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Abstract
The problem of mapping (de�ned as matching and

scheduling) tasks and communications onto multiple
machines and networks in a heterogeneous computing
(HC) environment has been shown to be NP-complete,
in general, requiring the development of heuristic tech-
niques. Many di�erent types of mapping heuristics
have been developed in recent years. However, select-
ing the best heuristic to use in any given scenario re-
mains a di�cult problem. Factors making this selec-
tion di�cult are discussed. Motivated by these di�cul-
ties, a new taxonomy for classifying mapping heuris-
tics for HC environments is proposed (\the Purdue HC
Taxonomy"). The taxonomy is de�ned in three major
parts: (1) the models used for applications and commu-
nication requests, (2) the models used for target hard-
ware platforms, and (3) the characteristics of mapping
heuristics. Each part of the taxonomy is described, with
examples given to help clarify the taxonomy. The ben-
e�ts and uses of this taxonomy are also discussed.

1. Introduction

Di�erent portions of a computationally intensive
application often have diverse computational require-
ments. In general, a high-performance machine may
perform poorly on such an application because it is
di�cult for a single machine architecture to satisfy
the computational requirements of the di�erent por-
tions equally well. A mixed-machine heterogeneous
computing (HC) system alleviates this problem by uti-
lizing a suite of di�erent high-performance machines,
interconnected with high-speed links. Such a system
coordinates the execution of various portions of the
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application on di�erent machines within the system to
exploit the di�erent architectural capabilities available
and achieve increased application performance [12, 13].

To take advantage of HC systems in this man-
ner, an application task may be decomposed into sub-
tasks, where each subtask is computationally homoge-
neous. Di�erent subtasks, however, may require dif-
ferent architectural capabilities. These subtasks may
share stored or generated data, creating the potential
for inter-machine dependencies and data transfer over-
head. Subtasks may be determined by: (a) user speci-
�cation, (b) analysis by the mapping heuristic, or (c) a
given separate program for each subtask. Once the ap-
plication is decomposed into subtasks, each subtask is
assigned to a machine (matching) and the subtasks as-
signed to a particular machine are ordered (scheduling)
such that the overall execution time of the applica-
tion is minimized. The combination of matching and
scheduling subtasks to machines is de�ned as subtask
mapping. While each subtask is a separate item to be
mapped, the mapping decision for any one subtask may
impact the mapping decision for others.

Another version of the mapping problem, meta-task
mapping, deals with matching and scheduling a collec-
tion of tasks to the machines in an HC environment.
The term meta-task has been used in di�erent ways.
In this paper, the tasks in the meta-task are indepen-
dent, in that they have no data dependencies among
them. A given task, however, may have subtasks and
dependencies among the subtasks. (In some systems,
all tasks and subtasks in a meta-task, as de�ned above,
are referred to as just tasks.) An example of meta-task
mapping is the mapping of an arbitrary set of indepen-
dent tasks from di�erent users waiting to execute on a
heterogeneous suite of machines. Each task in a meta-
task may have associated properties, such as a deadline
and a priority.

In general, �nding optimal solutions for the map-



ping problem and the scheduling of inter-machine com-
munications in HC environments is NP-complete [7],
requiring the development of near-optimal heuristic
techniques. In recent years, numerous di�erent types
of mapping heuristics have been developed (e.g., see
[1, 6, 8, 12, 13]). However, selecting a particular heuris-
tic to use in a certain practical scenario remains a dif-
�cult problem. One of the reasons for this di�culty
is that when one heuristic is presented and evaluated
in the literature, typically, di�erent assumptions are
made about the underlying target platform than those
used for earlier heuristics, (e.g., the degree to which the
capabilities of machines di�er in the HC suite) mak-
ing comparisons problematic. Similarly, di�erent as-
sumptions about application models complicate com-
parisons (e.g, the variation among average task execu-
tion times). Moreover, the mapping heuristics them-
selves usually have di�erent characteristics (e.g., dif-
ferent optimization criteria, di�erent execution times).
Therefore, a fair comparison of various heuristics is a
challenging problem.

These comparison problems are compounded by the
fact that there exist no standard set of application
benchmarks or target platforms for HC environments.
Motivated by these di�culties, a new taxonomy for
classifying mapping heuristics for HC environments is
proposed. The Purdue HC Taxonomy is de�ned in
three major parts: (1) the models used for applications
and communication requests, (2) the models used for
target hardware platforms, and (3) the characteristics
of mapping heuristics. This new taxonomy builds on
previous taxonomies (e.g., [2, 4, 5, 10]).

In Section 2, previous taxonomies from the �elds
of distributed computing and HC are reviewed. The
proposed taxonomy for mapping heuristics is de�ned
in Section 3. The bene�ts and possible uses of this
new taxonomy are examined in Section 4.
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DARPA/ISO BADD (Battle�eld Awareness and Data
Dissemination) Program. In the BADD Program, com-
munications from a large number of heterogeneous in-
formation sources (e.g., databases, sensors) to a large
number of heterogeneous destinations (e.g., war�ght-

ers' laptops, proxy servers) must be scheduled over a
set of heterogeneous networks [16]. Thus, most of this
taxonomy pertains to this environment also.

2. Previous Taxonomies

Taxonomies related in various degrees to this work
have appeared in the literature. In this section,
overviews of three related taxonomy studies are given.

A taxonomy classifying scheduling techniques used
in general-purpose distributed computing systems is
presented in [2]. The classi�cation of target plat-
forms and application characteristics was outside the
scope of this study. The taxonomy in [2] does com-
bine well-de�ned hierarchical characteristics with more
general 
at characteristics to di�erentiate a wide range
of scheduling techniques. Several examples of di�erent
scheduling techniques from the published literature are
also given, with each classi�ed by the taxonomy. In HC
systems, however, scheduling is only half of the map-
ping problem. The matching of tasks to machines also
greatly a�ects execution schedules and system perfor-
mance. Therefore, the taxonomy proposed in Section
3 also includes categories for platform characteristics
and application characteristics, both of which in
uence
matching (and scheduling) decisions.

Several di�erent taxonomies are presented in [5].
The �rst is the EM3 taxonomy, which classi�es all
computer systems into one of four categories, based on
execution mode and machine model [4]. The taxonomy
proposed here in Section 3 assumes heterogeneous sys-
tems from either the SEMM (single execution mode,
multiple machine models) or the MEMM (multiple
execution modes, multiple machine models) categories.
A \modestly extended" version of the taxonomy from
[2] is also presented in [5]. The modi�ed taxonomy
introduces new descriptors and is applied to heteroge-
neous resource allocation techniques. Aside from con-
sidering di�erent parallelism characteristics of applica-
tions, target platform and application properties were
not classi�ed as part of the study.

A taxonomy for comparing heterogeneous subtask
matching methodologies is included in [10]. The tax-
onomy focuses on static subtask matching approaches,
and classi�es several speci�c examples of optimal and
sub-optimal techniques. This is a single taxonomy,
without the three distinct parts of the Purdue HC Tax-
onomy presented in the next section. However, the
\optimal-restricted" classi�cation in [10] includes algo-
rithms that place restrictions on the underlying pro-
gram and/or multicomputer system.

The Purdue HC Taxonomy uses these studies as a
foundation, and extends their concepts to the speci�c



HC mapping problem domain being considered. Rele-
vant ideas from these studies are incorporated into the
unique structure of the three-part taxonomy described
in the next section, allowing for more detailed classi�-
cations of HC mapping heuristics.

3. Proposed Taxonomy

3.1. Introduction

As mentioned in Section 2, it is assumed that a
mixed-machine HC system is composed of di�erent ma-
chines, with possibly multiple execution models. The
system is de�ned to be heterogeneous if any one or
more of the following characteristics varies among ma-
chines enough to result in di�erent execution perfor-
mance among those machines: processor type, proces-
sor speed, mode of computation, memory size, num-
ber of processors (within parallel machines), inter-
processor network (within parallel machines), etc.

The new Purdue HC Taxonomy for describing map-
ping heuristics for mixed-machine HC systems is de-
�ned by three major components: (1) application
model and communication requests characterization,
(2) platform model characterization, and (3) mapping
strategy characterization. Previous taxonomies have
focused only on the third item above. However, in-
telligent mapping decisions require information about
both the hardware platform and the application being
executed. Also, if there are special platform or applica-
tion requirements (e.g., priorities associated with each
task in a military environment), it is important that
the mapping strategy be able to support these.

Thus, the Purdue HC Taxonomy classi�es all three
components of an HC environment, and attempts to
qualitatively de�ne aspects of the environment that can
a�ect mapping decisions and performance. (Doing this
quantitatively in a thorough, rigorous, complete, and
\standard" manner is a long term goal of the HC �eld.)
This taxonomy is based on existing mapping heuristics
found in the literature, as well as previous research and
experience within the �eld of HC.

Because research on mapping heuristics is an active
and growing �eld, this taxonomy can only capture fea-
tures of the current state of research at a certain level
of detail. It is assumed that this taxonomy will be
re�ned and expanded over time to serve as an evolv-
ing standard for describing HC mapping heuristics and
their assumed environments.

3.2. Application model characterization

The �rst category of the taxonomy de�nes the mod-
els used for the applications to be executed on the HC

system and for the communications to be scheduled
on the inter-machine network. The applications them-
selves are not classi�ed by functionality, but rather by
the traits that de�ne application computational char-
acteristics that may impact mapping decisions. Fur-
thermore, the taxonomy is able to include application
traits that are subject to simplifying implementation
assumptions (which may not re
ect the most e�ective
implementations), e.g., a subtask that is capable of be-
ginning execution with a partial set of data is instead
forced to wait until all input data arrives. The de�ning
characteristics of the applications (which can be tasks
or subtasks) are listed below. Many of the character-
istics are also relevant to communication requests in
BADD-like environments, including deadlines, mulit-
ple versions, priorities, QoS requirements, and tempo-
ral distribution.

application size: How many tasks are in the
meta-task and/or how many subtasks are in each task?

application type: What type of applications are
to be mapped? If all tasks are independent, meta-
task mapping is being performed. If there is a single
task decomposed into subtasks (recall subtasks have
dependencies), it is subtask mapping. One can also
have the situation where a meta-task has independent
tasks, but some of the tasks have subtasks. In this
case, both meta-task and subtask mappings would be
necessary.

communication patterns: What are the source
and destination subtasks for each data item to be trans-
ferred?

data availability: The time at which input data
needed by a subtask or output data generated by a sub-
task can be utilized varies in relation to subtask start
and �nish times: (a) is data available (to be forwarded)
before a subtask completes, and (b) can a subtask be-
gin execution before receiving all of its input data? As
an example, the clustering non-uniform directed graph
heuristic in [6] assumes that a subtask cannot send data
to other waiting subtasks until it completely �nishes
executing.

deadlines: Do the applications have deadlines?
This property could be further re�ned into hard and
�rm deadlines, if required. Applications completed by
a �rm deadline provide the most valuable results. An
application that completes after a �rm deadline but be-
fore a hard deadline is still able to provide some useful
data. After a hard deadline has passed, data from the
application is useless.

execution time model: Most mapping tech-
niques require an estimate of the execution time of
each application on each machine. How are the esti-
mated execution times modeled? The two choices most



commonly used are probabilistic and deterministic
modeling. Probabilistic modeling uses a probability
distribution for application execution times when
making mapping decisions [1, 11]. Deterministic
modeling uses a �xed (or expected) value [8], e.g., the
average of ten previous executions of an application.

meta-task heterogeneity: For each machine in
the HC suite, how greatly and with what properties
(e.g., probability distribution) do the execution times
of the di�erent tasks in the meta-task vary?

multiple versions: Do the applications have mul-
tiple versions that could be executed? For example, an
application that requires an FFT might be able to per-
form the FFT with either of two di�erent procedures
that have di�erent precisions, di�erent execution times,
and di�erent resource requirements. What are the rel-
ative \values" of the di�erent versions to the user?

priorities: Do the applications have priorities?
Environments that would require priorities include mil-
itary systems and machines where time-sharing must
be enforced. Priorities are generally assigned by the
user (within some allowed range), but the relative
weightings given to each priority are usually deter-
mined by another party (e.g., a system administrator).
Priorities and their relative weightings are required if
the mapping strategy is preemptive (Subsection 3.4).

QoS requirements: Certain application speci�c
Quality of Service (QoS) requirements may need to be
considered, such as security level.

subtask heterogeneity: Similar to meta-task
heterogeneity above.

task pro�le: Task pro�ling speci�es the types of
computations present in an application based on the
code for the task (or subtask) and the data to be
processed [9, 13]. This information may be used by
the mapping heuristic, in conjunction with analytical
benchmarking (Subsection 3.3), to estimate task (or
subtask) execution time.

temporal distribution: Is the complete set of
tasks of a meta-task to be mapped known a pri-
ori (static applications), or do the tasks arrive in a
real-time, non-deterministic manner (dynamic applica-
tions), or is it a combination of the two?

Because the characteristics de�ned above are largely
independent of each other, these would all be consid-
ered 
at characteristics in a taxonomy, not hierarchical
characteristics with dependencies. Each of the previ-
ous taxonomies listed in Section 2 used a hierarchical
structure to show relationships. The \checklist" for-
mat above is necessary to capture all of the aspects of
applications that can in
uence mapping decisions.

3.3. Platform model characterization

The second category of the taxonomy de�nes the
models used for target hardware platforms available
within HC systems. Several existing heuristics make
simplifying (but unrealistic) assumptions about their
target platforms (e.g., [14] assumes an in�nite number
of machines are available). Therefore, this taxonomy
is not limited to a set of realistic target platforms. In-
stead, a framework for classifying the models used for
target platforms is provided below.

analytical benchmarks: Analytical benchmark-
ing provides a measure of how well each available ma-
chine in the HC platform performs on each given type
of computation [9, 13]. This information may be used
by the mapping heuristic, in conjunction with task pro-
�ling (Subsection 3.2), to estimate task (or subtask)
execution time.

communication time: How much time does it
take to send data from any one machine to any other?
This may be expressed as a function of path establish-
ment time and bandwidth.

concurrent send/receives: Can each machine
perform concurrent sends and receives to other ma-
chines (assuming enough network connections)?

interconnection network: Volumes of literature
already exist on the topic of interconnection networks,
therefore, they are not classi�ed here. (A general in-
terconnection network taxonomy can be found in [3].)
It is merely noted that many network characteristics
can a�ect mapping decisions and system performance,
including the following: bandwidth, ability to perform
concurrent data transfers, latency, switching control,
and topology. Most of these network properties are
also functions of the source and destination machines.

machine architecture: For each machine, vari-
ous architectural features that can impact performance
must be considered, e.g., processor type, processor
speed, external I/O bandwidth, mode of computa-
tion (e.g., SIMD, MIMD, vector), memory size, num-
ber of processors (within parallel machines), and inter-
processor network (within parallel machines).

machine heterogeneity: For each task (or sub-
task), how greatly and with what properties (e.g., prob-
ability distribution) do the execution times for this task
vary across di�erent machines in the HC suite?

number of connections: How many connections
does each machine have to the interconnection network
structure or directly to other machines?

number of machines: This property is de�ned
by two subclasses, based on the quantity and variabil-
ity of the number of machines: (a) �nite or in�nite,
and (b) �xed or variable (e.g., new machines can come



on-line). Furthermore, a given heuristic with a �nite,
�xed number of machines may treat this number as a
parameter that can be changed from one mapping to
another.

overlapped computation/communication:
Can machines overlap computation and inter-machine
communication?

system control: Does the mapping strategy con-
trol and allocate all resources in the environment (ded-
icated), or are external users also consuming resources
(shared)?

task compatibility: Is each machine in the envi-
ronment able to perform each application, or, for some
applications, are special capabilities that are only avail-
able on certain machines required? These capabilities
could involve issues such as I/O devices, memory space,
and security.

3.4. Mapping strategy characterization

The third category of the Purdue HC Taxonomy de-
�nes the characteristics used to describe the mapping
strategies. Because the general HC mapping problem
is NP-complete, it is assumed that the mapping strate-
gies being classi�ed are near-optimal techniques.

application model supported: See Subsection
3.2.

communication times: Are inter-subtask data
communication times considered during subtask map-
ping?

control location: Is the mapping strategy cen-
tralized or distributed? Distributed strategies can fur-
ther be classi�ed as cooperative or non-cooperative (in-
dependent) approaches.

data forwarding: Is data forwarding considered
during mapping [15]? That is, could a subtask exe-
cuting on a machine receive data from an intermediate
machine sooner than from the original source?

dependencies: This property is closely related to
the application type from Subsection 3.2. Meta-task
mapping deals with an independent set of tasks. Sub-
task mapping handles the case where there are one or
more tasks with subtasks and dependencies.

duplication: Can a given subtask be duplicated
and executed on multiple machines to reduce commu-
nication overhead?

dynamic/static: Dynamic mapping techniques
operate during (and possibly before) application ex-
ecution time, and make use of real-time information.
Dynamic techniques require inputs from the environ-
ment, and may not have a de�nite end. For exam-
ple, dynamic techniques may not know the entire set
of tasks to be mapped when the technique begins exe-

cuting; new tasks may arrive at random intervals. Sim-
ilarly, new machines may be added to the suite. If a
dynamic technique has feedback, applications may be
reassigned because of the loss of a machine, or appli-
cation execution times taking signi�cantly longer than
expected. In contrast, static mapping techniques take
a �xed set of applications, a �xed set of machines, and
a �xed set of application and machine attributes as
inputs and generate a single, �xed mapping. Static
mapping techniques have a well-de�ned beginning and
end, and each resulting mapping is not modi�ed due
to changes in the HC environment or feedback.

execution location: Can a machine within the
suite be used to execute the mapping strategy, or is
an external machine required?

execution times: The execution times of di�erent
mapping strategies vary greatly, and are an important
property during the comparison or selection of mapping
techniques. Can the execution time of the heuristic ac-
curately be predicted, e.g., does the mapping heuristic
perform a �xed, predetermined number of steps (e.g.,
greedy approaches [1]) before arriving at a mapping,
or is the heuristic iterative in the sense that the map-
ping is continually re�ned until some stopping criteria
is met, resulting in a number of steps that is not known
a priori (e.g., genetic algorithms [13, 14])?

fault tolerance: Is fault tolerance considered by
the mapping strategy? This may take several forms,
such as assigning applications to machines that can
perform checkpointing, or executing multiple, redun-
dant copies of an application.

feedback: Does the mapping strategy incorporate
real-time feedback from the platform (e.g., machine
availability times) or applications (e.g., actual task ex-
ecution times) into its decisions? Strategies that utilize
feedback are dynamic, but not all dynamic strategies
have feedback.

objective function: The quantity that the map-
ping strategy is trying to optimize. This varies widely
between strategies, and can make some approaches in-
appropriate in some situations.

platform model supported: See Subsection 3.3.
preemptive: Preemptive mapping strategies can

interrupt applications that have already begun execu-
tion, to free resources for more important applications.
Applications that were interrupted may be reassigned,
or may resume execution upon completion of the more
important application. Preemptive techniques must be
dynamic by de�nition. Application \importance" must
be speci�ed by some priority assignment and weighting
scheme, as discussed in Subsection 3.2.

remapping: Does the mapping heuristic require
an initial mapping, which it then enhances? For ex-



ample, a dynamic heuristic with feedback can remap a
previous static mapping [13].

4. Conclusions

The mapping of tasks and meta-tasks, and the
scheduling of communications, in HC environments are
active, growing areas of research. Based on exist-
ing mapping approaches in the literature, a three-part
taxonomy was proposed. The Purdue HC Taxonomy
classi�ed characteristics within the application mod-
els, target hardware platform models, and mapping
strategies that are used in HC research. By de�ning
all three categories, heterogeneous mapping techniques
can more accurately be classi�ed.

The Purdue HC Taxonomy can be bene�cial to re-
searchers in several ways. Currently, it is di�cult to
meaningfully compare di�erent mapping approaches.
Similarly, it is di�cult to extend existing work or
recognize important areas of research without under-
standing the relationships that exist among previous
e�orts. The three-part classi�cation system provided
allows HC researchers to more easily describe mapping
heuristics, and to see design and environment alterna-
tives, during the development of new heuristics, they
might not have otherwise considered. A researcher can
also use the taxonomy to �nd the mapping heuristics
that use similar target platform and application mod-
els. The mapping heuristics found for similar models
can then possibly be adapted or developed further to
better solve the mapping problem that is being con-
sidered. In the future, this taxonomy could focus re-
search towards the development of a standard set of
benchmarks for HC environments. It is expected, as re-
search progresses, that the Purdue HC Taxonomy will
be an evolving standard, that is re�ned and extended
to incorporate new ideas and �ndings.
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