar capabil-
ities can be said to have “low” machine heterogeneity. A
system consisting of diversely capable machines, e.g., a col-
lection of SMP’s, workstations, and supercomputers, may
be said to have “high” machine heterogeneity.

Similarly, the variation along a column of an ETC matrix
is referred to as the taskheterogeneity; this is the degree to
which the task execution times vary for a given machine [1].
A system’s task heterogeneity is based on a combination of
the task heterogeneities for all machines (columns). “High”
task heterogeneity may occur when the computational need-
s of the tasks vary greatly, e.g., when both time-consuming
simulations and fast compilations of small programs are
performed. “Low” task heterogeneity may typically be seen
in the jobs submitted by users solving problems of similar
complexity (and hence have similar execution times on a
given machine).

Based on the above idea, four categories were proposed
for the ETC matrix in [1]: (a) high task heterogeneity and
high machine heterogeneity, (b) high task heterogeneity and
low machine heterogeneity, (c) low task heterogeneity and
high machine heterogeneity, and (d) low task heterogeneity
and low machine heterogeneity.

The ETC matrix can be further classified into two cat-
egories, consistent and inconsistent [1], which are orthog-
onal to the previous classifications. For a consistentETC
matrix, if a machinemx has a lower execution time than
a machinemy for a tasktk, then the same is true for any
taskti . A consistent ETC matrix can be considered to rep-
resent an extreme case of low task heterogeneity and high
machine heterogeneity. If machine heterogeneity is high e-
nough, then the machines may be so much different from
each other in their compute power that the differences in
the computational requirements of the tasks (if low enough)
will not matter in determining the relative order of execu-
tion times for a given task on the different machines (i.e.,
along a row). As a trivially extreme example, consider a
system consisting of Intel Pentium III and Intel 286. The
Pentium III will almost always run any given task from a
certain set of tasks faster than the 286 provided the compu-
tational requirements of all tasks in the set are similar (i.e.,



low task heterogeneity), thereby giving rise to a consistent
ETC matrix.

In inconsistentETC matrices, the relationships among
the task computational requirements and machine capabili-
ties are such that no structure as that in the consistent case
is enforced. Inconsistent ETC matrices occur in practice
when: (1) there is a variety of different machine architec-
tures in the HC suite (e.g., parallel machines, superscalars,
workstations), and (2) there is a variety of different com-
putational needs among the tasks (e.g., readily paralleliz-
able tasks, difficult to parallelize tasks, tasks that are float-
ing point intensive, simple text formatting tasks). Thus, the
way in which a task’s needs correspond to a machine’s ca-
pabilities may differ for each possible pairing of tasks to
machines.

A combination of these two cases, which may be more
realistic in many environments, is the partially-consistent
ETC matrix, which is an inconsistent matrix with a consis-
tent sub-matrix [2, 13]. This sub-matrix can be composed
of any subset of rows and any subset of columns. As an ex-
ample, in a given partially-consistent ETC matrix, 50% of
the tasks and 25% of the machines may define a consistent
sub-matrix.

Even though no structure is enforced on an inconsistent
ETC matrix, a given ETC matrix generated to be inconsis-
tent may have the structure of a partially consistent ETC
matrix. In this sense, partially-consistent ETC matrices are
a special case of inconsistent ETC matrices. Similarly, con-
sistent ETC matrices are special cases of inconsistent and
partially-consistent ETC matrices.

It should be noted that this classification scheme is used
for generating ETC matrices. Later in this paper, it will
be shown how these three cases differ in generation pro-
cess. If one is given an ETC matrix, and is asked to classify
it among these three classes, it will be called a consistent
ETC matrix only if it is fully consistent. It will be called
inconsistent if it is not consistent.

Often an inconsistent ETC matrix will have some par-
tial consistency in it. For example, a trivial case of partial-
consistency always exists; for any two machines in the HC
suite,at least50% of the tasks will show consistent execu-
tion times.

3. Generating the ETC Matrices

3.1. Range Based ETC Matrix Generation

Any method for generating the ETC matrices will require
that heterogeneity be defined mathematically. In the range-
based ETC generation technique, the heterogeneity of a set
of execution time values is quantified by the range of the
execution times [2, 13]. The procedures given in this section
for generating the ETC matrices produce inconsistent ETC
matrices. It is shown later in this section how consistent and

(1) for i from 0 to (t�1)
(2) τ[i] =U(1; Rtask)
(3) for j from 0 to (m�1)
(4) e[i; j] = τ[i]�U(1; Rmach)
(5) endfor
(6) endfor

Figure 1. The range-based method for gener-
ating ETC matrices.

partially-consistent ETC matrices could be obtained from
the inconsistent ETC matrices.

Assumem is the total number of machines in the HC
suite, andt is the total number of tasks expected to be
serviced by the HC system over a given interval of time.
Let U(a; b) be a number sampled from a uniform dis-
tribution with a range froma to b. (Each invocation of
U(a; b) returns a new sample.) LetRtaskandRmachbe num-
bers representing task heterogeneity and machine hetero-
geneity, respectively, such that higher values forRtask and
Rmach represent higher heterogeneities. Then an ETC ma-
trix e[0::(t� 1);0::(m� 1)], for a given task heterogeneity
and a given machine heterogeneity, can be generated by the
range-based method given in Figure 1, wheree[i; j] is the
estimated expected execution time for the taski on the ma-
chine j.

As shown in Figure 1, each iteration of the outerfor loop
samples a uniform distribution with a range from 1 toRtask

to generate one value for a vectorτ. For each element ofτ
thus generated, them iterations of the innerfor loop (Line
3) generate one row of the ETC matrix. For thei-th iteration
of the outerfor loop, each iteration of the innerfor loop
produces one element of the ETC matrix by multiplyingτ[i]
with a random number sampled from a uniform distribution
ranging from 1 toRmach.

In the range-based ETC generation, it is possible to
obtain high task heterogeneity low machine heterogeneity
ETC matrices with characteristics similar to that of low task
heterogeneity high machine heterogeneity ETC matrices if
Rtask = Rmach. In realistic HC systems, the variation that
tasks show in their computational needs is generally larg-
er than the variation that machines show in their capabil-
ities. Therefore it is assumed here that requirements of
high heterogeneity tasks are likely to be more “heteroge-
neous” than the capabilities of high heterogeneity machines
(i.e., Rtask� Rmach). However, for the ETC matrices gen-
erated here, low heterogeneity in both machines and tasks
is assumed to be same. Table 1 shows typical values for
Rtask andRmach for low and high heterogeneities. Tables 2
through 5 show four ETC matrices generated by the range-
based method. The execution time values in Table 2 are



Table 1. Suggested values for Rtask and
Rmach for a realistic HC system for high het-
erogeneity and low heterogeneity.

high low

task 105 101

machine 102 101

much higher than the execution time values in Table 5. The
difference in the values between these two tables would
be reduced if the range for the low task heterogeneity was
changed to 103 to 104 instead of 1 to 10.

With the range-based method, low task heterogeneity
high machine heterogeneity ETC matrices tend to have high
heterogeneity for both tasks and machines, due to method
used for generation. For example, in Table 5, originalτ
vector values were selected from 1 to 10. When each entry
is multiplied by a number from 1 to 100 for high machine
heterogeneity this generates a task heterogeneity compara-
ble to machine heterogeneity. It is shown later in Section
3.2 how to produce low task heterogeneity high machine
heterogeneity ETC matrices which do show low task het-
erogeneity.

3.2. Coefficient-of-Variation Based ETC Matrix
Generation

A modification of the procedure in Figure 1 defines the
coefficient of variation, V, of execution time values as a
measure of heterogeneity (instead of the range of execu-
tion time values). The coefficient of variation of a set of
values is a better measure of the dispersion in the values
than the standard deviation because it expresses the stan-
dard deviation as a percentage of the mean of the values
[11]. Let σ andµ be the standard deviation and mean, re-
spectively, of a set of execution time values. ThenV = σ=µ.
The coefficient-of-variation-based ETC generation method
provides a greater control over spread of the execution time
values (i.e., heterogeneity) in any given row or column of
the ETC matrix than the range-based method.

The coefficient-of-variation-based(CVB) ETC genera-
tion method works as follows. A taskvector, q, of expected
execution times with the desired task heterogeneity must be
generated. Essentially,q[i] is the execution time of taski on
an “average” machine in the HC suite. For example, if the
HC suite consists of an IBM SP/2, an Alpha server, and a
Sun SPARC 5 workstation, thenq would represent estimat-
ed execution times of the tasks on the Alpha server.

To generateq, two input parameters are needed:µtask

andVtask. The input parameter,µtask is used to set the av-
erage of the values inq. The input parameterVtask is the
desired coefficient of variation of the values inq. The value
of Vtask quantifies task heterogeneity, and is larger for high-
er task heterogeneity. Each element of the task vectorq is
then used to produce one row of the ETC matrix such that
the desired coefficient of variation of values in each row is
Vmach, another input parameter. The value ofVmach quanti-
fies machine heterogeneity, and is larger for higher machine
heterogeneity. Thusµtask,Vtask, andVmachare the three input
parameters for the CVB ETC generation method.

A direct approach to simulating HC environments should
use the probability distribution that is empirically found to
represent closely the distribution of task execution times.
However, no standard benchmarks for HC systems are cur-
rently available. Therefore, this research uses a distribution
which, though not necessarily reflective of an actual HC
scenario, is flexible enough to be adapted to one. Such a
distribution should not produce negative values of task ex-
ecution times (e.g., ruling out Gaussian distribution), and
should have a variable coefficient of variation (e.g., ruling
out exponential distribution).

The gamma distribution is a good choice for the CVB
ETC generation method because, with proper constraints on
its characteristic parameters, it can approximate two other
probability distributions, namely the Erlang-k and Gaussian
(without the negative values) [11, 15]. The fact that it can
approximate these two other distributions is helpful because
this increases the chances that the simulated ETC matrices
could be synthesized closer to some real life HC environ-
ment.

The uniform distribution can also be used but is not as
flexible as the gamma distribution for two reasons: (1) it
does not approximate any other distribution, and (2) the
characteristic parameters of a uniform distribution cannot
take all real values (explained later in the Section 3.3).

The gamma distribution [11, 15] is defined in terms of
characteristic shape parameter,α, and scale parameter,β.
The characteristic parameters of the gamma distribution can
be fixed to generate different distributions. For example,
if α is fixed to be an integer, then the gamma distribution
becomes an Erlang-k distribution. Ifα is large enough, then
the gamma distribution approaches a Gaussian distribution
(but still does not return negative values for task execution
times).

Figures 2(a) and 2(b) show how a gamma density func-
tion changes with the shape parameterα. When the shape
parameter increases from two to eight, the shape of the dis-
tribution changes from a curve biased to the left to a more
balanced bell-like curve. Figures 2(a), 2(c) and 2(d) show



Table 2. A high task heterogeneity low machine heterogeneity matrix generated by the range-based
method using Rtask and Rmach values of Table 1.

m1 m2 m3 m4 m5 m6 m7

t1 333304 375636 198220 190694 395173 258818 376568
t2 442658 400648 346423 181600 289558 323546 380792
t3 75696 103564 438703 129944 67881 194194 425543
t4 194421 392810 582168 248073 178060 267439 611144
t5 466164 424736 503137 325183 193326 241520 506642
t6 665071 687676 578668 919104 795367 390558 758117
t7 177445 227254 72944 139111 236971 325137 347456
t8 32584 55086 127709 51743 100393 196190 270979
t9 311589 568804 148140 583456 209847 108797 270100

t10 314271 113525 448233 201645 274328 248473 170176
t11 272632 268320 264038 140247 110338 29620 69011
t12 489327 393071 225777 71622 243056 445419 213477

Table 3. A high task heterogeneity high machine heterogeneity matrix generated by the range-based
method using Rtask and Rmach values of Table 1.

m1 m2 m3 m4 m5 m6 m7

t1 2425808 3478227 719442 2378978 408142 2966676 2890219
t2 2322703 2175934 228056 3456054 6717002 5122744 3660354
t3 1254234 3182830 4408801 5347545 4582239 6124228 5343661
t4 227811 419597 13972 297165 438317 23374 135871
t5 6477669 5619369 707470 8380933 4693277 8496507 7279100
t6 1113545 1642662 303302 244439 1280736 541067 792149
t7 2860617 161413 2814518 2102684 8218122 7493882 2945193
t8 1744479 623574 1516988 5518507 2023691 3527522 1181276
t9 6274527 1022174 3303746 7318486 7274181 6957782 2145689

t10 1025604 694016 169297 193669 1009294 1117123 690846
t11 2390362 1552226 2955480 4198336 1641012 3072991 3262071
t12 96699 882914 63054 199175 894968 248324 297691



Table 4. A low task heterogeneity low machine heterogeneity matrix generated by the range-based
method using Rtask and Rmach values of Table 1.

m1 m2 m3 m4 m5 m6 m7

t1 22 21 6 16 15 24 13
t2 7 46 5 28 45 43 31
t3 64 83 45 23 58 50 38
t4 53 56 26 42 53 9 58
t5 11 12 14 7 8 3 14
t6 33 31 46 25 23 39 10
t7 24 11 17 14 25 35 4
t8 20 17 23 4 3 18 20
t9 13 28 14 7 34 6 29

t10 2 5 7 7 6 3 7
t11 16 37 23 22 23 12 44
t12 8 66 47 11 47 55 56

Table 5. A low task heterogeneity high machine heterogeneity matrix generated by the range-based
method using Rtask and Rmach values of Table 1.

m1 m2 m3 m4 m5 m6 m7

t1 440 762 319 532 151 652 308
t2 459 205 457 92 92 379 60
t3 499 263 92 152 75 18 128
t4 421 362 347 194 241 481 391
t5 276 636 136 355 338 324 255
t6 89 139 37 67 9 53 139
t7 404 521 54 295 257 208 539
t8 49 114 279 22 93 39 36
t9 59 35 184 262 145 287 277

t10 7 235 44 81 330 56 78
t11 716 601 75 689 299 144 457
t12 435 208 256 330 6 394 419
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Figure 2. Gamma probability density function for (a) �=2; �=8, (b) �=8; �=8, (c) �=2; �=16,
and (d) �=2; �= 32.



(1) αtask= 1=Vtask
2; αmach= 1=Vmach

2;
βtask= µtask=αtask

(2) for i from 0 to (t�1)
(3) q[i] = G(αtask; βtask)

/* q[i] will be used as mean
of i-th row of ETC matrix */

(4) βmach[i] = q[i]=αmach

/* scale parameter for i-th row */
(5) for j from 0 to (m�1)
(6) e[i; j] = G(αmach; βmach[i])
(7) endfor
(8) endfor

Figure 3. The general CVB method for gener-
ating ETC matrices.

the effect on the distribution caused by an increase in the
scale parameter from 8 to 16 to 32. The two-fold increase in
the scale parameter does not change the shape of the graph
(the curve is still biased to the left); however the curve now
has twice as large a domain (i.e., range on x-axis).

The gamma distribution’s characteristic parameters,α
and β, can be easily interpreted in terms ofµtask, Vtask,
and Vmach. For a gamma distribution,σ = β

p
α , and

µ= βα, so thatV = σ=µ= 1=
p

α (andα = 1=V2). Then
αtask = 1=Vtask

2 and αmach= 1=Vmach
2. Further, because

µ= βα, β = µ=α, andβtask= µtask=αtask. Also, for taski,
βmach[i] = q[i]=αmach.

Let G(α; β) be a number sampled from a gamma dis-
tribution with the given parameters. (Each invocation of
G(α; β) returns a new sample.) Figure 3 shows the general
procedure for the CVB ETC generation.

Given the three input parameters,Vtask; Vmach, andµtask,
Line (1) of Figure 3 determines the shape parameterαtask

and scale parameterβtaskof the gamma distribution that will
be later sampled to build the task vectorq. Line (1) also
calculates the shape parameterαmachto use later in Line (6).
In the i-th iteration of the outerfor loop (Line 2) in Figure
3, a gamma distribution with parametersαtask andβtask is
sampled to obtainq[i]. Thenq[i] is used to determine the
scale parameterβmach[i] (to be used later in Line (6)). For
thei-th iteration of the outerfor loop (Line 2), each iteration
of the innerfor loop (Line 5) produces one element of thei-
th row of the ETC matrix by sampling a gamma distribution
with parametersαmach andβmach[i]. One complete row of
the ETC matrix is produced bym iterations of the innerfor
loop (Line 5). Note that while each row in the ETC matrix
has gamma distributed execution times, the execution times
in columns are not gamma distributed.

The ETC generation method of Figure 3 can be used to
generate high task heterogeneity high machine heterogene-

(1) αtask= 1=Vtask
2; αmach= 1=Vmach

2;
βmach= µmach=αmach

(2) for j from 0 to (m�1)
(3) p[ j] = G(αmach; βmach)

/* p[ j] will be used as mean
of j-th column of ETC matrix */

(4) βtask[ j] = p[ j]=αtask

/* scale parameter for j-th column */
(5) for i from 0 to (t�1)
(6) e[i; j] = G(αtask; βtask[ j])
(7) endfor
(8) endfor

Figure 4. The CVB method for generating low
task heterogeneity high machine heterogene-
ity ETC matrices.

ity ETC matrices, high task heterogeneity low machine het-
erogeneity ETC matrices, and low task heterogeneity low
machine heterogeneity ETC matrices, but cannot generate
low task heterogeneity high machine heterogeneity ETC
matrices. To satisfy the heterogeneity quadrants of Section
2, each column in the final low task heterogeneity high ma-
chine heterogeneity ETC matrix should reflect the low task
heterogeneity of the “parent” task vectorq. This condition
would not necessarily hold if rows of the ETC matrix were
produced with a high machine heterogeneity from a task
vector of low heterogeneity. This is because a given col-
umn may be formed from widely different execution time
values from different rows because of the high machine het-
erogeneity. That is, any two entries in a given column are
based on different values ofq[i] andαmach, and may there-
fore show high task heterogeneity as opposed to the intend-
ed low task heterogeneity. In contrast, in a high task het-
erogeneity low machine heterogeneity ETC matrix the low
heterogeneity among the machines for a given task (across
a row) is based on the sameq[i] value.

One solution is to generate what is in effect a transpose
of a high task heterogeneity low machine heterogeneity ma-
trix to produce a low task heterogeneity high machine het-
erogeneity one. The transposition can be built into the pro-
cedure as shown in Figure 4. The procedure in Figure 4 is
very similar to the one in Figure 3. The input parameter
µtask is replaced withµmach. Here, first a machinevector, p,
(with an average value ofµmach) is produced. Each element
of this “parent” machine vector is then used to generate one
low task heterogeneity column of the ETC matrix, such that
the high machine heterogeneity present inp is reflected in
all rows. This approach for generating low task heterogene-
ity high machine heterogeneity ETC matrices can also be
used with the range-based method.



Tables 6 through 11 show some sample ETC matrices
generated using the CVB ETC generation method. Tables 6
and 7 both show high task heterogeneity low machine het-
erogeneity ETC matrices. In both tables, the spread of the
execution time values in columns is higher than that in rows.
The ETC matrix in Table 7 has a higher task heterogeneity
(higherVtask) than the ETC matrix in Table 6. This can be
seen in a higher spread in the columns of matrix in Table 7
than that in Table 6.

Tables 8 and 9 show high task heterogeneity high ma-
chine heterogeneity and low task heterogeneity low ma-
chine heterogeneity ETC matrices, respectively. The exe-
cution times in Table 8 are widely spaced along both rows
and columns. The spread of execution times in Table 9 is
smaller along both columns and rows, because bothVtask

andVmachare smaller.
Tables 10 and 11 show low task heterogeneity high ma-

chine heterogeneity ETC matrices. In both tables, the
spread of the execution time values in rows is higher than
that in columns. ETC matrix in Table 11 has a higher ma-
chine heterogeneity (higherVmach) than the ETC matrix in
Table 10. This can be seen in a higher spread in the rows of
matrix in Table 11 than that in Table 10.

3.3. Uniform Distribution in the CVB Method

The uniform distribution could also be used for the CVB
ETC generation method. The uniform distribution’s charac-
teristic parametersa (lower bound for the range of values)
andb (upper bound for the range of values), can be easily
interpreted in terms ofµtask, Vtask, andVmach. (Recall that
Vtask= σtask=µtaskandVmach= σmach=µmach). For a uniform
distribution,σ = (b�a)=

p
12 andµ= (b+a)=2 [15]. So

that
a+b= 2µ (1)

a�b=�σ
p

12 (2)

Adding Equations (1) and (2),

a= µ�σ
p

3 (3)

a= µ(1� (σ=µ)
p

3) (4)

a= µ(1�V
p

3) (5)

Also,
b= 2µ�a (6)

The Equations (5) and (6) can be used to generate the task
vectorq from the uniform distribution with the following
parameters:

atask= µtask(1�Vtask

p
3) (7)

btask= 2µtask�atask (8)

Once the task vectorq has been generated, thei-th row of
the ETC matrix can be generated by sampling (m times) a
uniform distribution with the following parameters:

amach= q[i](1�Vmach

p
3) (9)

bmach= 2q[i]�amach (10)

The CVB ETC generation using the uniform distribu-
tion, however, places a restriction on the values ofVtask and
Vmach. Because bothatask andamach have to be positive, it
follows from Equations (7) and (9) that the maximum value
for Vmach or Vtask is 1=

p
3. Thus, for the CVB ETC gen-

eration, the gamma distribution is better than the uniform
distribution because it does not restrict the values of task or
machine heterogeneities.

3.4. Producing Consistent ETC Matrices

The procedures given in Figures 1, 3, and 4 produce
inconsistent ETC matrices. Consistent ETC matrices can
be obtained from the inconsistent ETC matrices generated
above by sorting the execution times for each task on all
machines (i.e., sorting the values within each row and do-
ing this for all rows independently). From the inconsistent
ETC matrices generated above, partially-consistent matri-
ces consisting of ani�k sub-matrix could be generated by
sorting the execution times across a random subset ofk ma-
chines for each task in a random subset ofi tasks.

It should be noted from Tables 10 and 11 that the greater
the difference in machine and task heterogeneities, the high-
er the degree of consistency in the inconsistent low task het-
erogeneity high machine heterogeneity ETC matrices. For
example, in Table 11 all tasks show consistent execution
times on all machines except on the machines that corre-
spond to columns 3 and 4. As mentioned in Section 1, these
degrees and classes of mixed-machine heterogeneity can be
used to characterize many different HC environments.

4. Analysis and Synthesis

Once the actual ETC matrices from a real life scenario
are obtained, they can be analyzed to estimate the prob-
ability distribution of the execution times, and the values
of the model parameters (i.e.,Vtask, Vmach, and µtask (or
µmach, if a low task heterogeneity high machine heterogene-
ity ETC matrix is desired)) appropriate for the given real
life scenario. The above analysis could be carried out using
common statistical procedures [9]. Once a model of a par-
ticular HC system is available, the effect of changes in the
workload (i.e., the tasks arriving for service in the system)
and the system (i.e., the machines present in the HC system)
can be studied in a controlled manner by simply changing
the parameters of the ETC model.



Table 6. A high task heterogeneity low machine heterogeneity matrix generated by the CVB method.
Vtask = 0:3; Vmach = 0:1.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

t1 628 633 748 558 743 684 740 692 593 554
t2 688 712 874 743 854 851 701 701 811 864
t3 965 1029 1087 1020 921 825 1238 934 928 1042
t4 891 866 912 896 776 993 875 999 919 860
t5 1844 1507 1353 1436 1677 1691 1508 1646 1789 1251
t6 1261 1157 1193 1297 1261 1251 1156 1317 1189 1306
t7 850 928 780 1017 761 900 998 838 797 824
t8 1042 1291 1169 1562 1277 1431 1236 1092 1274 1305
t9 1309 1305 1641 1225 1425 1280 1388 1268 1290 1549

t10 881 865 752 893 883 813 892 805 873 915

Table 7. A high task heterogeneity low machine heterogeneity matrix generated by the CVB method.
Vtask = 0:5; Vmach = 0:1.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

t1 377 476 434 486 457 486 431 417 429 428
t2 493 370 400 420 502 472 475 440 483 576
t3 745 646 922 650 791 878 853 791 756 788
t4 542 490 469 559 488 498 509 431 547 542
t5 625 666 618 710 624 615 618 599 522 540
t6 921 785 759 979 865 843 853 870 939 801
t7 677 767 750 720 797 728 941 717 686 870
t8 428 418 394 460 434 427 378 427 447 466
t9 263 289 267 231 243 222 283 257 240 247

t10 1182 1518 1272 1237 1349 1218 1344 1117 1122 1260
t11 1455 1384 1694 1644 1562 1639 1776 1813 1488 1709
t12 3255 2753 3289 3526 2391 2588 3849 3075 3664 3312



Table 8. A high task heterogeneity high machine heterogeneity matrix generated by the CVB method.
Vtask = 0:6; Vmach = 0:6.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

t1 1446 1110 666 883 1663 1458 653 1886 458 1265
t2 1010 588 682 1255 3665 3455 1293 1747 1173 1638
t3 1893 2798 1097 465 2413 1184 2119 1955 1316 2686
t4 1014 1193 275 1010 1023 1282 559 1133 865 2258
t5 170 444 500 408 790 528 232 303 301 480
t6 1454 1106 901 793 1346 703 1215 490 537 1592
t7 579 1041 852 1560 1983 1648 859 683 945 1713
t8 2980 2114 417 3005 2900 3216 421 2854 1425 1631
t9 252 519 196 352 958 355 720 168 668 1017

t10 173 235 273 176 110 127 93 276 390 103
t11 115 74 251 71 107 479 153 138 274 189
t12 305 226 860 554 394 344 68 86 223 120

Table 9. A low task heterogeneity low machine heterogeneity matrix generated by the CVB method.
Vtask = 0:1; Vmach = 0:1.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

t1 985 1043 945 835 830 1087 1009 891 1066 1075
t2 963 962 910 918 1078 1091 881 980 1009 981
t3 782 837 968 960 790 800 947 1007 1115 845
t4 999 953 892 986 958 1006 1039 1072 1090 1030
t5 971 972 913 1030 891 873 898 994 1086 1122
t6 1155 1065 800 1247 980 1103 1228 1062 1011 1005
t7 1007 1191 964 860 1034 896 1185 932 1035 1019
t8 1088 864 972 984 736 950 944 994 970 894
t9 878 967 954 917 942 978 1046 1134 985 1032

t10 1210 1120 1043 1093 1386 1097 1202 1004 1185 1226
t11 910 958 1046 1062 952 1054 1020 1175 850 1060
t12 930 935 908 1155 991 997 828 1062 886 831



Table 10. A low task heterogeneity high machine heterogeneity matrix generated by the CVB method.
Vtask = 0:1; Vmach = 0:6.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

t1 1679 876 1332 716 1186 1860 662 833 534 804
t2 1767 766 1327 711 957 2061 625 626 642 800
t3 1870 861 1411 932 1065 1562 625 976 556 842
t4 1861 817 1218 865 1096 1660 587 767 736 822
t5 1768 850 1465 764 1066 1585 663 863 579 757
t6 1951 807 1177 914 939 1483 573 961 643 712
t7 1312 697 1304 921 1005 1639 562 831 633 784
t8 1665 849 1414 795 1162 1593 577 791 709 774
t9 1618 753 1283 794 1153 1673 639 787 563 744

t10 1576 964 1373 752 950 1726 699 836 633 764
t11 1693 742 1454 758 961 1781 721 988 641 793
t12 1863 823 1317 890 1137 1812 704 800 479 848

Table 11. A low task heterogeneity high machine heterogeneity matrix generated by the CVB method.
Vtask = 0:1; Vmach = 2:0.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

t1 4784 326 1620 1307 3301 10 103 4449 228 40
t2 4315 276 1291 1863 3712 11 91 5255 200 47
t3 6278 269 1493 1181 3186 12 93 4604 235 46
t4 4945 294 1629 1429 2894 14 87 4724 231 45
t5 5276 321 1532 1516 2679 12 102 4621 205 46
t6 4946 293 1467 1609 2661 10 96 3991 255 39
t7 4802 327 1317 1668 2982 10 90 5090 252 42
t8 5381 365 1698 1384 3668 12 99 5133 242 38
t9 5011 255 1491 1386 3061 10 94 3739 216 42

t10 5228 296 1489 1515 3632 12 107 4682 203 38
t11 5367 319 1332 1363 3393 12 72 4769 221 43
t12 4621 258 1473 1501 3124 12 96 4091 199 44



This experimental set-up can then be used to find out
which mapping heuristics are best suited for a given set of
model parameters (i.e.,Vtask, Vmach, andµtask (or µmach)).
This information can be stored in a “look-up table,” so as
to facilitate the choice of a mapping heuristic given a set
of model parameters. The look-up table can be part of the
toolbox in the mapper.

The ETC model of Section 2 assumes that the machine
heterogeneity is the same for all tasks, i.e., different tasks
show the same general variation in their execution times
over different machines. In reality this may not be true;
the variation in the execution times of one task on all ma-
chines may be very different from some other task. To mod-
el the “variation in machine heterogeneity” along different
rows (i.e., for different tasks), another level of heterogeneity
could be introduced. For example, in the CVB ETC gener-
ation, instead of having a fixed value forVmach for all the
tasks, the value ofVmach for a given task could be variable,
e.g., it could be sampled from a probability distribution.
Once again, the nature of the probability distribution and
its parameters will need to be decided empirically.

5. Related Work

To the best of the authors’ knowledge, there is currently
no work presented in the open literature that addresses the
problem of modeling of execution times of the tasks in an
HC system (except the already discussed work [13]). How-
ever, below are presented two tangentially related works.

A detailed workload model for parallel machines has
been given in [4]. However the model is not intended for
HC systems in that the machine heterogeneity is not mod-
eled. Task execution times are modeled but tasks are as-
sumed to be running on multiple processing nodes, unlike
the HC environment presented here where tasks run on sin-
gle machines only.

A method for generating random task graphs is given in
[17] as part of description of the simulation environment
for the HC systems. The method proposed in [17] assumes
that the computation cost of a taskti , averaged over all the
machines in the system, is available aswi . The method
does provide for characterizing the differences in the exe-
cution times of a given task on different processors in the
HC system (i.e., machine heterogeneity). The “range per-
centage” (β) of computation costs on processors roughly
corresponds to the notion of machine heterogeneity as p-
resented here. The execution time,ei j , of taskti on machine
mj is randomly selected from the range,wi � (1� β=2)�
ei j �wi� (1+β=2). However, the method in [17] does not
provide for describing the differences in the execution times
of all the tasks on an “average” machine in the HC system.
The method in [17] does not tell how the differences in the
values ofwi for different machines will be modeled. That
is, the method is [17] does not consider task heterogeneity.

Further, the model in [17] does not take into account the
consistency of the task execution times.

6. Conclusions
To describe different kinds of heterogeneous environ-

ments, an existing model based on the characteristics of
the ETC matrix was presented. The three parameters of
this model (task heterogeneity, machine heterogeneity,
and consistency) can be changed to investigate the per-
formance of mapping heuristics for different HC systems
and different sets of tasks. An existing range-based
method for quantifying heterogeneity was described, and a
new coefficient-of-variation-based method was proposed.
Corresponding procedures for generating the ETC matrices
representing various heterogeneous environments were
presented. Sample ETC matrices were provided for both
ETC generation procedures. The coefficient-of-variation-
based ETC generation method provides a greater control
over the spread of values (i.e., heterogeneity) in any given
row or column of the ETC matrix than the range-based
method. This characterization of HC environments will
allow a researcher to simulate different HC environments,
and then evaluate the behavior of the mapping heuristics
under different conditions of heterogeneity.
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