Efficient Masking Techniques for Large-Scale SIMD Architectures

Wayne G. Nation”
wn@ecn.purdue.edu

Thomas Schwederski'"

*Parallel Processing Laboratory
School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907, USA

Abstract -- SIMD architectures require mechanisms that
efficiently enable and disable (mask) processors to support flexi-
ble programming. Most current SIMD architectures employ
special purpose (custom) processors incorporating masking logic
that allow them to disable themselves based on data condi-
tional results calculated at the processor’s level (local masking).
Global processor masks, specified by the control unit, are more
efficient for tasks where the masking is data independent. An
efficient hybrid masking technique is proposed that supports
global masking as well as local masking for SIMD architectures
constructed from standard microprocessors. A design for the
proposed hybrid mechanism is described and its performance
examined by experiments using the existing PASM prototype.

1. Introduction

Large-scale parallel processing systems, where the number
of processors is in the range from 2° to 2!%, employing sophisti-
cated microprocessors as the basic computational element are
now feasible. When parallel processing systems are used in the
SIMD (single instruction stream — multiple data stream) [17]
mode of parallelism, where enabled processors simultaneously
execute the same instructions on their own data sets, mechan-
isms that efficiently enable and disable (mask) the processors
and ensure their synchronization are necessary to provide
optimal performance. Most current SIMD architectures use
special purpose processors incorporating synchronization and
masking logic. This paper proposes a method for performing
masking efficiently in large-scale SIMD parallel processing sys-
tems based on standard microprocessors. The results of this
study and experimentation with existing hardware can be used
to design SIMD architectures from either off-the-shelf or cus-
tom microprocessors.

Consider a system in which each processing element (PE)
is composed of a processor/memory pair. A general SIMD sys-
tem model in a PE-to-PE configuration consists of P PEs, a
single control unit, and an interconnection network [28]. The
PEs are numbered from 0 to P — 1, and each PE knows its own
number. The control unit (CU) broadcasts the instructions
that are executed by enabled PEs in lockstep.

The decision that a given PE is enabled to execute a set of
one or more instructions is determined by two factors: the

This work supported by the National Science Foundation under grant
numbers CCR-8704826, CCR-8809600, by the Air Force Office of Scientific
Research under grant number F49620-86-K-0006, in part by the NSF
Software Engineering Research Center {(SERC), and by the Naval Ocean
Systems Center under the High Performance Computing Block, ONT.

CH2908-2/90/0000/0259/$01.00 © 1990 IEEE

Samuel A. Fineberg™
safineberg@icaen.uiowa.edu

¥
Thomas L. Casavant
tomc@eng.uiowa.edu

“"Parallel Processing Laboratory
Dept. of Electrical and Computer Engineering
University of Iowa
Towa City, lowa 52242, USA

259

Mark D. Allemang”

allemang@ecn.purdue.edu

Howard Jay Siegel”
nj@ecn.purdue.edu

***Institute for Microelectronics Stuttgart
Allmandring 30a
D-7000 Stuttgart 80, West Germany

current location within a program and/or data dependent con-
ditions arising on the PEs. Global masking is defined to be any
masking operation where the set of enabled PEs is not a func-
tion of PE-resident data. It is static and known at compile
time. Local masking is defined as any masking operation where
the mask for a given PE is determined by PE-resident data
(e.g., 2 PE i is enabled if the contents of PE i’s variable A > 0).
It is a dynamic process and the mask may not be known until
execution time. In general, both schemes can perform masking
based on the PE number (e.g., enable all even numbered PEs).

The CU is the obvious choice for specifying the enabled set
of processors for global masking operations. The CU generally
does not have direct access to PE data (although it can receive
messages from the PEs). Thus, local masking operations may
be best implemented if the PEs can enable or disable them-
selves. Algorithms exhibiting both forms of masking behavior
executing on systems using only one of the masking types may
not run as efficiently as possible because the system must emu-
late the form of masking not directly implemented. Most exist-
ing SIMD architectures employ mechanisms that implement
either global masking or local masking, but not both. This
paper proposes a hybrid masking scheme that directly imple-
ments both local and global masking, thus gaining the advan-
tages of both while eliminating all emulation overhead.

A synthetic SIMD algorithm executing on an existing
multi-microprocessor system (PASM) is used as a basis to
experimentally examine the relative performance of different
masking mechanisms. The proposed hybrid masking strategy
is emulated on the PASM prototype to demonstrate its value.
The results of this study are generally applicable to the design
of microprocessor based SIMD architectures.

Another SIMD system model is the processor-to-memory
configuration [28]. In the processor-to-memory configuration,
the processors are not paired with memories but instead must
access the memory modules through an interconnection net-
work. The results of this paper are equally applicable to
processor-to-memory SIMD systems.

Different masking techniques and their inherent advan-
tages and disadvantages are discussed in Section 2. An efficient
masking technique for SIMD multi-microprocessor architec-
tures is detailed in Section 3. Section 4 presents the synthetic
algorithm used to exercise and examine the masking techniques,
and discusses the results of the experiments conducted on the
PASM prototype, pointing out the advantages of the proposed
masking mechanism.

2. Masking Techniques for SIMD Machines

One form of global masking uses a P-bit mask vector where
bit i =1 means PE i is enabled and bit i = 0 means PE 1 is dis-
abled. The Hliac IV [1, 10, 18], where P = 64 and the words
were 64 bits long, had instructions to perform local and a form
of global masking. The Illiac IV had an instruction that broad-
cast a 64-bit mask vector to all PEs from the CU and each PE
selected its own bit to set its active/inactive status. For a mas-
sively parallel system (P = 1000), this method is impractical
due to the difficulty associated with the user generation and
handling of the large bit string.

A form of global masking appropriate for massively paral-
lel systems is PE-address masks 26, 28]. An enabled set of PEs
can be specified by a p-position PE-address mask, P = 2P,
where each position is a 0, 1, or X (don’t care) and superscripts
are repetition factors. For example, for P = 64 (p = 6), those
PEs whose numbers (in binary) match the mask [0*X%] =
[0000XX] are enabled (i.e., PEs 0, 1, 2, and 3?. Even though
PE-address masks can be used to specify only 3 o8P of the total
2P different subsets of the PEs, they are quite useful because
the subsets of PEs to be activated in actual algorithms are gen-
erally regular in form, not arbitrary. For example, if 1024 PEs
are logically arranged as a 32 x 32 two-dimensional array to
operate on an image, a PE-address mask can be used to
efficiently enable those PEs operating on the outer edge pixels:
[0°X"] for the top, [1°X°] for the bottom, [X°0°] for the left
side, and [X®1%] for the right side.

A PE-address mask can be specified in an easily decodable
form with 2p bits. The 2p bits are broadcast to all PEs and
simple comparator logic at each PE determines if the PE
matches the mask. By adding one bit to the mask encoding,
the scheme can be extended to include negative PE-address
masks, which disable all PEs matching the mask. For the pre-
vious example, [—0°X®] disables the top row of PEs.

In systems using local masking, PE hardware can enable or
disable the execution of an instruction stream based on some
data condition. This PE hardware can consist of a single bit
local mask bit register settable by the PE processor that dic-
tates whether a stream of instructions will be executed or not.
Typically, PEs disabled under this scheme execute instructions
but are prevented from updating memory contents or registers
(excluding their local mask bit register). This allows disabled
processors to enable themselves. BLITZEN [9], CM-1 and
CM:-2 [33], DAP [19, 20, 24], MPP [6, 7, 22], MasPar [8], PEPE
(13, 14, 34] and STARAN {3, 4, 5] use local masking but have
no direct support for global masking. Illiac IV implemented
local masking in addition to a form of global masking.

The local masking strategy is efficient when PEs execute
instructions conditionally based on PE data values. If a system
contains local masking hardware but no global masking
hardware, local masking can be used to emulate global PE-
address masking. The PE-address mask is decoded into a P-bit
mask vector M = mp_;..m;mg and bit m; of the mask vector
M is loaded into the memory of PE i, 0 < i <P. Before the
instructions associated with the PE-address mask are broadcast
to the PEs, all PEs are instructed to move their corresponding
mask vector bit m; from their memory into their local mask bit
registers. This preload scheme can be efficient when PE-
address masks are known a priori and there is enough PE
memory to accommodate the mask vector bits associated with
each of the PE-address masks. The cost would be only one load
instruction for each masking operation. This becomes more
complex if the PE-address mask is not ‘“fixed,” i.e., depends on
runtime information. For example, if the PE-address mask

[XP~ig}] is in a loop and index variable dependent, a different
mask vector is generated for each iteration of the j-loop.

3. Efficient Masking Mechanisms for SIMD

Multi-Microprocessors

The proposed design facilitates global PE-address masking
and local masking for massively parallel SIMD architectures.
An added feature is the ability to execute PE instructions con-
ditionally within a PE-address mask (i.e., a hybrid of local and
global PE-address masking). The general SIMD multi-
microprocessor architecture used as a model for the proposed
hybrid masking strategy consists of a CU and PEs that are
based on standard microprocessors but the results are directly
applicable to custom processors.

| ot |

: CU Microprocessor }

i AN [

: CU Bus :

| |

| CU |

| I;j:tc-h Condition |

i it Code Logic |

[]

S TN IS S
PE oc
addreis (./... - ./) / nl;a:gk
mas| i
PE Mask local
address ~ Mode \\SéMD mask
mask bit us bit

I

! STMD mek Tocal | |
I Instruction - mask bit

= Unit register :

| |

I | PE Bus l l

| g |

| PE |

| PE Microprocessor |

) 1

Figure 1: Proposed architectural support for hybrid masking.

Figure 1 shows the CU-PE connections and components of
the system supporting instruction broadcast and PE masking.
Dotted lines indicate connections to/from the other PEs. The
Fetch Unit is responsible for broadcasting instructions to the
PEs. Each of these instructions is accompanied by a PE-
address mask and a Mask Mode bit. The CU commands the
Fetch Unit to broadecast a block of PE instructions on the
SIMD Bus. The CU also specifies the PE-address mask and
Mask Mode bit associated with those instructions by writing
their value into the Fetch Unit Mask Register. In general, the
Fetch Unit may broadcast one word at a time directly to the
PEs or may enqueue blocks of PE instructions into a FIFO
queue, where they are broadcast as needed to the PEs.

The PE’s SIMD Instruction Units (SIUs) interpret the
Mask Mode bit as follows. If an SIMD instruction word is
broadcast to the PEs and a given PE’s SIU detects that the
broadcast PE-address mask does not match its PE number,
then that PE is disabled for that instruction word. If a PE’s
SIU receives an SIMD instruction word whose PE-address mask
does match its PE number and the Mask Mode bit is cleared

(=0), the PE is unconditionally enabled for that instruction
word (the local mask bit is ignored). However, if a receives an
SIMD instruction word whose PE-address mask matches the
PE number and the Mask Mode bit is set (=1), the PE is
enabled for the instruction only if its local mask bit is also set.
A PE’s local mask bit register is set (or cleared) by the PE
microprocessor to represent true (or false) data conditions
present on the PEs.

To summarize, when the Mask Mode bit is cleared, the
system is running as a pure global PE-address masking system.
If the Mask Mode is set and the PE-address mask is always set
to all X’s (all PEs enabled), the system is running as a pure
local masking system. If the Mask Mode bit is set and a PE-
address mask is allowed to vary, the system is employing a
hybrid of the the two masking strategies. No inefficient emula-
tion of one scheme with another is necessary, the advantages of
both masking techniques are exploited, and, furthermore, the
combination of the two schemes provides additional capabilities
(e.g., enabling all PEs on the top edge of a logical array ([0°X®])
where A > B inside that PE).

The proposed masking hardware configuration may be
used in many different ways. For example, consider one way the
SIU can be used to facilitate the implementation of nested if-
then-else data conditional statements in an SIMD program,
where the conditions are based on local PE data. The format is
shown in Figure 2, where the “then-block” and/or “else-block”
may contain if-then-else statements. Also, each PE instruction
may be associated with an arbitrary PE-address mask R.

if (conditional involving local PE data)
then “then-block” PE instructions
else ‘“‘else-block” PE instructions

Figure 2: Typical format of a data conditional statement.

Assume that each PE has a one-bit wide local mask bit
stack that has the local mask bit register as its top-of-stack
value and that all PEs initially set their local mask bit register
(i.e., push a one on the local mask bit stack). Also, each PE
can send instructions to its memory-mapped SIU to manipulate
the local mask bit stack. The three instruction are ‘“push-
then-else,” “push-then,” and “pop.” In [12], similar operations
described. The ‘‘push-then-else” instruction has an
immediate one-bit operand that is the value of the conditional.
The “push-then-else’” instruction commands the SIU to copy
(not remove) the top of the local mask bit stack into ‘““temp,”
logically AND “‘temp” with the complement of the one-bit
operand and push the result onto the local mask bit stack.
Then, “temp” is logically ANDed with the one-bit operand and
the result is pushed onto the local mask bit stack. The “push-
then” instruction logically ANDs its one-bit operand with the
top-of-stack and pushes the result. ‘“Push-then’ is used when
the data conditional statement has no ‘“‘else-block.” Finally,
the “pop” instruction commands the SIU to pop and discard
the top-of-stack value.

To implement the data conditional statement of Figure 2,
the CU must perform the following sequence of actions:

(1) set the Fetch Unit Mask Register to the arbitrary PE-
address mask R with the Mask Mode bit cleared;

(2) command the Fetch Unit to broadcast the PE instructions
that perform the condition followed by the “push-then-
else” instruction that writes the true/false result to the
SIU;

are

(3) set the Mask Mode bit of the Fetch Unit Mask Register and
command the Fetch Unit to broadcast the ‘“then-block”
instructions;

(4) clear the Mask Mode bit of the Fetch Unit Mask Register

and command the Fetch Unit to broadcast the “pop”
instruction to the PEs;

set the Mask Mode bit of the Fetch Unit Mask Register and
command to Fetch Unit to broadcast the ‘‘else-block”
instructions;
clear the Mask Mode bit of the Fetch Unit Mask Register
and command the Fetch Unit to broadcast the “pop”
instruction to the PEs.

All or a subset of the above instructions can be loaded into
the Fetch Unit queue before any of the steps are executed by
the PEs (i.e., the CU does not have to wait for the PEs to exe-
cute one step before any subsequent steps are moved into the
queue). Thus, there is no overhead due to PE-to-CU synchroni-
zation. The added execution of PE instructions needed to con-
trol the local mask bit register are minimal. Also recall that
the data conditional statement was executed efficiently under a
PE-address mask R; this combination of local and global mask-
ing is more flexible than SIMD machines with pure local mask-
ing strategies.

The steps above for implementing nested data conditional
statements under an arbitrary PE-address mask R can be
directly extended to support the nesting (‘‘scoping”) of PE-
address masks within nested data conditional statements. Just
as the PEs manage local mask bit stacks, the CU can manipu-
late a PE-address mask stack that maintains a stack of CU-
specified “scopes’” [12].

In Figure 1, the CU has CU Condition Code Logic
hardware. This hardware is necessary for the CU to efficiently
gather data conditional information from its PEs to alter pro-
gram flow (e.g., “‘repeat until A > 0 in all enabled PEs”).

5

-~

(6

=

4. Experimental Evaluation

In this section, the proposed hybrid masking technique is
examined experimentally. The vehicle for this evaluation is a
modified SIMD bitonic sequence sorting algorithm programmed
in assembly language on PASM, a partitionable SIMD/MIMD
parallel processing system designed to support up to 1024 PEs
[30, 31]. A 30-processor prototype with 16 MC68000 based PEs
in the parallel computation unit was constructed at Purdue and
is being used for a variety of parallel processing studies (e.g.,
[11, 16]).* The PEs are interconnected by a multistage cube
type of network [27, 29]. For this study, PASM was used as a
single SIMD machine (i.e., its partitioning and MIMD capabili-
ties were not used).

Bitonic-based ordered merging is an appropriate platform
for testing masking techniques because of its inherent use of
global and local masking strategies. The algorithm is especially
appropriate because the average size of PE instruction blocks is
very small and there are frequent data conditional statements,
making the performance very sensitive to any added overhead
in manipulating data conditional information. Thus, it is the
computational characteristics of this algorithm that are impor-
tant here; the fact that it happens to sort (and how well it com-
pares to other approaches to sorting) is irrelevant in this con-
* The prototype currently does local masking by having the CU read a bit
from each PE, forming a global mask vector, and sending bit i to PE i. This
approach to local masking was taken for hardware simplicity and is not used
in this study.

text. The algorithm is simply a vehicle for evaluating SIMD
masking strategies; this paper does not attempt to explain why
the algorithm sorts [see 15, 16].

Batcher’s bitonic sorting method is described in (2, 21, 23,
27, 32]. For the experimental examination of the different
masking techniques, it is assumed that the number of items to
be sorted is N =2", N > P, and each PE initially contains a
sorted list of N/P data items, each of which is an (N/P)-
element subset of N unsigned uniformly distributed random 8-
bit integers. The elements within a subset are sorted in
advance and placed in a PE’s memory in ascending order. The
algorithm shown in Figure 3 is executed by all enabled PEs in
the SIMD machine. At the algorithm’s completion, the N/P
data items in each PE are in ascending order within and across
PEs (i.e., if data item i is in PE x and data item j is in PE x+1
theni < j,0 = x <P-1).

Each PE processor includes a data transfer register (DTR)
and a register containing the PE’s address (ADDR). ADDR(i)
denotes the i-th bit of ADDR. When an interconnection func-
tion f is executed, the contents of the DTR of PE i are copied
into the DTR of PE (i), for all i, 0 < i <P, simultaneously.
A Cube network will be defined using by_;...b;bg as the binary
representation of an arbitrary PE-address and b; as the com-
plement of b;. The Cube net_v_vork consists of p functions:
cube;(bp_q...b1bg) = bp_y...bisybibi_1..bg, for 0 =i <p (26,
28].

forj =1 step +1 untilp do
tf j =p or ADDR(j) =0 then type «+ O else type «— 1
fori=j—1 step —1 until 0 do
for q =1 step +1 until N/P do

DTR = Xl|q]

cube;

Y|[q = DTR
merge (X,Y

)
if (type # ADDR(})) then swap(X,Y)
Figure 3: Algorithm for sorting sorted lists.

Referring to Figure 3, in each PE, the portion of the list to
be sorted is held in an N/P element array X. For the “q” loop,
each PE « receives a copy of the X array of PE cube;(a), and
stores it in Y. Then, in each PE, merge(X,Y) merges the sorted
lists X and Y into the sorted list X \UY and places the lesser
half in X and the greater half in Y. This is a simple O(N/P)
“merge’’ routine for merging two sorted lists requiring O(N/P)
if-then-else data conditional operations.

After completing the ‘“merge,”” the PEs use swap(X,Y) to
swap the two lists (pointers) depending on each PE’s value of
“type” and “ADDR.” The global PE-address masks required
for the “swap’ routine are precomputed and the second line of
Figure 3 is never executed.

The code for the algorithm was altered to produce three
different versions: (1) an SIMD/hybrid version, (2) an
SIMD/no-CC version, and (3) an SIMD/local version. The
SIMD/hybrid version emulates the required actions assuming
the proposed hybrid masking strategy is incorporated in an off-
the-shelf microprocessor based system where the manipulation
of the local mask bit register and SIU is through memory-
mapped I/O. In this version, for conditional statements depen-
dent on PE data (e.g., in the merge() routine}), the CU emulates
setting the Mask Mode bit when broadcasting the “then” and
“‘else’’ instruction blocks for execution by the PEs and the PEs
emulate the execution of the instruction necessary to manipu-
late the local mask bit register. The emulation is done by the

CU writing to a dummy memory location when setting the
Mask Mode bit and the PEs manipulating a dummy memory
location instead of the SIU. The PEs enabled by the PE-
address mask ignore the Mask Mode bit (because there is no
such hardware in place) and execute both the ‘“‘then” and the
“else” instructions. This version does not sort correctly, but
the execution times are accurate.

The SIMD /no-CC version is an emulation of the algorithm
execution time assuming changing the local mask bit register in
the hybrid masking mechanism has zero time cost, indicating a
lower bound on the execution time. This version assumes a
custom PE design where every ‘“‘push-then,” ‘push-else,” and
“pop” can be replaced by an internal register access that is
incorporated into the instruction set. Thus, there is no need
for the memory access cycle to manipulate the local mask bit
register and SIU as in the off-the-shelf CPU approach for the
SIMD /hybrid version.

The SIMD/local version emulates the actions required
assuming a pure local masking strategy. The PE-address mask
is ignored (set to all X’s and never altered). The updating of
the Mask Mode bit and the local mask bit register for data con-
ditional masking is emulated as in the SIMD/hybrid version.
The execution time for performing a global PE-address mask
operation using local masking is measured by emulating a
memory load of a precomputed mask vector bit into the local
mask register as described in Section 2.

Timings were made using the PASM prototype’s internal
performance timers (MC68230-based). The execution times
shown in Figures 4 and 5 were measured for N =27,
5 < n < 9, with P = 16. The relative times, not the absolute
times, are what are relevant to this study. As far as the
different versions of the program compared in Figures 4 and 5
are concerned, the only difference between the SIMD/no-CC
and SIMD/hybrid versions is that the SIMD/no-CC does not
execute PE instructions to manipulate the local mask bit regis-
ter. Recall that the SIMD/no-CC version emulates a ‘‘zero
cost” condition code logic. Therefore, the time difference
between these two versions is directly related to the memory
access required to manipulate the local mask bit register.

The execution time of the SIMD/local version in Figure 4
appears coincident with the SIMD/hybrid version because it is

100 —

SIMD/local and hybrid

execution time in milliseconds

50 —
SIMD/no-CC
10
5
T] 1
16 64 128 256 512

problem size (N)

Figure 4: Local masking dominates global masking.

100 . SIMD/local
3
4
g SIMD /hybrid
B SIMD /no-CC
E
&
@ —
E 50
3
g
2
E
%
v

10

5 =
! | I I
16 64 128 256 512

problem size (N)

Figure 5: Balanced local and global masking.

only greater than the SIMD/hybrid results by approximately
2%. In general, the algorithm is dominated by local masking
operations and the hybrid masking scheme does not perform
much faster than the local scheme as a result. The “swap” is
the only part of the algorithm that uses global PE-address
masking operations. In the algorithm, the swap and merge
routines are each called O(p®) times. O(1) global PE-address
masking operations are performed on each call to swap, and
O(N/P) local masking operations are performed on each call to
“merge.” Thus, O(p®) global PE-address masking operations
and O(p?N/P) local masking operations are performed.

Not all algorithms are dominated by local masking and,
thus, there are algorithms that should execute faster on
machines supporting hybrid masking. As an illustration, con-
sider a synthetic modified bitonic sorting algorithm where the
‘“swap” operation is moved into the inner q loop. This new
synthetic algorithm no longer has any functionality, other than
to exercise the prototype in a certain way. The synthetic algo-
rithm contains a more balanced mixture of masking types:
O(p?N/P) local masking operations and O(p?N/P) global PE-
address masking operations. As seen in Figure 5, the synthetic
algorithm performs better on the hybrid system than on the
local system. This disparity is even more evident for applica-
tions where global PE-address masking operations dominate
local masking operations. While Figure 5 is based on a syn-
thetic algorithm, it is a representation of computational situa-
tions where there is a balance between global and local mask-
ing, and is useful for the purposes of this study.

5. Conclusion

This paper has presented an efficient masking technique
for large-scale SIMD architectures. This masking technique
implements a hybrid of the two masking strategies inherent in
SIMD algorithms: global masking, where the CU sets an expli-
cit Global Mask independent of PE data, and local masking,
where PEs enable and disable themselves based on conditions
dependent on PE resident data.

Most of the constructed SIMD systems mentioned in Sec-
tion 2 use local masking techniques, but not global. This work
has shown how a hybrid of the two masking techniques can be
supported in SIMD architectures using standard off-the-shelf or
custom-designed microprocessors. The hybrid masking tech-
nique was detailed in Section 3.

263

Experience with the PASM prototype is the basis for this
study and it was on the PASM prototype that the hybrid
masking technique was examined through the emulation of the
various masking strategies for the purpose of comparison (Sec-
tion 4). This examination centered on a synthetic algorithm
that exhibits both global and local masking characteristics. It
was seen that the hybrid masking technique can increase the
utilization of PEs and thus increase performance, the degree of
improvement being algorithm dependent. The SIMD/no-CC
results demonstrate that the hybrid technique used with off-
the-shelf microprocessors can operate at near the performance
of custom processors that internally incorporate some degree of
hybrid masking support. This study also shows how particular
details of the PASM prototype implementation can be stripped
away to make the results of this research more generally appli-
cable to any SIMD architectures built from off-the-shelf
microprocessors.

The proposed hybrid masking scheme provides a highly
efficient environment for performing masking operations over a
range of applications on massively parallel SIMD systems. The
results of this work should aid system designers in constructing
these architectures. The results may also be used by system
architects planning custom processors that will incorporate
both modes of masking.

References

[1] G. H. Barnes, R. Brown, M. Kato, D. J. Kuck, D. L. Slot-
nick, and R. A. Stokes, “The Illiac IV computer,” IEEE
Trans. Computers, Vol. C-17, No. 8, Aug. 1968, pp. 746-
757.

K. E. Batcher, “Sorting networks and their applications,”
AFIPS 1968 Spring Joint Computer Conf., 1968, pp. 307-
314.

K. E. Batcher, “STARAN parallel processor system
hardware,” AFIPS 1974 Nat’l Computer Conf., May
1974, pp. 405-410.

K. E. Batcher, “The multidimensional access memory in
STARAN,” IEEE Trans. Computers, Vol. C-26, No. 2,
Feb. 1977, pp. 174-177.

K. E. Batcher, “STARAN series E,” 1977 Int’l Conf.
Parallel Processing, Aug. 1977, pp. 140-143.

K. E. Batcher, “Design of 2 massively parallel processor,”
IEEE Trans. Computer, Vol. C-29, No. 9, Sept. 1980, pp.
836-844.

K. E. Batcher, “Bit serial parallel processing systems,”’
IEEE Trans. Computer, Vol. C-31, No. 5, May 1982, pp.
377-384.

T. Blank, “The MasPar MP-1 architecture,”
Compcon, Feb. 1990, pp. 20-24.

D. W. Blevins, E. W. Davis, R. A. Heaton, and J. H. Reif],
“BLITZEN: a highly integrated massively parallel
machine,” J. Parallel and Distributed Computing, Vol. 8,
No. 2, Feb. 1990, pp. 150-160.

W. J. Bouknight, S. A. Denenberg, D. E. McIntyre, J. M.
Randall, A. H. Sameh, and D. L. Slotnick, “The Illiac IV
system,” Proc. IEEE, Vol. 60, No. 4, Apr. 1972, pp. 369-
388.

E. C. Bronson, T. L. Casavant, and L. H. Jamieson,
“Experimental application-driven architecture analysis of
an SIMD/MIMD parallel processing system,” IEEE
Trans. Parallel and Distributed Computing, Vol. 1, No. 2,
Apr. 1990, pp. 195-205.

(7]

8] IEEE

(9]

[10]

11]

(12]

[13]

(14]

(18]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

[27]

(28]

(29]

C. L. Cline and H. J. Siegel, “Augmenting Ada for SIMD
parallel processing,” IEEE Trans. Software Engineering,
Vol. SE-11, No. 9, Sept. 1985, pp. 970-977.

B. A. Crane, M. J. Gilmartin, J. H. Huttenhoff, P. T.
Rux, and R. R. Shively, “PEPE computer architecture,”
IEEE Computer Soc. Compcon 72, Sept. 1972, pp. 57-60.
P. H. Enslow, Jr., “Appendix A: Parallel Element Pro-
cessing Ensemble PEPE,” in Multiprocessors and Parallel
Processing, John Wiley and Sons, New York, NY, 1974,
pp. 139-149.

S. A. Fineberg, T. L. Casavant, and H. J. Siegel, “Experi-
mental analysis of communication/synchronization
aspects of a mixed-mode parallel architecture via syn-
thetic computations,” Supercomputing ’90, to appear,
Nov. 1990.

S. A. Fineberg, T. L. Casavant, and H. J. Siegel, “Experi-
mental analysis of a mixed-mode parallel architecture
using bitonic sequence sorting,” J. of Parallel and Distri-
buted Computing, to appear, 1991.

M. J. Flynn, “Very high-speed computing systems,”
Proc. IEEE, Vol. 54, No. 12, Dec. 1966, pp. 1901-1909.
R. M. Hord, The llliac IV, the First Supercomputer,
Computer Science Press, Rockville, MD, 1982,

D. J. Hunt, “The ICL DAP and its application to image
processing,” in Languages and Architectures for Image
Processing, M. J. B. Duff and S. Levialdi, eds., Academic
Press, London, England, 1981, pp. 275-282.

D. J. Hunt, “AMT DAP - a processor array in a worksta-
tion environment,” Computer Sys. Science and Eng., Vol.
4, No. 2, Apr. 1989, pp. 107-114.

D. E. Knuth, The Art of Computer Programming: Vol. 8
Sorting and Searching, Addison-Wesley, Reading, MA,
1973,

J. L. Potter, “MPP architecture and programming,” in
Multicomputers and Image Processing: Algorithms and
Programs, K. Preston and L. Uhr, eds., Academic Press,
New York, NY, 1982, pp. 275-290.

M. J. Quinn, Designing Efficient Algorithms for Parallel
Computers, McGraw-Hill, New York, NY, 1987.

S. F. Reddaway, “DAP - A distributed array processor,”
1st Symp. Computer Arch., Dec. 1973, pp. 61-65.

T. Schwederski, W. G. Nation, H. J. Siegel, and D. G.
Meyer, “Design and implementation of the PASM proto-
type control hierarchy,” 2nd Int’l Supercomputing Conf.,
May 1987, pp. 418-427.

H. J. Siegel, ‘““‘Analysis techniques for SIMD machine
interconnection networks and the effects of processor
address masks,”” IEEE Trans. Computers, Vol. C-26, No.
2, Feb. 1977, pp. 153-161.

H. J. Siegel, “Partitionable SIMD computer system inter-
connection network universality,” 16th Allerton Conf.
Communication, Control, and Computing, Oct. 1978, pp.
586-595.

H. J. Siegel, Interconnection Networks for Large-Scale
Parallel Processing: Theory and Case Studies, 2nd Ed:-
tion, McGraw-Hill, New York, NY, 1990.

H. J. Siegel, W. G. Nation, C. P. Kruskal, and L. M.
Napolitano, “Using the multistage cube network topology
in parallel supercomputers,” Proc. IEEE, Vol. 77, No.
12, Dec. 1989, pp. 1932-1953.

(30]

(31]

(32]

(33]

(34]

H. J. Siegel, T. Schwederski, J. T. Kuehn, and N. J. Davis
IV, “An overview of the PASM parallel processing sys-
tem,” in Computer Architecture, D. D. Gajski, V. M.
Milutinovic, H. J. Siegel, and B. P. Furht, eds., IEEE
Computer Society Press, Washington, DC, 1987, pp. 387-
407.

H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T. Mueller,
Jr., H. E. Smalley, Jr., and S. D. Smith, “PASM: a parti-
tionable SIMD/MIMD system for image processing and
pattern recognition,” IEEE Trans. Computers, Vol. C-30,
No. 12, Dec. 1981, pp. 934-947.

H. S. Stone, “Parallel processing with the perfect shuffle,”
IEEE Trans. Computers, Vol. C-20, No. 2, Feb. 1971, pp.
153-161.

L. W. Tucker and G. G. Robertson, ‘“Architecture and
applications of the Connection Machine,” Computer, Vol.
21, No. 8, Aug. 1988, pp. 26-38.

C. R. Vick and J. A. Cornell, “PEPE architgcture -
present and future,” AFIPS 1978 Nat’l Computer Conf.,
June 1978, pp. 981-992.

