
Dynamic Matching and Scheduling of a Class of Independent Tasks onto
Heterogeneous Computing Systems

Muthucumaru Maheswaran†, Shoukat Ali‡, Howard Jay Siegel‡,
Debra Hensgen�, and Richard F. Freund?

†Department of Computer Science ‡ School of Electrical and Computer Engineering
University of Manitoba Purdue University

Winnipeg, MB R3T 2N2, Canada West Lafayette, IN 47907-1285 USA
Email: maheswar@cs.umanitoba.ca Email: falis,hj g@ecn.purdue.edu

�Department of Computer Science ?NOEMIX Inc.
Naval Postgraduate School 1425 Russ Blvd., Ste. T-110
Monterey, CA 93940 USA San Diego, CA 92101 USA

Email: hensgen@cs.nps.navy.mil Email: rffreund@noemix.com

Abstract

Dynamic mapping (matching and scheduling) heuristics
for a class of independent tasks using heterogeneous dis-
tributed computing systems are studied. Two types of map-
ping heuristics are considered: on-line and batch mode
heuristics. Three new heuristics, one for batch and two for
on-line, are introduced as part of this research. Simula-
tion studies are performed to compare these heuristics with
some existing ones. In total, five on-line heuristics and three
batch heuristics are examined. The on-line heuristics con-
sider, to varying degrees and in different ways, task affinity
for different machines and machine ready times. The batch
heuristics consider these factors, as well as aging of tasks
waiting to execute. The simulation results reveal that the
choice of mapping heuristic depends on parameters such
as: (a) the structure of the heterogeneity among tasks and
machines, (b) the optimization requirements, and (c) the ar-
rival rate of the tasks.

1. Introduction

An emerging trend in computing is to use distributed
heterogeneous computing (HC) systems constructed by net-
working various machines to execute a set of tasks [5, 14].
These HC systems have resource management systems
(RMSs) to govern the execution of the tasks that arrive for
service. This paper describes and compares eight heuris-
tics that can be used in such an RMS for assigning tasks to
machines.

In a general HC system, dynamicschemes are neces-

This research was supported by the DARPA/ITO Quorum Program under
the NPS subcontract numbers N62271-97-M-0900, N62271-98-M-0217,
and N62271-98-M-0448. Some of the equipment used was donated by
Intel.

sary to assign tasks to machines (matching), and to com-
pute the execution order of the tasks assigned to each ma-
chine (scheduling) [3]. In the HC system considered here,
the tasks are assumed to be independent, i.e., no communi-
cations between the tasks are needed. A dynamic scheme is
needed because the arrival times of the tasks may be random
and some machines in the suite may go off-line and new ma-
chines may come on-line. The dynamic mapping(matching
and scheduling) heuristics investigated in this study are non-
preemptive, and assume that the tasks have no deadlines or
priorities associated with them.

The mapping heuristics can be grouped into two cate-
gories: on-line mode and batch-mode heuristics. In the
on-line mode, a task is mapped onto a machine as soon
as it arrives at the mapper. In the batch mode, tasks are
not mapped onto the machines as they arrive; instead they
are collected into a set that is examined for mapping at
prescheduled times called mapping events. The indepen-
dent set of tasks that is considered for mapping at the map-
ping events is called a meta-task. A meta-task can include
newly arrived tasks (i.e., the ones arriving after the last
mapping event) and the ones that were mapped in earlier
mapping events but did not begin execution. While on-
line mode heuristics consider a task for mapping only once,
batch mode heuristics consider a task for mapping at each
mapping event until the task begins execution.

The trade-offs between on-line and batch mode heuris-
tics are studied experimentally. Mapping independent tasks
onto an HC suite is a well-known NP-complete problem if
throughput is the optimization criterion [9]. For the heuris-
tics discussed in this paper, maximization of the throughput
is the primary objective. This performance metric is the
most common one in the production oriented environments.
However, the performance of the heuristics is examined us-

ing other metrics as well.
Three new heuristics, one for batch and two for on-line,

are introduced as part of this research. Simulation studies
are performed to compare these heuristics with some exist-
ing ones. In total, five on-line heuristics and three batch
heuristics are examined. The on-line heuristics consider, to
varying degrees and in different ways, task affinity for dif-
ferent machines and machine ready times. The batch heuris-
tics consider these factors, as well as aging of tasks waiting
to execute.

Section 2 describes some related work. In Section 3, the
optimization criterion and another performance metric are
defined. Section 4 discusses the mapping approaches stud-
ied here. The simulation procedure is given in Section 5.
Section 6 presents the simulation results.

This research is part of a DARPA/ITO Quorum Program
project called MSHN(Management System for Heteroge-
neous Networks) [8]. MSHN is a collaborative research
effort that includes Naval Postgraduate School, NOEMIX,
Purdue, and University of Southern California. It builds on
SmartNet, an operational scheduling framework and sys-
tem for managing resources in an HC environment devel-
oped at NRaD [6]. The technical objective of the MSHN
project is to design, prototype, and refine a distributed re-
source management system that leverages the heterogeneity
of resources and tasks to deliver the requested qualities of
service. The heuristics developed here, or their derivatives,
may be included in the Scheduling Advisor component of
the MSHN prototype.

2. Related Work

In the literature, mapping tasks onto machines is often
referred to as scheduling. Several researchers have worked
on the dynamic mapping problem from areas including job
shop scheduling and distributed computer systems (e.g.,
[10, 12, 18, 20]).

Some of the heuristics examined for batch-mode map-
ping in this paper are based on the static heuristics given in
[9]. The heuristics presented in [9] are concerned with map-
ping independent tasks onto heterogeneous machines such
that the completion time of the last finishing task is min-
imized. The problem is recognized as NP-complete and
several heuristics are designed. Worst case performance
bounds are obtained for the heuristics. The Min-min heuris-
tic that is used here as a benchmark for batch mode mapping
is based on the ideas presented in [9], and implemented in
SmartNet [6].

In [10], a dynamic matching and scheduling scheme
based on a distributed policy for mapping tasks onto HC
systems is provided. A task can have several subtasks, and
the subtasks can have data dependencies among them. In
the scheme presented in [10], the subtasks in an application
receive information about the subtasks in other applications

only in terms of load estimates on the machines. Each appli-
cation uses an algorithm that uses a weighting factor to de-
termine the mapping for the subtasks. The weighting factor
for a subtask is derived by considering the length of the crit-
ical path from the subtask to the end of the directed acyclic
graph (DAG) that represents the application. If each appli-
cation is an independent task with no subtasks, as is the case
in this paper, then the scheme presented in [10] is not suit-
able, because the mapping criterion is designed to exploit
information available in a DAG. Therefore, the scheme pro-
vided in [10] is not compared to the heuristics presented in
this paper.

Two dynamic mapping approaches, one using a central-
ized policy and the other using a distributed policy, are de-
veloped in [12]. The centralized heuristic referred to therein
as the global queue equalization algorithm is similar to the
minimum completion time heuristic that is used as a bench-
mark in this paper and described in Section 4. The heuris-
tic based on the distributed policy uses a method similar to
the minimum completion time heuristic at each node. The
mapper at a given node considers the local machine and the
k highest communication bandwidth neighbors to map the
tasks in the local queue. Therefore, the mapper based on
the distributed strategy assigns a task to the best machine
among thek+1 machines. The simulation results provided
in [12] show that the centralized heuristic always performs
better than the distributed heuristic. The heuristics in [12]
are very similar to the minimum completion time heuristic
used as a benchmark in this paper. Hence, they are not ex-
perimentally compared with the heuristics presented here.

In [18], a survey of dynamic scheduling heuristics for
distributed computing systems is provided. Most of the
heuristics featured in [18] perform load sharing to schedule
the tasks on different machines, not considering any task-
machine affinities while making the mapping decisions for
HC systems. In contrast to [18], these affinities are con-
sidered to varying degrees in all but one of the heuristics
examined in this paper.

A survey of dynamic scheduling heuristics for job-shop
environments is provided in [20]. It classifies the dynamic
scheduling algorithms into three approaches: conventional
approach, knowledge-based approach, and distributed prob-
lem solving approach. The class of heuristics grouped under
the conventional approach are similar to the minimum com-
pletion time heuristic considered in this paper, however, the
problem domains considered in [20] and here differ. Fur-
thermore, some of the heuristics featured in [20] use prior-
ities and deadlines to determine the task scheduling order
whereas priorities and deadlines are not considered here.

In distributed computer systems, load balancing schemes
have been a popular strategy for mapping tasks onto the ma-
chines (e.g., [15, 18]). In [15], the performance character-
istics of simple load balancing heuristics for HC distributed

systems are studied. The heuristics presented in [15] do not
consider task execution times when making their decisions.

SmartNet [6] is an RMS for HC systems that employs
various heuristics to map tasks to machines considering re-
source and task heterogeneity. In this paper, some appro-
priate selected SmartNet heuristics are included in the com-
parative study.

3. Performance Metrics

The expected execution timeei j of task ti on machine
mj is defined as the amount of time taken bymj to ex-
ecuteti given mj has no load whenti is assigned. The
expected completion timeci j of taskti on machinemj is de-
fined as the wall-clock time at whichmj completesti (after
having finished any previously assigned tasks). Letmbe the
total number of the machines in the HC suite. LetK be the
set containing the tasks that will be used in a given test set
for evaluating heuristics in the study. Let the arrival time
of the taskti beai , and let the begin time ofti bebi. From
the above definitions,ci j = bi + ei j . Let ci be ci j , where
machinej is assigned to execute taski. The makespanfor
the complete schedule is then defined asmaxti2K(ci) [17].
Makespan is a measure of the throughput of the HC system,
and does not measure the quality of service imparted to an
individual task.

Recall from Section 1, in on-line mode, the mapper as-
signs a task to a machine as soon as the task arrives at
the mapper, and in batch mode a set of independent tasks
that need to be mapped at a mapping event is called a
meta-task. (In some systems, the term meta-task is de-
fined in a way that allows inter-task dependencies.) In
batch mode, for thei-th mapping event, the meta-taskMi

is mapped at timeτi , wherei � 0. The initial meta-task,
M0, consists of all the tasks that arrived prior to timeτ0,
i.e.,M0 = ft j j aj < τ0g. The meta-task,Mk, for k> 0, con-
sists of tasks that arrived after the last mapping event and
the tasks that had been mapped, but did not start executing,
i.e., Mk = ft j j τk�1 � aj < τkg[ft j j aj < τk�1;bj > τkg.
The waiting timefor taskt j is defined asbj �aj . Let c̄j be
the completion time of taskt j if it is the only task that is ex-
ecuting on the system. The sharing penalty(ρ j) for the task
t j is defined as(cj � c̄j). The average sharing penaltyfor
the tasks in the setK is given by[∑ t j2K ρ j]=j K j. The av-
erage sharing penalty for a set of tasks mapped by a given
heuristic is an indication of the heuristic’s ability to mini-
mize the effects of contention among different tasks in the
set. It therefore indicates quality of service provided to an
individual task, as gauged by the wait incurred by the task
before it begins and the time to perform the actual compu-
tation. Other performance metrics are considered in [13].

4. Mapping Heuristics

4.1. Overview

In the on-line mode heuristics, each task is considered
only once for matching and scheduling, i.e., the mapping is
not changed once it is computed. When the arrival rate is
low, machines may be ready to execute a task as soon as it
arrives at the mapper. Therefore, it may be beneficial to use
the mapper in the on-line mode so that a task need not wait
until the next mapping event to begin its execution.

In batch mode, the mapper considers a meta-task for
matching and scheduling at each mapping event. This en-
ables the mapping heuristics to possibly make better deci-
sions, because the heuristics have the resource requirement
information for a whole meta-task, and know about the ac-
tual execution times of a larger number of tasks (as more
tasks might complete while waiting for the mapping event).
When the task arrival rate is high, there will be a sufficient
number of tasks to keep the machines busy in between the
mapping events, and while a mapping is being computed. It
is, however, assumed in this study that the running time of
the heuristic is negligibly small as compared to the average
task execution time.

Both on-line and batch mode heuristics assume that
estimates of expected task execution times on each ma-
chine in the HC suite are known. The assumption that
these estimated expected times are known is commonly
made when studying mapping heuristics for HC systems
(e.g.,[7, 11, 19]). (Approaches for doing this estimation
based on task profiling and analytical benchmarking are dis-
cussed in [14].) These estimates can be supplied before a
task is submitted for execution, or at the time it is submit-
ted. (The use of some of the heuristics studied here in a
static environment is discussed in [4].)

The ready timeof a machine is quantified by the earliest
time that machine is going to be ready after completing the
execution of the tasks that are currently assigned to it. It
is assumed that each time a taskti completes on a machine
mj a report is sent to the mapper. Because the heuristics
presented here are dynamic, the expected machine ready
times are based on a combination of actual task execution
times and estimated expected task execution times. The ex-
periments presented in Section 6 model this situation us-
ing simulated actual values for the execution times of the
tasks that have already finished their execution. Also, all
heuristics examined here operate in a centralized fashion on
a dedicated suite of machines; i.e., the mapper controls the
execution of all jobs on all machines in the suite. It is also
assumed that the mapping heuristic is being run on a sepa-
rate machine.

4.2. On-line mode mapping heuristics

The MCT(minimum completion time) heuristic assigns
each task to the machine that results in that task’s earliest
completion time. This causes some tasks to be assigned to
machines that do not have the minimum execution time for
them. The MCT heuristic is a variant of the fast-greedy
heuristic from SmartNet [6]. The MCT heuristic is used as
a benchmark for the on-line mode, i.e., the performance of
the other heuristics is compared against that of the MCT
heuristic.

As a task arrives, all the machines in the HC suite are
examined to determine the machine that gives the earliest
completion time for the task. Therefore, it takesO(m) time
to map a given task.

The MET (minimum execution time) heuristic assigns
each task to the machine that performs that task’s compu-
tation in the least amount of execution time (this heuristic is
also known as LBA (limited best assignment) [1] and UDA
(user directed assignment) [6]). This heuristic, in contrast to
MCT, does not consider machine ready times. This heuristic
can cause a severe imbalance in load across the machines.
The advantages of this method are that it gives each task
to the machine that performs it in the least amount of exe-
cution time, and the heuristic is very simple. The heuristic
needsO(m) time to find the machine that has the minimum
execution time for a task.

The SA(switching algorithm) heuristic is motivated by
the following observations. The MET heuristic can poten-
tially create load imbalance across machines by assigning
many more tasks to some machines than to others, whereas
the MCT heuristic tries to balance the load by assigning
tasks for earliest completion time. If the tasks are arriving
in a random mix, it is possible to use MET at the expense
of load balance until a given threshold and then use MCT to
smooth the load across the machines. The SA heuristic uses
the MCT and MET heuristics in a cyclic fashion depending
on the load distribution across the machines. The purpose is
to have a heuristic with the desirable properties of both the
MCT and the MET.

Let the maximum ready time over all machines in the
suite bermax, and the minimum ready time bermin. Then,
the load balance indexacross the machines is given byπ =
rmin=rmax. The parameterπ can have any value in the inter-
val [0;1]. If π is 1.0, then the load is evenly balanced across
the machines. Ifπ is 0, then at least one machine has not yet
been assigned a task. Two threshold values,πl (low) andπh

(high), for the ratioπ are chosen in[0;1] such thatπl < πh.
Initially, the value ofπ is set to 0.0. The SA heuristic begins
mapping tasks using the MCT heuristic until the value of
load balance index increases to at leastπh. After that point
in time, the SA heuristic begins using the MET heuristic to
perform task mapping. This causes the load balance index

to decrease. When it reachesπl , the SA heuristic switches
back to using the MCT heuristic for mapping the tasks and
the cycle continues.

As an example of functioning of the SA with lower and
upper limits of 0.6 and 0.9, respectively, forjK j= 1000, the
SA switched between the MET and the MCT two times, as-
signing 715 tasks using the MCT. Forj K j= 2000, the SA
switched five times, using the MCT to assign 1080 tasks.
The percentage of tasks assigned using MCT gets progres-
sively smaller for largerj K j. This is because an MET as-
signment in a highly loaded system will bring a smaller de-
crease in load balance index than when the same assignment
is made in a lightly loaded system. Therefore many more
MET assignments can be made in a highly loaded system
before the load balance index falls below the lower thresh-
old.

At each task’s arrival, the SA heuristic determines the
load balance index. In the worst case, this takesO(m) time.
In the next step, the time taken to assign a task to a ma-
chine is of orderO(m) whether SA uses the MET to per-
form the mapping or the MCT. Overall, the SA heuristic
takesO(m) time irrespective of which heuristic is actually
used for mapping the task.

The KPB(k-percent best) heuristic considers only a sub-
set of machines while mapping a task. The subset is formed
by picking the(km=100) best machines based on the execu-
tion times for the task, where 100=m� k� 100. The task
is assigned to a machine that provides the earliest comple-
tion time in the subset. Ifk= 100, then the KPB heuristic is
reduced to the MCT heuristic. Ifk= 100=m, then the KPB
heuristic is reduced to the MET heuristic. A “good” value of
k maps a task to a machine only within a subset formed from
computationally superior machines. The purpose is not as
much as matching of the current task to a computationally
well-matched machine as it is to avoid putting the current
task onto a machine which might be more suitable for some
yet-to-arrive tasks. This “foresight” about task heterogene-
ity lacks in the MCT which might assign a task to a poorly
matched machine for an immediate marginal improvement
in completion time, possibly depriving some subsequently
arriving tasks of that machine, and eventually leading to
a larger makespan as compared to the KPB. It should be
noted that while both the KPB and SA have elements of the
MCT and the MET in their operation, it is only in the KPB
thateachtask assignment attempts to optimize objectives of
the MCT and the MET simultaneously. However, in cases
where a fixed subset of machines is not among thek% best
for any task, the KPB will cause much machine idle time
compared to the MCT, and can result in much poorer per-
formance.

For each task,O(mlogm) time is spent in ranking the
machines for determining the subset of machines to exam-
ine. Once the subset of machines is determined, it takes

O(km
100) time, i.e.,O(m) time to determine the machine as-

signment. Overall the heuristic takesO(mlogm) time.
The OLB (opportunistic load balancing) heuristic as-

signs the task to the machine that becomes ready next. It
does not consider the execution time of the task when map-
ping it onto a machine. If multiple machines become ready
at the same time, then one machine is arbitrarily chosen.

The complexity of the OLB heuristic is dependent on the
implementation. In the implementation considered here, the
mapper may need to examine allm machines to find the
machine that becomes ready next. Therefore, it takesO(m)
to find the assignment. Other implementations may require
idle machines to assign tasks to themselves by accessing a
shared global queue of tasks [21].

4.3. Batch mode mapping heuristics

In the batch mode heuristics, meta-tasks are mapped af-
ter predefined intervals. These intervals are defined in this
study using one of the two strategies proposed below.

The regular time intervalstrategy maps the meta-tasks at
regular intervals of time except when all machines are busy.
When all machines are busy, all scheduled mapping events
that precede the one before the expected ready time of the
machine that finishes earliest are canceled.

The fixed countstrategy maps a meta-taskMi as soon as
one of the following two mutually exclusive conditions are
met: (a) an arriving task makesj Mi j larger than or equal to
a predetermined arbitrary numberκ, or (b) all tasks have ar-
rived, and a task completes while the number of tasks which
yet have to begin is larger than or equal toκ. In this strat-
egy, the length of the mapping intervals will depend on the
arrival rate and the completion rate. The possibility of ma-
chines being idle while waiting for the next mapping event
will depend on the arrival rate, completion rate,m, andκ.

The batch mode heuristics considered in this study are
discussed in the paragraphs below. The complexity analy-
sis performed for these heuristics considers a single map-
ping event. In the complexity analysis, the meta-task
size is assumed to be equal to the average of meta-task
sizes at all actually performed mapping events. Let the
average meta-task sizebeS.

The Min-minheuristic shown in Figure 1 is from Smart-
Net [6]. In Figure 1, letr j denote the expected time ma-
chinemj will become ready to execute a task after finishing
the execution of all tasks assigned to it at that point in time.
First theci j entries are computed using theei j andr j values.
For each taskti the machine that gives the earliest expected
completion time is determined by scanning the rows of the
c matrix. The tasktk that has the minimum earliest expected
completion time is determined and then assigned to the cor-
responding machine. The matrixc and vectorr are updated
and the above process is repeated with tasks that have not
yet been assigned a machine.

Min-min begins by scheduling the tasks that change the
expected machine ready time status by the least amount that
any assignment could. If tasksti andtk are contending for
a particular machinemj , then Min-min assignsmj to the
task (sayti) that will change the ready time ofmj less. This
increases the probability thattk will still have its earliest
completion time onmj , and shall be assigned to it. Be-
cause att = 0, the machine which finishes a task earliest
is also the one that executes it fastest, and from thereon
Min-min heuristic changes machine ready time status by the
least amount for every assignment, the percentage of tasks
assigned their first choice (on basis of expected execution
time) is likely to be higher in Min-min than with the other
batch mode heuristics described in this section. The expec-
tation is that a smaller makespan can be obtained if a larger
number of tasks is assigned to the machines that not only
complete them earliest but also execute them fastest.

(1) for all tasks ti in meta-task Mv (in an arbitrary order)
(2) for all machines mj (in a fixed arbitrary order)
(3) ci j = ei j + r j
(4) do until all tasks in Mv are mapped
(5) for each task in Mv find the earliest completion

time and the machine that obtains it
(6) find the task tk with the minimum earliest

completion time
(7) assign task tk to the machine ml that gives the
(8) earliest completion time
(9) delete task tk from Mv
(10) update rl
(11) update cil for all i
(12)enddo

Figure 1. The Min-min heuristic.

The initialization of thec matrix in Line (1) to Line (3)
takesO(Sm) time. Thedo loop of the Min-min heuristic
is repeatedS times and each iteration takesO(Sm) time.
Therefore, the heuristic takesO(S2m) time.

The Max-minheuristic is similar to the Min-min heuris-
tic given in Figure 1. It is also from SmartNet [6]. Once the
machine that provides the earliest completion time is found
for every task, the tasktk that has the maximum earliest
completion time is determined and then assigned to the cor-
responding machine. The matrixc and vectorr are updated
and the above process is repeated with tasks that have not
yet been assigned a machine. The Max-min heuristic has
the same complexity as the Min-min heuristic.

The Max-min is likely to do better than the Min-min
heuristic in the cases where we have many more shorter
tasks than the long tasks. For example, if there is only one
long task, Max-min will execute many short tasks concur-
rently with the long task. The resulting makespan might
just be determined by the execution time of the long task

in these cases. Min-min, however, first finishes the shorter
tasks (which may be more or less evenly distributed over
the machines) and then executes the long task, increasing
the makespan.

The Sufferageheuristic is based on the idea that better
mappings can be generated by assigning a machine to a task
that would “suffer” most in terms of expected completion
time if that particular machine is not assigned to it. Let
the sufferage valueof a taskti be the difference between its
second earliest completion time (on some machinemy) and
its earliest completion time (on some machinemx). That is,
usingmx will result in the best completion time forti , and
usingmy the second best.

Figure 2 shows the Sufferage heuristic. The initialization
phase in Lines (1) to (3) is similar to the ones in the Min-min
and Max-min heuristics. Initially all machines are marked
unassigned. In each iteration of thefor loop in Lines (6) to
(14), pick arbitrarily a tasktk from the meta-task. Find the
machinemj that gives the earliest completion time for task
tk, and tentatively assignmj to tk if mj is unassigned. Mark
mj as assigned, and removetk from meta-task. If, how-
ever, machinemj has been previously assigned to a taskti ,
choose fromti andtk the task that has the higher sufferage
value, assignmj to the chosen task, and remove the cho-
sen task from the meta-task. The unchosen task will not be
considered again for this execution of thefor statement, but
shall be considered for the next iteration of thedo loop be-
ginning on Line (4). When all the iterations of thefor loop
are completed (i.e., when one execution of thefor statement
is completed), update the machine ready time of the each
machine assigned a new task. Perform the next iteration of
thedo loop beginning on Line (4) until all tasks have been
mapped.

Table 1 shows a scenario in which the Sufferage will
outperform the Min-min. Table 1 shows the expected ex-
ecution time values for four tasks on four machines (all ini-
tially idle). In this particular case, the Min-min heuristic
gives a makespan of 9.3 and the Sufferage heuristic gives a
makespan of 7.8. Figure 3 gives a pictorial representation
of the assignments made for the case in Table 1.

From the pseudo code given in Figure 2, it can be ob-
served that first execution of thefor statement on Line (6)
takesO(Sm) time. The number of task assignments made
in one execution of thisfor statement depends on the total
number of machines in the HC suite, the number of ma-
chines that are being contended for among different tasks,
and the number of tasks in the meta-task being mapped. In
the worst case, only one task assignment will be made in
each execution of thefor statement. Then meta-task size
will decrease by one at eachfor statement execution. The
outer do loop will be iteratedS times to map the whole
meta-task. Therefore, in the worst case, the timeT(S) taken

m0 m1 m2 m3

t0 4 4.8 13.4 5
t1 5 8.2 8.8 8.9
t2 5.5 6.8 9.4 9.3
t3 5.2 6 7.8 10.8

Table 1. An example expected execution time
matrix that illustrates the situation where the
Sufferage heuristic outperforms the Min-min
heuristic.

to map a meta-task of sizeSwill be

T(S) = Sm+(S�1)m+(S�2)m+ � � �+m

T(S) = O(S2m)

In the best case, there are as many machines as there are
tasks in the meta-task, and there is no contention among the
tasks. Then all the task are assigned in the first execution of
thefor statement so thatT(S) = O(Sm). Let ω be a number
quantifying the extent of contention among the tasks for the
different machines. The running time of Sufferage heuristic
can then be given asO(ωSm) time, where 1�ω� S. It can
be seen thatω is equal toS in the worst case, and is 1 in
the best case; these values ofω are numerically equal to the
number of iterations of thedo loop on Line (4).

(1) for all tasks tk in meta-task Mv (in an arbitrary order)
(2) for all machines mj (in a fixed arbitrary order)
(3) ck j = ek j + r j
(4) do until all tasks in Mv are mapped
(5) mark all machines as unassigned
(6) for each task tk in Mv (in an arbitrary order)
(7) find machine mj that gives the earliest

completion time
(8) sufferage value = second earliest completion

time � earliest completion time
(9) if machine mj is unassigned
(10) assign tk to machine mj , delete tk

from Mv, mark mj assigned
(11) else
(12) if sufferage value of task ti already

assigned to mj is less than the
sufferage value of task tk

(13) unassign ti , add ti back to Mv,
assign tk to machine mj ,
delete tk from Mv

(14) endfor
(15) update the vector r based on the tasks that

were assigned to the machines
(16) update the c matrix
(17)enddo

Figure 2. The Sufferage heuristic.

The batch mode heuristics can cause some tasks to be
starvedof machines. LetHi be a subset of meta-taskMi

consisting of tasks that were mapped (as part ofMi) at the
mapping eventi at timeτi but did not begin execution by
the next mapping event atτi+1. Hi is the subset ofMi that
is included inMi+1. Due to the expected heterogeneous na-
ture of the tasks, the meta-taskMi+1 may be so mapped that
some or all of the tasks arriving betweenτi andτi+1 may
begin executing before the tasks in setHi do. It is possible
that some or all of the tasks inHi may be included inHi+1.
This probability increases as the number of new tasks ar-
riving betweenτi andτi+1 increases. In general, some tasks
may be remapped at each successive mapping event without
actually beginning execution (i.e., the task is starving for a
machine).

0
m

0
m

1
m

2
m3

m
1

m

2
m

3
m

task
task t

bar heights are proportional
to task execution times

task
task t

tt 0

1

2

3

using Min-min using Sufferage

Figure 3. An example scenario (based on Ta-
ble 1) where the Sufferage gives a shorter
makespan than the Min-min.

To reduce starvation, aging schemes are implemented.
The ageof a task is set to zero when it is mapped for the
first time and incremented by one each time the task is
remapped. Letσ be a constant that can be adjusted em-
pirically to change the extent to which aging affects the op-
eration of the heuristic. An aging factor, ζ = (1+age=σ),
is then computed for each task. For the experiments in this
study,σ is set to 10. The aging factor is used to enhance
the probability of an “older” task beginning before the tasks
that would otherwise begin first. In the Min-min heuristic,
for each task, the completion time obtained in Line (5) of
Figure 1 is multiplied by the corresponding value for1

ζ . As
the age of a task increases, its age-compensated expected

completion time (i.e., one used to determine the mapping)
gets increasingly smaller than its original expected comple-
tion time. This increases its probability of being selected in
Line (6) in Figure 1.

Similarly, for the Max-min heuristic, the completion
time of a task is multiplied byζ. In the Sufferage heuris-
tic, the sufferage value computed in Line (8) in Figure 2 is
multiplied byζ.

5. Simulation Procedure

The mappings are simulated using a discrete event sim-
ulator. The task arrivals are modeled by a Poisson random
process. The simulator contains an ETC (expected time to
compute) matrix that contains the expected execution times
of a task on all machines, for all the tasks that can arrive for
service. The ETC matrix entries used in the simulation stud-
ies represent theei j values that the heuristic would use in its
operation. The actual execution time of a task can be differ-
ent from the value given by the ETC matrix. This variation
is modeled by generating a simulated actual execution time
for each task by sampling a truncated Gaussian probabil-
ity density function with variance equal to three times the
expected execution time of the task and mean equal to the
expected execution time of the task [2, 16]. If the sampling
results in a negative value, the value is discarded and the
same probability density function is sampled again. This
process is repeated until a positive value is returned by the
sampling process.

In an ETC matrix, the numbers along a row indicate
the execution times of the corresponding task on differ-
ent machines. The average variation along the rows is re-
ferred to as the machine heterogeneity[2]. Similarly, the
average variation along the columns is referred to as the
task heterogeneity[2]. One classification of heterogeneity
is to divide it into high heterogeneity and low heterogene-
ity. Based on the above idea, four categories were proposed
for the ETC matrix in [2]: (a) high task heterogeneity and
high machine heterogeneity (HiHi), (b) high task hetero-
geneity and low machine heterogeneity (HiLo), (c) low task
heterogeneity and high machine heterogeneity (LoHi), and
(d) low task heterogeneity and low machine heterogeneity
(LoLo). The ETC matrix can be further classified into two
classes, consistent and inconsistent, which are orthogonal
to the previous classifications. For a consistentETC ma-
trix, if machinemx has a lower execution time than ma-
chinemy for task tk, then the same is true for any taskti .
The ETC matrices that are not consistent are inconsistent
ETC matrices. In addition to the consistent and inconsis-
tent classes, a semi-consistentclass could also be defined.
A semi-consistent ETC matrix is characterized by a consis-
tent sub-matrix. In the semi-consistent ETC matrices used
here, 50% of the tasks and 25% of the machines define a
consistent sub-matrix. Furthermore, it is assumed that for a

particular task the execution times that fall within the con-
sistent sub-matrix are smaller than those that fall out. This
assumption is justified because the machines that perform
consistently better than the others for some tasks are more
likely to be very much faster for those tasks than very much
slower.

Let an ETC matrix havetmax rows andmmax columns.
Random ETC matrices that belong to the different cate-
gories are generated in the following manner:

1. LetΓt be an arbitrary constant quantifying task hetero-
geneity, being smaller for low task heterogeneity. Let
Nt be a number picked from the uniform random dis-
tribution with range [1;Γt].

2. Let Γm be an arbitrary constant quantifying machine
heterogeneity, being smaller for low machine hetero-
geneity. LetNm be a number picked from the uniform
random distribution with range [1;Γm].

3. SampleNt tmax times to get a vectorq[0::(tmax�1)].

4. Generate the ETC matrix,e[0::(tmax� 1);0::(mmax�
1)] by the following algorithm:

for ti from 0 to (tmax�1)
for mj from 0 to (mmax�1)

pick a new value forNm

e[i, j] = q[i] * Nm.
endfor

endfor

From the raw ETC matrix generated above, a semi-
consistent matrix could be generated by sorting the execu-
tion times for a random subset of the tasks on a random
subset of machines. An inconsistent ETC matrix could be
obtained simply by leaving the raw ETC matrix as such.
Consistent ETC matrices were not considered in this study
because they are least likely to arise in the current intended
MSHN environment.

In the experiments described here, the values ofΓt for
low and high task heterogeneities are 1000 and 3000, re-
spectively. The values ofΓm for low and high machine het-
erogeneities are 10 and 100, respectively. These heteroge-
neous ranges are based on one type of expected environment
for MSHN.

6. Experimental Results and Discussion

6.1. Overview

The experimental evaluation of the heuristics is per-
formed in three parts. In the first part, the on-line mode
heuristics are compared using various metrics. The sec-
ond part involves a comparison of the batch mode heuris-
tics. The third part is the comparison of the batch mode and

the on-line mode heuristics. Unless stated otherwise, the
following are valid for the experiments described here. The
number of machines is held constant at 20, and the experi-
ments are performed forjK j = f1000; 2000g. All heuris-
tics are evaluated in a HiHi heterogeneity environment, both
for the inconsistent and the semi-consistent cases, because
these correspond to some of the currently expected MSHN
environments. A Poisson distribution is used to generate the
task arrivals. For each value ofjK j, tasks are mapped under
two different arrival rates,λh andλl , such thatλh > λl . The
value ofλh is chosen empirically to be high enough to allow
at most 50% tasks to complete when the last task in the set
arrives. Similarly,λl is chosen to be low enough to allow at
least 90% of the tasks to complete when the last task in the
set arrives. The MCT heuristic is used in this standardiza-
tion. Unless otherwise stated, the task arrival rate is set to
λh. λl is more likely to represent an HC system where the
task arrival is characterized by little burstiness; no particular
group of tasks arrives in a much shorter span of time than
some other group having same number of tasks.λh is sup-
posed to characterize the arrivals in an HC system where
a large group of tasks arrives in a much shorter time than
some other group having same number of tasks; e.g., in this
case a burst ofj K j tasks.

Example comparisons are discussed in Subsections 6.2
to 6.4. Each data point in the comparison charts is an aver-
age over 50 trials, where for each trial the simulated actual
task execution times are chosen independently. More gen-
eral conclusions about the heuristics’ performance is in Sec-
tion 7. Comparisons for a larger set of performance metrics
are given in [13].

6.2. Comparisons of the on-line mode heuristics

Unless otherwise stated, the on-line mode heuristics are
investigated under the following conditions. In the KPB
heuristic,k is equal to 20%. This particular value ofk was
found to give the lowest makespan for the KPB heuristic
under the conditions of the experiments. For the SA, the
lower threshold and the upper threshold for the load balance
index are 0.6 and 0.9, respectively. Once again these values
were found to give optimum values of makespan for the SA.

In Figure 4, on-line mode heuristics are compared based
on makespan for inconsistent HiHi heterogeneity. From
Figure 4, it can be noted that the KPB heuristic completes
the execution of the last finishing task earlier than the other
heuristics (however, it is only slightly better than the MCT).
For k = 20% andm = 20, the KPB heuristic forces a task
to choose a machine from a subset of four machines. These
four machines have the lowest execution times for the given
task. The chosen machine would give the smallest comple-
tion time as compared to other machines in the set.

Figure 5 compares the on-line mode heuristics using av-
erage sharing penalty. Once again, the KPB heuristic per-

forms best. However, the margin of improvement is smaller
than that for the makespan. It is evident that the KPB pro-
vides maximum throughput (system oriented performance
metric) and minimum average sharing penalty (application
oriented performance metric).

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

1000 2000

m
ak

es
pa

n
(s

ec
)

number of tasks

MCT
KPB

SA
MET
OLB

Figure 4. Makespan for the on-line heuristics for
inconsistent HiHi heterogeneity.

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

1000 2000

av
er

ag
e

sh
ar

in
g

pe
na

lty
 (

se
c)

number of tasks

MCT
KPB

SA
MET
OLB

Figure 5. Average sharing penalty of the on-line
heuristics for inconsistent HiHi heterogeneity.

Figure 6 compares the makespans of the different on-line
heuristics for semi-consistent HiHi ETC matrices. Figure 7
compares the average sharing penalties of the different on-
line heuristics. As shown in Figures 4 and 6 the relative
performance of the different on-line heuristics is impacted
by the degree of consistency of the ETC matrices.

For the semi-consistent type of heterogeneity, machines
within a particular subset perform tasks that lie within a par-
ticular subset faster than other machines. From Figure 6, it
can be observed that for semi-consistent ETC matrices, the

MET heuristic performs the worst. For the semi-consistent
matrices used in these simulations, the MET heuristic maps
half of the tasks to the same machine, considerably increas-
ing the load imbalance. Although the KPB also considers
only the fastest four machines for each task for the particu-
lar value ofk used here (which happen to be the same four
machines for half of the tasks), the performance does not
differ much from the inconsistent HiHi case. Additional ex-
periments have shown that the KPB performance is quite
insensitive to values ofk as long ask is larger than the mini-
mum value (where the KPB heuristic is reduced to the MET
heuristic). For example, whenk is doubled from its min-
imum value of 5, the makespan decreases by a factor of
about 5. However a further doubling ofk brings down the
makespan by a factor of only about 1.2.

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

8e+07

1000 2000

m
ak

es
pa

n
(s

ec
)

number of tasks

MCT
KPB

SA
MET
OLB

Figure 6. Makespan of the on-line heuristics for
semi-consistent HiHi heterogeneity.

6.3. Comparisons of the batch mode heuristics

Figures 8 and 9 compare the batch mode heuristics based
on makespan and average sharing penalty, respectively. In
these comparisons, unless otherwise stated, the regular time
interval strategy is employed to schedule meta-task map-
ping events. The time interval is set to 10 seconds. This
value was empirically found to optimize makespan over
other values. From Figure 8, it can be noted that the Suf-
ferage heuristic outperforms the Min-min and the Max-min
heuristics based on makespan (although, it is only slightly
better than the Min-min). However, for average sharing
penalty, the Min-min heuristic outperforms the other heuris-
tics (Figure 9). The Sufferage heuristic considers the “loss”
in completion time of a task if it is not assigned to its first
choice, in making the mapping decisions. By assigning
their first choice machines to the tasks that have the highest
sufferage values among all contending tasks, the Sufferage
heuristic reduces the overall completion time.

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

1000 2000

av
er

ag
e

sh
ar

in
g

pe
na

lty
 (

se
c)

number of tasks

MCT
KPB

SA
MET
OLB

Figure 7. Average sharing penalty of the on-line
heuristics for semi-consistent HiHi heterogene-
ity.

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

1000 2000

m
ak

es
pa

n
(s

ec
)

number of tasks

Min-min
Sufferage
Max-min

Figure 8. Makespan of the batch heuristics for
the regular time interval strategy and inconsis-
tent HiHi heterogeneity.

Furthermore, it can be noted that the makespan given
by the Max-min is much larger than the makespans ob-
tained by the other two heuristics. Using reasoning simi-
lar to that given in Subsection 4.3 for explaining better ex-
pected performance for the Min-min, it can be seen that
the Max-min assignments change the machine ready time
status by a larger amount than the Min-min assignments
do. (The Sufferage also does not necessarily schedule the
tasks that finish later first.) If tasksti andtk are contending
for a particular machinemj , then the Max-min assignsmj

to the task (sayti) that will increase the ready time ofmj

more. This decreases the probability thattk will still have
its earliest completion time onmj and shall be assigned to
it. In general, the percentage of tasks assigned their first

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

1000 2000

av
er

ag
e

sh
ar

in
g

pe
na

lty
 (

se
c)

number of tasks

Min-min
Sufferage
Max-min

Figure 9. Average sharing penalty of the batch
heuristics for the regular time interval strategy
and inconsistent HiHi heterogeneity.

choice is likely to be lower for the Max-min than for other
batch mode heuristics. It might be expected that a larger
makespan will result if a larger number of tasks is assigned
to the machines that do not have the best execution times
for those tasks.

Figure 10 compares the makespan of the batch mode
heuristics for semi-consistent HiHi heterogeneity. The com-
parison of the same heuristics for the same parameters is
shown in Figure 11 with respect to average sharing penalty.
Results for both average sharing penalty and makespan for
semi-consistent HiHi are similar to those for inconsistent
HiHi.

The impact of aging on batch mode heuristics is shown
in Figures 12 and 13. From Figures 12 and 13, three obser-
vations are in order. First, the Max-min heuristic benefits
most from the aging scheme. Second, the makespan and
the average sharing penalty given by the Sufferage heuris-
tic change negligibly when aging scheme is applied. Third,
even though aging schemes are meant to reduce starvation
of tasks (as gauged by average sharing penalty), they also
reduce the makespan.

The fact that the Max-min benefits most from the aging
scheme can be explained using the reasoning given in the
discussion on starvation in Subsection 4.3. The larger the
number (sayNnew) of newly arriving tasks between the map-
ping eventsτi andτi+1, the larger the probability that some
of the tasks mapped at mapping eventτi , or earlier, will
be starved (due to more competing tasks). The Max-min
heuristic schedules tasks that finish later first. As mapping
events are not scheduled if machines are busy, two succes-
sive mapping events in the Max-min are likely to be sepa-
rated by a larger time duration than those in the Sufferage
or the Min-min. The value ofNnew is therefore likely to

be larger in the Max-min schedules, and starvation is more
likely to occur. Consequently, aging schemes would make
greater difference to the Max-min schedules: the tasks that
finish sooner are much more likely to be scheduled before
the tasks that finish later in the Max-min with aging than in
the Max-min without aging. In contrast to the Max-min (or
the Min-min) operation, the Sufferage heuristic optimizes a
machine assignment only over the tasks that are contending
for that particular machine. This reduces the probability of
competition between the “older” tasks and the new arrivals,
which in turn reduces the need for an aging scheme, or the
improvement in schedule in case aging is implemented.

Figures 14, 15, 16, and 17 show the results of repeating
the above experiments with a batch count mapping strategy
for a batch size of 40. This particular batch size was found
to give an optimum value of the makespan. Figure 14 com-
pares regular time interval strategy and fixed count strategy
on the basis of makespans given by different heuristics for
inconsistent HiHi heterogeneity. In Figure 15, the average
sharing penalties of the same heuristics for the same pa-
rameters are compared. It can be seen that the fixed count
approach gives essentially the same results for the Min-min
and the Sufferage heuristics. The Max-min heuristic, how-
ever, benefits considerably from the fixed count approach;
makespan drops to about 60% forj K j= 1000, and to about
50% for j K j= 2000 as compared to the makespan given
by the regular time interval strategy. A possible explanation
lies in a conceptual element of similarity between the fixed
count approach and the aging scheme. A “good” value of
κ in fixed count strategy is neither too small to allow only
a limited optimization of machine assignment nor too large
to subject the tasks carried over from the previous mapping
events to a possibly defeating competition with the new or
recent arrivals. Figures 16 and 17 show the makespan and
the average sharing penalty given for the semi-consistent
case. These results show that, for the Sufferage and the
Min-min, the regular time interval approach gives slightly
better results than the fixed count approach. For the Max-
min, however, the fixed count approach gives better perfor-
mance.

6.4. Comparing on-line and batch heuristics

In Figure 18, two on-line mode heuristics, the MCT and
the KPB, are compared with two batch mode heuristics, the
Min-min and the Sufferage. The comparison is performed
with Poisson arrival rate set toλh. It can be noted that for
the higher arrival rate and largerj K j, batch heuristics are
superior to on-line heuristics. This is because the number
of tasks waiting to begin execution is likely to be larger in
above circumstances than in any other, which in turn means
that rescheduling is likely to improve many more mappings
in such a system. The on-line heuristics consider only one
task when they try to optimize machine assignment, and do

0

1e+07

2e+07

3e+07

4e+07

5e+07

1000 2000

m
ak

es
pa

n
(s

ec
)

number of tasks

Min-min
Sufferage
Max-min

Figure 10. Makespan of the batch heuristics
for the regular time interval strategy and semi-
consistent HiHi heterogeneity.

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

1000 2000

av
er

ag
e

sh
ar

in
g

pe
na

lty
 (

se
c)

number of tasks

Min-min
Sufferage
Max-min

Figure 11. Average sharing penalty of the batch
heuristics for the regular time interval strategy
and semi-consistent HiHi heterogeneity.

not reschedule. Recall that the mapping heuristics use a
combination of expected and actual task execution times
to compute machine ready times. The on-line heuristics
are likely to approach the performance of the batch ones at
low task arrival rates, because then both classes of heuris-
tics have comparable information about the actual execution
times of the tasks. For example, at a certain low arrival rate,
the 100-th arriving task might find that 70 previously arrived
tasks have completed. At a higher arrival rate, only 20 tasks
might have completed when the 100-th task arrived. The
above observation is borne out in Figure 19, which shows
that the relative performance difference between on-line and
batch heuristics decreases with a decrease in arrival rate.
Given the observation that the KPB and the Sufferage per-

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

1000 2000

m
ak

es
pa

n
(s

ec
)

number of tasks

Min-min (aging)
Min-min

Sufferage (aging)
Sufferage

Max-min (aging)
Max-min

Figure 12. Makespan for the batch heuristics for
the regular time interval strategy with and with-
out aging for inconsistent HiHi heterogeneity.

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

1000 2000

av
er

ag
e

sh
ar

in
g

pe
na

lty
 (

se
c)

number of tasks

Min-min (aging)
Min-min

Sufferage (aging)
Sufferage

Max-min (aging)
Max-min

Figure 13. Average sharing penalty of the batch
heuristics for the regular time interval strategy
with and without aging for inconsistent HiHi het-
erogeneity.

form almost similarly at this low arrival rate, it might be
better to use the KPB heuristic because of its smaller com-
putation time. Moreover, Figures 18 and 19 show that the
makespan values for all heuristics are larger for lower ar-
rival rate. This is attributable to the fact that at lower arrival
rates, a larger fraction of a task’s completion time is deter-
mined by its beginning time.

7. Conclusions

New and previously proposed dynamic matching and
scheduling heuristics for mapping independent tasks onto
HC systems were compared under a variety of simulated
computational environments. Five on-line mode heuristics

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

1000 2000

m
ak

es
pa

n
(s

ec
)

number of tasks

Min-min (count)
Min-min

Sufferage (count)
Sufferage

Max-min (count)
Max-min

Figure 14. Comparison of the makespans given
by the fixed count mapping strategy and the reg-
ular time interval strategy for inconsistent HiHi
heterogeneity.

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

4e+07

4.5e+07

1000 2000

av
er

ag
e

sh
ar

in
g

pe
na

lty
 (

se
c)

number of tasks

Min-min (count)
Min-min

Sufferage (count)
Sufferage

Max-min (count)
Max-min

Figure 15. Comparison of the average sharing
penalty given by the fixed count mapping strat-
egy and the regular time interval strategy for
inconsistent HiHi heterogeneity.

and three batch mode heuristics were studied.
In the on-line mode, for both the semi-consistent and the

inconsistent types of HiHi heterogeneity, the KPB heuris-
tic outperformed the other heuristics on all performance
metrics (however, the KPB was only slightly better than
the MCT). The average sharing penalty gains were smaller
than the makespan ones. The KPB can provide good sys-
tem oriented performance (e.g., minimum makespan) and
at the same time provide good application oriented per-
formance (e.g., low average sharing penalty). The rela-
tive performance of the OLB and the MET with respect to
the makespan reversed when the heterogeneity was changed

0

1e+07

2e+07

3e+07

4e+07

5e+07

1000 2000

m
ak

es
pa

n
(s

ec
)

number of tasks

Min-min (count)
Min-min

Sufferage (count)
Sufferage

Max-min (count)
Max-min

Figure 16. Comparison of the makespan given
by the fixed count mapping strategy and the reg-
ular time interval strategy for semi-consistent
HiHi heterogeneity.

0

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

3.5e+07

1000 2000

av
er

ag
e

sh
ar

in
g

pe
na

lty
 (

se
c)

number of tasks

Min-min (count)
Min-min

Sufferage (count)
Sufferage

Max-min (count)
Max-min

Figure 17. Comparison of the average sharing
penalty given by the fixed count mapping strat-
egy and the regular time interval strategy for
semi-consistent HiHi heterogeneity.

from the semi-consistent to the inconsistent. The OLB did
better than the MET for the semi-consistent case.

In the batch mode, for the semi-consistent and the in-
consistent types of HiHi heterogeneity, the Min-min heuris-
tic outperformed the Sufferage and Max-min heuristics in
the average sharing penalty. However, the Sufferage per-
formed the best with respect to makespan for both the semi-
consistent and the inconsistent types of HiHi heterogene-
ity (though, the Sufferage was only slightly better than the
Min-min).

The batch heuristics are likely to give a smaller
makespan than the on-line ones for largej K j and high task

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1000 2000

m
ak

es
pa

n
(s

ec
)

number of tasks

Min-min
Sufferage

MCT
KPB

Figure 18. Comparison of the makespan given
by batch heuristics (regular time interval strat-
egy) and on-line heuristics for inconsistent HiHi
heterogeneity and an arrival rate of λh.

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1000 2000

m
ak

es
pa

n
(s

ec
)

number of tasks

Min-min
Sufferage

MCT
KPB

Figure 19. Comparison of the makespan given
by batch heuristics (regular time interval strat-
egy) and on-line heuristics for inconsistent HiHi
heterogeneity and an arrival rate of λl .

arrival rate. For smaller values ofj K j and lower task ar-
rival rates, the improvement in makespan offered by batch
heuristics is likely to be nominal.

This study quantifies how the relative performance
of these dynamic mapping heuristics depends on (a) the
consistency property of the ETC matrix, (b) the require-
ment to optimize system oriented or application oriented
performance metrics (e.g., optimizing makespan versus
optimizing average sharing penalty), and (c) the arrival
rate of the tasks. Thus, the choice of the heuristic which is
best to use will be a function of such factors. Therefore,
it is important to include a set of heuristics in a resource

management system for HC environments, and then use
the heuristic that is most appropriate for a given situa-
tion (as will be done in the Scheduling Advisor for MSHN).

Acknowledgments: The authors thank Taylor Kidd,
Surjamukhi Chatterjea, and Tracy D. Braun for their
valuable comments and suggestions.

References

[1] R. Armstrong, D. Hensgen, and T. Kidd, “The relative
performance of various mapping algorithms is inde-
pendent of sizable variances in run-time predications,”
7th IEEE Heterogeneous Computing Workshop (HCW
’98), Mar. 1998, pp. 79–87.

[2] R. Armstrong,Investigation of Effect of Different Run-
Time Distributions on SmartNet Performance, Mas-
ter’s thesis, Department of Computer Science, Naval
Postgraduate School, 1997 (D. Hensgen, advisor).

[3] T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, M. Ma-
heswaran, A. I. Reuther, J. P. Robertson, M. D. Theys,
and B. Yao, “A taxonomy for describing matching
and scheduling heuristics for mixed-machine hetero-
geneous computing systems,”IEEE Workshop on Ad-
vances in Parallel and Distributed Systems, Oct. 1998,
pp. 330–335 (included in the proceedings of the 17th
IEEE Symposium on Reliable Distributed Systems,
1998).

[4] T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, M. Ma-
heswaran, A. I. Reuther, J. P. Robertson, M. D. Theys,
B. Yao, R. F. Freund, and D. Hensgen, “A comparison
study of static mapping heuristics for a class of meta-
tasks on heterogeneous computing systems,”8th IEEE
Heterogeneous Computing Workshop (HCW’99), Apr.
1999, to appear.

[5] I. Foster and C. Kesselman (eds.),The Grid: Blueprint
for a New Computing Infrastructure, Morgan Kauf-
mann, San Fransisco, CA, 1999.

[6] R. F. Freund, M. Gherrity, S. Ambrosius, M. Camp-
bell, M. Halderman, D. Hensgen, E. Keith, T. Kidd,
M. Kussow, J. D. Lima, F. Mirabile, L. Moore, B.
Rust, and H. J. Siegel, “Scheduling resources in
multi-user, heterogeneous, computing environments
with SmartNet,”7th IEEE Heterogeneous Computing
Workshop (HCW ’98), Mar. 1998, pp. 184–199.

[7] A. Ghafoor and J. Yang, “Distributed heterogeneous
supercomputing management system,”IEEE Com-
puter, Vol. 26, No. 6, June 1993, pp. 78–86.

[8] D. Hensgen, T. Kidd, M. C. Schnaidt, D. St. John, H.
J. Siegel, T. D. Braun, M. Maheshwaran, S. Ali, J-K.
Kim, C. Irvine, T. Levin, R. Wright, R. F. Freund, M.
Godfrey, A. Duman, P. Carff, S. Kidd, V. Prasanna,

P. Bhat, and A. Alhusaini, “An overview of MSHN:
A Management System for Heterogeneous Networks,”
8th IEEE Heterogeneous Computing Workshop (HCW
’99), Apr. 1999, to appear.

[9] O. H. Ibarra and C. E. Kim, “Heuristic algorithms for
scheduling independent tasks on nonidentical proces-
sors,”Journal of the ACM, Vol. 24, No. 2, Apr. 1977,
pp. 280–289.

[10] M. A. Iverson and F. Ozguner, “Dynamic, competitive
scheduling of multiple DAGs in a distributed hetero-
geneous environment,”7th IEEE Heterogeneous Com-
puting Workshop (HCW ’98), Mar. 1998, pp. 70–78.

[11] M. Kafil and I. Ahmad, “Optimal task assignment in
heterogeneous distributed computing systems,”IEEE
Concurrency, Vol. 6, No. 3, July-Sep. 1998, pp. 42–
51.

[12] C. Leangsuksun, J. Potter, and S. Scott, “Dynamic
task mapping algorithms for a distributed heteroge-
neous computing environment,”4th IEEE Heteroge-
neous Computing Workshop (HCW ’95), Apr. 1995,
pp. 30–34.

[13] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and
R. F. Freund,A Comparison of Dynamic Strategies for
Mapping a Class of Independent Tasks onto Heteroge-
neous Computing Systems, Technical Report, School
of Electrical and Computer Engineering, Purdue Uni-
versity, in preparation, 1999.

[14] M. Maheswaran, T. D. Braun, and H. J. Siegel, “Het-
erogeneous distributed computing,” inEncyclopedia
of Electrical and Electronics Engineering, J. G. Web-
ster, ed., John Wiley, New York, NY, scheduled to ap-
pear in 1999.

[15] R. Mirchandaney, D. Towsley, and J. A. Stankovic,
“Adaptive load sharing in heterogeneous distributed
systems,”Journal of Parallel and Distributed Comput-
ing, Vol. 9, No. 4, Aug. 1990, pp. 331–346.

[16] A. Papoulis, Probability, Random Variables, and
Stochastic Processes, McGraw-Hill, New York, NY,
1984.

[17] M. Pinedo,Scheduling: Theory, Algorithms, and Sys-
tems, Prentice Hall, Englewood Cliffs, NJ, 1995.

[18] H. G. Rotithor, “Taxonomy of dynamic task schedul-
ing schemes in distributed computing systems,”IEE
Proceedings on Computer and Digital Techniques,
Vol. 141, No. 1, Jan. 1994, pp. 1–10.

[19] H. Singh and A. Youssef, “Mapping and scheduling
heterogeneous task graphs using genetic algorithms,”
5th IEEE Heterogeneous Computing Workshop (HCW
’96), Apr. 1996, pp. 86–97.

[20] V. Suresh and D. Chaudhuri, “Dynamic rescheduling–
A survey of research,”International Journal of Pro-

duction Economics, Vol. 32, No. 1, Aug. 1993, pp. 53–
63.

[21] P. Tang, P. C. Yew, and C. Zhu, “Impact of self-
scheduling on performance of multiprocessor sys-
tems,”3rd International Conference on Supercomput-
ing, July 1988, pp. 593–603.

Biographies
Muthucumaru Maheswaran is an Assistant Professor

in the Department of Computer Science at the University
of Manitoba, Canada. In 1990, he received a BSc degree
in electrical and electronic engineering from the University
of Peradeniya, Sri Lanka. He received an MSEE degree
in 1994 and a PhD degree in 1998, both from the School
of Electrical and Computer Engineering at Purdue Univer-
sity. He held a Fulbright scholarship during his tenure as an
MSEE student at Purdue University. His research interests
include computer architecture, distributed computing, het-
erogeneous computing, Internet and world wide web sys-
tems, metacomputing, mobile programs, network comput-
ing, parallel computing, resource management systems for
metacomputing, and scientific computing. He has authored
or coauthored 15 technical papers in these and related areas.
He is a member of the Eta Kappa Nu honorary society.

Shoukat Ali is pursuing an MSEE degree from the
School of Electrical and Computer Engineering at Purdue
University, where he is currently a Research Assistant. His
main research topic is dynamic mapping of meta-tasks in
heterogeneous computing systems. He has held teaching
positions at Aitchison College and Keynesian Institute of
Management and Sciences, both in Lahore, Pakistan. He
was also a Teaching Assistant at Purdue. Shoukat re-
ceived his BS degree in electrical and electronic engineer-
ing from the University of Engineering and Technology, La-
hore, Pakistan in 1996. His research interests include com-
puter architecture, parallel computing, and heterogeneous
computing.

Howard Jay Siegelis a Professor in the School of Elec-
trical and Computer Engineering at Purdue University. He
is a Fellow of the IEEE and a Fellow of the ACM. He re-
ceived BS degrees in both electrical engineering and man-
agement from MIT, and the MA, MSE, and PhD degrees
from the Department of Electrical Engineering and Com-
puter Science at Princeton University. Prof. Siegel has
coauthored over 250 technical papers, has coedited seven
volumes, and wrote the bookInterconnection Networks for
Large-Scale Parallel Processing. He was a Coeditor-in-
Chief of theJournal of Parallel and Distributed Computing,
and was on the Editorial Boards of theIEEE Transactions
on Parallel and Distributed Systemsand theIEEE Trans-
actions on Computers. He was Program Chair/Co-Chair of
three conferences, General Chair/Co-Chair of four confer-
ences, and Chair/Co-Chair of four workshops. He is an in-

ternational keynote speaker and tutorial lecturer, and a con-
sultant for government and industry.

Debra Hensgenis an Associate Professor in the Com-
puter Science Department at The Naval Postgraduate
School. She received her PhD in the area of Distributed
Operating Systems from the University of Kentucky. She is
currently a Principal Investigator of the DARPA-sponsored
Management System for Heterogeneous Networks QUO-
RUM project (MSHN) and a co-investigator of the DARPA-
sponsored Server and Active Agent Management (SAAM)
Next Generation Internet project. Her areas of inter-
est include active modeling in resource management sys-
tems, network re-routing to preserve quality of service
guarantees, visualization tools for performance debugging
of parallel and distributed systems, and methods for ag-
gregating sensor information. She has published numer-
ous papers concerning her contributions to the Concurra
toolkit for automatically generating safe, efficient concur-
rent code, the Graze parallel processing performance de-
bugger, the SAAM path information base, and the SmartNet
and MSHN Resource Management Systems.

Richard F. Freund is a founder and CEO of NOEMIX, a
San Diego based startup to commercialize distributed com-
puting technology. Freund is also one of the early pioneers
in the field of distributed computing, in which he has writ-
ten or co-authored a number of papers. In addition he is a
founder of the Heterogeneous Computing Workshop, held
each year in conjunction with IPPS/SPDP. Freund won a
Meritorious Civilian Service Award during his former ca-
reer as a government scientist.

