A Comparison of Requirements Management in Agile
vs. Predictive Projects

Dallas Rosson Daniel R. Herber
Naval Undersea Warfare Center Systems Engineering
Division Keyport Colorado State University
Keyport, WA Fort Collins, CO
Industrial and Systems Engineering daniel.herber@colostate.edu
University of Washington
Seattle, WA
dallas.j.rosson.civ(@us.navy.mil
Alexandra Trani Thomas H. Bradley
Naval Undersea Warfare Center Systems Engineering
Division Keyport Colorado State University
Keyport, WA Fort Collins, CO

thomas.bradley@colostate.edu

Copyright © 2025 by Dallas Rosson, Daniel R. Herber, Alexandra Trani, and Thomas H. Bradley.

Abstract. Agile and Predictive-style approaches each have their own pros and cons, managing project
requirements in different, often conflicting ways. Applying these styles independently to critical software
systems can result in adverse effects. Agile-style requirements management, typically documented in
Connextra-style User Stories, offers customers and stakeholders the flexibility to adapt requirements as projects
evolve. The highly detailed and structured Predictive-style requirements management, often documented in
INCOSE style “shall” statements, provides clear visibility into system functions and supports communication
with developers. Understanding the benefits and limitations of each style equips developers with an expanded
toolset, increased perspective, and the ability to apply each style more effectively to projects. By thoughtfully
combining the strengths of both requirements management styles, a more comprehensive requirements
baseline can be established, minimizing risks for both customers and programs.

Keywords. Agile, Software Systems Engineering, Scrum, Software Requirements

Introduction

There are significant differences between Agile and Predictive styles of project management. Projects
managed with iterative and flexible Agile methods focus on customer needs and desires without a high
burden of documentation and planning. Because flexibility is prioritized, Agile projects can quickly pivot in
response to changing customer needs. In general, Agile practitioners rely on “stories” in lieu of requirements
to communicate customer needs to development teams.

mailto:daniel.herber@colostate.edu
mailto:dallas.j.rosson.civ@us.navy.mil
mailto:thomas.bradley@colostate.edu

In contrast, projects managed with Predictive methods (e.g., the Waterfall methodology) rely on extensive
upfront planning to capture customer needs, goals, and requirements in documentation. Documentation is
created with the objective of clear communication and effective capture of project scope. The Department
of Defense (DoD), along with many other groups and companies in the software engineering industry,
are increasingly adopting Agile project methodologies. Yet, as this article demonstrates, there are cases
where traditional, Predictive project management remains ideal. This article will illustrate the benefits
and drawbacks of each requirements management framework for DoD software development projects by
comparing requirements management, traceability transformation, and goals to requirements refinement.

This paper is organized in seven sections. Section 2 and 3 begin with an introductory overview of the Agile
and Predictive development methodologies. Section 4 presents a comparison of requirements management in
Predictive versus Agile projects, discussing the benefits and drawbacks of each. A comparison of requirements
traceability is explored in Section 5. In Section 6, we argue that Agile requirements, or User Stories, are
actually goals and do not meet the definition of traditional requirements. Finally, we conclude in Section 7
by presenting the need for a system capable of combining the strengths of both the Agile and Predictive
methods.

Overview of Agile Software Development

Agile project management is preferred in software development projects for its flexibility (Fowler and
Highsmith, 2001; Grenning, 2017). Using these principles, multiple ways of executing Agile projects have
been developed including Crystal, eXtreme Programming, and Scrum (Ashmore and Runyan, 2014). Agile
practices have further evolved to program and business management through the utilization of scaling Agile
with methods such as Scrum of Scrums (SoS) or the Scaled Agile Framework (SAFe) (Hohl et al., 2018).

Agile project management is most useful for high-risk, low-certainty projects in which the requirements
are only partially known (Project Management Institute, 2017; Wysocki, 2012). Agile reduces project risk
through incremental delivery of developed capabilities in conjunction with frequent customer interactions and
demonstrations (Project Management Institute, 2017; Schwaber and Sutherland, 2020). As shown in Figure 1,
software development teams deliver minimum viable products to customers in small, iterative increments,
re-prioritizing work backlogs at each iteration, and utilizing a customer feedback loop to integrate changes
driven by learning generated from the delivery of product increments. This iterative and incremental approach
helps to lower risk and optimize predictability through customer and subject matter expert engagement with
the development team (Schwaber and Sutherland, 2020). By focusing on the most important need of a

- Close customer partnership. - Small empowered teams
- Rapid feedback and learning. - Incremental development.
- Delivery of minimum viable products.

Project Definition
And Product Product
Project Vision Increment Increment

Iteration 1 Iteration 2 Iteration 3

— > — —

N e
Reprioritized Reprioritized
Backlog Backlog
H Development Cycle >

Figure 1. Adaptive Development Approach

Product

Figure 2. Example Agile Scrum Development Lifecycle

customer and then iteratively revisiting the project requirements, Agile methods seek to make use of Lean
thinking, reducing waste and focusing on what the customer needs, lowering overhead burdens (Hines et al.,
2004).

Knowledge work (e.g., planning, scheduling, resource allocation) is difficult for humans to perform within
complex systems (Davenport, 2005). Scrum, one of the most widely used forms of 4gile program management
(Paulk, 2013; Rauf and Al Ghafees, 2015), assists with this effort by optimizing heuristics, providing
continuous feedback, and creating external, cognitive artifacts like sticky notes, models, and the Scrum Board
(Verwijs, 2020; Verwijs and Russo, 2023). Figure 2 shows an example of the Scrum product lifecycle. This
lifecycle is a constant loop, progressing through the closed loop stages of Plan, Build, Test, Deploy Increment,
and Review. During the Build Stage, a Daily Scrum activity occurs. After the Review stage, a Final Product
might be produced if the Product Owner deems the product ready for production. This execution loop occurs
each Sprint and continues until project completion.

Through this iterative process, Agile software development focuses on lightweight, flexible, and adaptable
project execution. Agile Scrum further codifies the broader Agile methodology by implementing a structured
framework that includes an iterative development cycle called a Sprint. Agile Scrum practitioners plan projects
in Sprint increments, modifying execution plans as customer needs and requirements change. Through the
utilization of Agile project management tools, Agile practitioners can adapt to project with minor impact on
cost, schedule, and performance.

Overview of the Predictive Development Methodology

Traditionally, project management is predicated on a Predictive lifecycle (Wysocki, 2012).Predictive life-
cycles are expected to have little flexibility or change over the course of execution, have readily available
and stable team members, and accept negligible risk (Project Management Institute, 2017). These projects
are most successful when “project and product requirements can be defined, collected and analyzed at the
start of a project” (Project Management Institute, 2021). This type of project management is well-suited for
construction, with a repeatable and sequenced progression of work (Project Management Institute, 2017;
Project Management Institute, 2021). An example Predictive lifecycle flow is shown in Figure 3 where project
phases are executed in a serial manner, starting with the Plan phase and working through all phases until the
Deploy phase is completed. Many modern software projects have evolving project and product requirements,
are high risk, and have significant uncertainty, making it hard to apply the Predictive development approach
to these types of projects successfully (Project Management Institute, 2017; Project Management Institute,
2021; Wysocki, 2012).

Plan H Design H Build H Test H Deploy ‘

Figure 3. Example Predictive Lifecycle

The Predictive methodology of project management is a linear and serial effort. The previous phase must be
completed prior to moving to the next phase (Project Management Institute, 2021). Phases are not repeated,
and work products should not be touched upon again (Wysocki, 2012). The only feedback loop that is present
in this type of model normally occurs during the Test portion of the lifecycle. Defect fixes and changes can
be approved and performed during this period. One of the major issues with this linear model is that when
changes are requested or defects occur, there is a resultant extension of the project completion date, which
creates Earned Value compromising problems (Wysocki, 2012).

When applied to software projects, Predictive development has many documented issues. Due to the strict
adherence in an attempt to “provide straightforward, systematic, and organized processes” through detailed
planning and documentation, it commonly fails to adapt to the “rapidly changing business requirements”, a
focus on project metrics, such as Earned Value, and less of a focus on flexibility in execution for process
improvement (Flora and Chande, 2014). For the Predictive approach to work, a large emphasis on apriori
planning, measurement, and control is put in place. If very little is expected to change throughout a project
or when a product is difficult to change after development execution begins, this approach is a very good
use of time resources (Project Management Institute, 2021). Unfortunately, modern software development
projects frequently change and are relatively inexpensive to alter after development. Thus, when compared
to Agile methods, Predictive methods lack needed flexibility in project execution and prove more costly due
to larger overhead and planning burdens. Metrics of project performance for Predictive projects are often
not a reflection of reality, with the most common being Earned Value, lacking the ability to track software
execution and health (Project Management Institute, 2017). As a result, most software development projects
have moved away from the traditional, Predictive project management methodology.

Requirements management is different across Predictive and Agile projects. Predictive projects generate
detailed requirements documents that are baselined prior to the start of development efforts (Project Man-
agement Institute, 2021). Agile projects use more flexible requirements, generally gathered at a very high
level, to form an idea of what a project goal should be prior to the start of development (Project Management
Institute, 2017). Predictive focuses on having a solid plan and sticking to it, whereas Agile focuses on
flexibility in execution and welcoming changes (Fowler and Highsmith, 2001; Project Management Institute,
2017; Project Management Institute, 2021).

Predictive and Agile methods are dramatically different and are best applied in different scenarios. Predic-
tive methods are best suited to projects with minimal risk of change and uncertainty for which a detailed
requirements document can be generated. In these cases, detailed planning can lead to cost savings through
the avoidance of unnecessary schedule slippage and cost planning. Predictive approaches are most suited
to applications such as manufacturing and construction, where the final product is known, tolerances are
documented, and the customer has a low likelihood of presenting changes to requirements (Project Manage-
ment Institute, 2021; Wysocki, 2012). Agile methods are suited for medium to high risk projects with a high
degree of uncertainty where it is easy to pivot and course correct in the middle of project execution. In these
types of projects, requirements do not need to be fully specified prior to the start of development. Instead,
requirements can be elicited and documented at a higher level where customer needs and goals are noted but
not necessarily down to the atomic level (Fowler and Highsmith, 2001; Project Management Institute, 2017;
Wysocki, 2012). This is especially applicable in the software development industry, as producing code has

little overhead cost outside of labor. Preplanning is not required for these projects nor are there concerns of
retooling, logistics and supply issues.

A Comparison of Requirements Management in Predictive versus Agile
Projects

Predictive-style requirements are described in IEEE and INCOSE documentation. IEEE stipulates that
requirements statements “translate or express a need and its associated constraints and conditions” and are
“written in a language which can take the form of a natural language” (IEEE, 2011). INCOSE further defines
requirements utilizing specified language, such as a shall” statement (INCOSE Requirements Working
Group, 2023). These requirements are very detailed and must meet the following characteristics: necessary,
appropriate, unambiguous, complete, singular, feasible, verifiable, validatable, correct, and conforming
(INCOSE Requirements Working Group, 2023). Furthermore, the set of requirements must adhere to the
following characteristics: complete, consistent, feasible, comprehensible, validatable, and correct (INCOSE
Requirements Working Group, 2023). Requirements management in Predictive projects is, therefore, a
detailed and large undertaking. The goal of an initial baseline requirements set is to have a fully formed
vision and understanding of the proposed system.

In contrast, Agile DoD projects usually generate requirements in the form of Connextra User Stories. The
Connextra form of User Story is written as the following: “As a role, I want goal, [so that][benefit]” (Fowler
and Highsmith, 2001). These User Stories became popular through the ideas of eXtreme Programming,
where development teams use User Stories to “understand the flow of requirements from initial ideas to final
product” (Hines et al., 2004). These User Stories are stored by the developers in a backlog where they are
prioritized by a Product Owner who sets priority according to their understanding of customer needs and
desires (Das et al., 2021).

User Stories are tracked via a system called “Story Points”. Story Points “rate the relative work, risk, and
complexity of a requirement or story” (Project Management Institute, 2017). As it is difficult to know exactly
how much work, risk, or complexity a work item will have without breaking the item down into an atomic,
easily testable, and understandable state, this can be a difficult task to accomplish. Many teams use a form of
Story Pointing called Planning Poker to form a level set baseline for Story Point values (Das et al., 2021;
Mountain Goat Software, 2024). Each team has a different method to set point equivalency, and it can
take time for the point values to stabilize with a new team. Experienced developers are of great assistance
in this aspect, and it is recommended that teams be made up of junior and senior developers, as a study
performed by Mahnic et al. found that “optimism bias caused by group discussion diminishes or disappears
by increasing the expertise of people involved in the group estimation process” (Mahnic and Hovelja, 2012).
Furthermore, the complexity of estimation increases as groups can become over-confident in the accuracy of
their estimates when given tasks more difficult than are usually presented. Software developers often have
problems predicting their own capability of work, and overall experience can be very “narrow” (Jorgensen,
2004). Therefore, while Story Pointing efforts can be effective in an experienced and fully realized team
with mixed experience levels, there are valid concerns regarding the validity of storming to norming teams
and their ability to estimate software project workloads adequately.

So, although both Agile and Predictive methods use these techniques to develop and communicate customer
intent, in practice, they are not equivalently effective in various project contexts. For example, 46% of
customers report Agile projects as “unsuccessful” within the boundaries of client benefits, cost control, and
time control (Azanha et al., 2017). Furthermore, for Agile projects to be successful, customers must actively
participate in the process and are expected to be “Collaborative, Representative, Authorized, Committed,
and Knowledgeable” (Atlassian, 2023). Ineffective communication and poor requirements development are
driving factors for failure in Agile projects (Bijan et al., 2013).

Traceability Transformation Activity
[——]
Needs, Goals, and
. ——— Requirements traced to
N . System Artifacts

System Components Linked to Driving
Factors and Stakeholders through

Disconnected System Artifacts Requirements Traceability

Figure 4. The Transformation of Disconnected System Artifacts to a Requirements Traced System

The use of thorough, standardized, and atomic requirements in the form of Predictive-style ’shall” statements
increases the ability of developers and customers to communicate with one another, directly leading to
improved system and problem domain understanding (Rosson, 2024). Especially in the instantiation phases
of projects where Needs, Goals, and Requirements are generated — even if they are solely high-level and
abstract. Because of the limited and abstract nature of User Stories, their use can lead to vague requirements
as well as confusion within Agile project development teams. Problems in cost, schedule, and performance
are even more likely to arise as availability of stakeholders is reduced.

A Comparison of Requirements Traceability

Introduction to Requirements Traceability

Requirement owners must trace requirements to needs for project success (Dove et al., 2023). Requirements
traceability is defined as “the ability to describe and follow the life of a requirement in both a forwards
and backwards direction (i.e., from its origins, through its development and specification, to its subsequent
deployment and use, and through periods of ongoing refinement and iteration in any of these phases)” (Chief
Information Officer, 2010). Mature projects include traceability not only during one point in time, such as
between customer requirements and system requirements, but also throughout time as requirements change
and evolve (Boehm, Lane, et al., 2007). Through the application of traceability, the disparate artifacts that
encompass a system are connected through linkages to other system components. Figure 4 shows how
individual and disconnected system artifacts flow through a transformation activity where needs, goals, and
requirements are traced directly to the artifacts, resulting in a network of system components. Maintaining
traceability of system artifacts to individual requirements creates greater visibility and understanding of the
system.

Agile Requirements Traceability

Agile practitioners recognize the importance of requirements traceability as a key enabler in maintaining
customer focus during the software development process (Lee et al., 2003). Yet, requirements traceability is
not inherent in Agile Scrum and is not mentioned in the Scrum Guide, Agile Software Development, or the
Agile Practice Guide (Dingsoyr et al., 2010; Hines et al., 2004; Project Management Institute, 2017). Agile
projects generally track requirements at four levels: Epics, Features, User Stories, and Tasks. Traceability
utilization beyond the hierarchy prescribed by basic User Stories is not standardized across the development
industry.

The basic hierarchy that is found in most Agile Scrum Product Backlogs follows the format of Epic — Feature

— User Story — Task. The relationship between a User Story and a Task is a one-to-many relationship.
Epics are the highest form of User Story representing an idea that is too large to comprehend by itself, or more
clearly, “a large User Story that cannot be delivered as defined within a single iteration or is large enough to
be split into smaller User Stories” (Cohn, 2004; Rehkopf, 2010). Many teams use Epics to track unrealized
ideas within a Product Backlog prior to a team identifying the deliverable needed (Agile Alliance, n.d.).
Features are the next step down from Epics. The relationship between Epics and Features is a one-to-many
relationship (Britsch, 2017). Feature, though not well defined, are generally realized as a larger grouping
of User Stories too big to be depicted as a single item, but too small to be considered Epics. User Stories
clustered in this way are tied to specific common functionality (Britsch, 2017; Guay, 2019; Lee et al., 2003).
The User Story is beneath Features in the hierarchy. The relationship between Features and User Stories is a
one-to-many relationship. As described above, User Stories are an “end goal, not a feature, expressed from
the software user’s perspective” that is to be realized in the software system (Rehkopf, n.d.). Each User Story
should be small enough to be completed within one Sprint cycle (Agile Modeling, n.d.; Britsch, 2017). In
the most basic of terms, a User Story is “something a user wants” (Cohn, n.d.). Finally, User Stories can be
further broken down into Tasks (Agile Modeling, n.d.). This hierarchical traceability is shown in Figure 5.

For example, Agile Scrum User Stories track traceability to roles through natural language in the Connextra
format. Many times, this is expressed as a defined “Persona” (Maloney, n.d.; Szabo, 2017). The purpose of
the persona is to assist the Agile Scrum team in discovering the value of the product they are making (Maloney,
n.d.). A Persona is “a customer profile that puts a face on the facts by encapsulating and representing the data”
(Broschinsky and Baker, 2008). In other words, Personas are a fictionalized representation of a customer
type that Agile Scrum software developers use to gain insight into customer needs, goals, and requirements
(Cooper, 2004; Szabo, 2017). This traceability can be useful but is limited as it does not identify specific
stakeholders as requirement owners. Rather, it identifies customer types, which software developers may or
may not have access to for elaboration of needs, goals, and requirements. Agile Scrum teams that do not use
Personas often do not have firm definitions of user roles.

Precluding organizational directives, each Agile Scrum team is free to cherry-pick what parts of User Story
requirements traceability the team desires. Some Scrum Teams will ensure that there is as high a level of
traceability as possible for their projects. Other teams will ignore traceability altogether, outside of the
minimal traceability that User Stories have built in inherently. Therefore, there cannot be a definitive case
set forth that the majority of Agile Scrum teams utilize good requirements traceability.

Predictive-Style Requirements Management Traceability

INCOSE emphasizes that traceability is “critical to managing relationships” (INCOSE Requirements Working
Group, 2023) and establishing traceability is an essential activity in the Technical Processes (INCOSE, 2023).
In the INCOSE standard, traceability allows systems engineers to “understand then identify, location,
relationships, pedigree, origin of data, materials, and parts of the objects/entities/items” (INCOSE, 2023).

bdd [Package] User Story Diagrams [User Story Traceability] ’,]

wAgilew A gilew dAgiles wAgilew
Epic —1 0.* * Feature —1 0. " User Story —1 0.+ g Task

Figure 5. Agile Scrum User Story Hierarchy

bdd [Package] MCOSE Reguirements [HNCOSE Reguirements]J

' System Component Child Requirement

1.* 0.1

0.* 1

Requirement

. 1+ '|1 . T,a .
1..* 0_* 0.1

.Dncurnentatinn. [Interfaces | . Source .Dependencies .Parentﬁequirement.

Figure 6. INCOSE Requirements Management Traceability

Requirements, both as a set and individually, are traced vertically and horizontally (INCOSE Requirements
Working Group, 2023). Vertical traceability is of a hierarchical nature (INCOSE, 2023). Practitioners
commonly refer to relationships of this type as “parent-child” relationships. The parent is directly “above”
the child in the hierarchy. Tracing requirements in this manner allows for a top-down perspective of a system
and defines a system’s hierarchical architecture.

Horizontal traceability is used to trace requirement data through system lifecycles and across a given level
of system architecture (INCOSE, 2023; INCOSE Requirements Working Group, 2023). Linkages of items
generated in a lifecycle stage that are to be used by another lifecycle stage are an example of horizontal
traceability. Horizontal traceability relationships are referred to as “peer” relationships (INCOSE, 2023). By
tracing relationship connections both vertically and horizontally, a network representing the full view of the
system of interest emerges, decreasing the effect of the large and interconnected systems’ complexity.

Due to the way that requirements are documented in Predictive requirements management, any item can be
traced to any other item. Documentation of linkages to other artifacts that each requirement traces to is part
of a requirements register, linking each unique line item to other unique line items, as shown in Figure 6.
Thorough tracing of requirements is not only encouraged but required in the technical processes (INCOSE,
2023). Without the built-in traceability, many requirements registers would be flat files and indecipherable to
most people. Examples of common traceability found in INCOSE requirements are parent-child relationships,
source derivation, interfaces, and dependencies (INCOSE, 2023).

Model-Based Systems Engineering (MBSE) activities expand upon traceability in Predictive requirements
management, directly increasing the level of visibility and understanding that requirements offer. As MBSE
efforts, specifically SysML, rely heavily on INCOSE requirements definition and standards, MBSE should
be considered a part of Predictive Requirements Management rather than a neutral third-party methodology.
Requirements managed in SysML allow for additional traceability relationships realized through metadata
connections. These relationships include, but are not limited to, derive, refine, satisfy, verify, and trace (dos
Santos Soares and Vrancken, 2008; Friedenthal et al., 2015; Wheaton and Herber, 2024). When making use
of other MBSE tools such as Model-based Structured Requirements (MBSR), even more detailed traceability
is allowed for, such that attributes “can be linked to other model elements that represent aspects of the
physical system, precise mathematical conditions, test cases, etc.” through the use of stereotypes (Herber and
Eftekhari-Shahroudi, 2023). A stereotype is a form of metadata that defines how an existing meta class may
be extended, enabling the use of platform, domain-specific terminology, or a notion in place of, or in addition
to, the ones used for the extended meta class (Herber and Eftekhari-Shahroudi, 2023). Further, documenting

the rationale of requirements is incredibly important to traceability and the understanding of the “why” of the
requirement itself. An MBSE engineer can easily accomplish this through the «rationale» stereotype in MBSE
linked to a textual comment detailing the rationale (Herber, Narsinghani, and Eftekhari-Shahroudi, 2022).
With modeling, linkage relationships are easily understood by a larger audience, as the media presented does
not require mental modeling to visualize. Rather, the connections are plainly drawn in a graphical manner.
The INCOSE methodology of integrating traceability directly into requirements management in an open and
flexible manner is much more robust and useful for system modeling and understanding complex systems.
INCOSE requirements traceability allows for modularity through the flexibility to allow a requirement to be
traced to any system element, giving clear visibility into how requirements are being met. This visibility
directly results in increased verification and validation capabilities through a clearer understanding of the
system. Utilizing MBSE techniques, requirements can be traced directly to system architecture, better
displaying how requirements are being realized through implementation. Tracing requirements back through
derivations, sources, interfaces, documentation, and many other inputs allows systems engineers to fully
conceptualize the problem space, building a mental model of not only what needs to be built, but also how
and why each requirement is necessary.

Requirements Traceability Conclusions

Both Agile Scrum User Stories and INCOSE style requirements management have a form of traceability
inherent in the system. The traceability is present in diverse ways in both systems. INCOSE requirements
management uses a structured, bidirectional, and hierarchical methodology that has firm rules that require-
ments engineers must follow (INCOSE, 2023; INCOSE Requirements Working Group, 2023). Agile Scrum
User Stories allow for a more diverse inheritance process, but it is generally considered a good form to follow
a top-down hierarchical structure. Requirements management style “shall” statements have inherent trace-
ability to any other item that may affect them, whereas Agile Scrum User Stories are self-contained, except
in cases where teams use metadata, which is not generally proscribeda. Both styles of requirements have
traceability, though INCOSE requirements management presents a more robust capability. Although both
Agile Scrum User Stories and INCOSE requirements management methodologies include built-in traceability,
User Stories’ traceability is not as robust as requirements management style “shall” statements. User Stories
have minimal traceability, prescribing only a “parent-child” relationship. This restriction can be overcome,
but requires outside intervention using such tools as Jira. INCOSE requirements management builds modular
and flexible traceability into the system, allowing for traceability to any other requirement or system element.
Not only does it allow for a greater range of traceability capability, but requirements management also
dictates that all requirements should name types of traceability outside of the “parent-child” relationship,
such as requirement derivation, verification methods, how requirements are refined, and how requirements
are satisfied in the system. This allows for a more robust mental model to be built by the development team,
facilitating an increased likelihood of delivering what the customer needs while minimizing rework that
results in project cost, schedule, and performance slippages. It is clear that although User Stories do have
minimal traceability inherent in the Connextra format, INCOSE requirements management outperforms User
Stories in every metric.

Goals versus Requirements

Introduction to Goals

ISO/IEC/IEEE 29148-2018 states the following about goals, “The term ‘Goal’ (sometimes called ‘business
concern’ or ‘critical success factor’) refers to the overall, high-level objectives of the system. Goals provide
the motivation for a system, but are often vaguely formulated. It is important to assess the value (relative to
priority) and cost of goals” (IEEE, 2011). Goals are abstract expressions of a customer’s desire for a system
function or performance, whereas requirements often describe a functionality at a much lower level. Goals

bod [Package] Goall Goal] |

Depandences

Supplementary Information Using Stakeholder Source Other Dependencies Reaponsible Stakeholder
T .
-
________________ Gy o o . — — — — — — — — -
* r
1 4 ¥ i i
Super-Goal Goal Sub-Goal
silaniifer =ideritifier dentifer
" i Hame e
flnt:!:!r: HAOeS +Authors

Aiaraion b | Vergon Humber Ll aversien Number
:If;‘c: r;;?::rr - K -'_:t-ar-;.z History K] 0" |+Change History
-5'<:r:l;- o =Prioey Frignky
_ﬁ;{ ¥ «Criticalty +Criticalty
-3 ci? I ~Goal Lave “Gonl Luve
—GE: De ::Irc'c- =Goal Description +Goal Description

1

g

u

Scenarkos

Figure 7. Goals - Traceability and Relationships

are normally vaguely formed and are tied to cost-to-benefit analysis and document stakeholder intention,
refining the system vision into objectives to be fulfilled (Pohl, 2010).

Goals are commonly associated with scenarios in requirements management (Pohl, 2010). Pohl states
scenarios “describe concrete system interactions and hence enable the stakeholders to describe concrete
examples of satisfying the identified goals™ (Pohl, 2010). Goals describe what the stakeholders want.
Scenarios describe situations in which the goal is used or needed. Goals and scenarios work well together to
assist in the development of new requirements as stakeholders detail what the system “should” do (Pohl,
2010). Goal traceability and relationships are shown in Figure 7.

User Stories as Goals

User Stories are not detailed enough to be considered true requirements, as they do not have all the metadata
associated with an INCOSE requirements management style requirement. The simple structure of the
Connextra User Story format prevents a full understanding of the domain and system function and relations
to be drawn from a User Story (Glines and Aydemir, 2020). User Stories are realistically goals and not
requirements. In the Connextra format, the word “goal” is used instead of requirement, further reinforcing
this (Lucassen et al., 2016). As User Stories are more aligned with goals because they lack the detail to be
considered true requirements. Thus, documentation using solely ambiguous User Stories creates problems in
understanding the proposed system domain and functionality. The problems, if left undetected, propagate
throughout the Agile software development process and documentation, which leads directly to a result of
negative effects on the system in development (Amna and Poels, 2022). By relying on goals instead of
detailing requirements at the lowest level possible, software developers risk incomplete understanding of the
problem domain resulting in improper software architecture. This outcome leads to waste in the form of
rework with impacts on cost, schedule, and performance in a project (Boechm and Turner, 2004).

10

Conclusions

Predictive-style requirements offer more engineering and technical rigor through built-in robust traceability
and metadata than User Stories, however, User Stories offer a high-level, abstract, and easy-to-execute
system. Both forms of requirements management offer minimal traceability to user, or persona, types,
needed function, and reasoning. User Stories are used in Agile software development, and Predictive-style
requirements are more often used in traditional, Predictive projects. Neither lends themselves solely to fully
successful software project execution.

Agile Scrum User Stories should not be considered requirements when compared to the Predictive definition,
as User Stories are too abstract to communicate customer needs. Instead, they are goals. They are abstract
definitions of what a customer needs and wants in a system. The abstract nature of User Stories can directly
cause the introduction of defects, both in requirements and in the system, through misunderstanding or
miscommunication with the customer. This lack of understanding of the problem domain causes difficulty
in the performance of thorough Verification and Validation activities, increasing development cost and
adversely affecting the project schedule. Without a detailed baseline of complete and correct requirements, the
introduction of technical debt occurs in the form of poor documentation and a lack of overall organizational
knowledge of system structure, which in turn impedes the knowledge transfer of architecture and functional
understanding.

Predictive-style “shall” statements are concrete statements of what a customer needs a system to do. These
statements can be too rigid in management and tracking to allow for the flexibility software developers
need to perform Agile development. By requiring in-depth, detailed, and atomic requirements up front,
the flexibility inherent in software development is lost. Writing overly detailed requirements becomes
a wasted effort because many requirements become obsolete as customer feedback is incorporated into
work backlogs. A complete and consistent set of requirements is necessary for full system Verification
and Validation activities. Predictive-style requirements management provides this capability despite the
significant drawback of reduced flexibility in project performance.

The traceability of requirements is imperative for understanding the full system domain. Requirement
traceability is inherent in Predictive-style requirements management, as not only are parent-child relationships
capable down to the n'" level, but MBSE and other modern Predictive-style requirements management
methodologies allow for full traceability to all system elements. In contrast to Predictive-style requirements
management, 4Agile requirements management does not have thorough traceability horizontally and vertically
throughout the system life cycle. This creates difficulties in the performance of Verification and Validation
activities, possibly introducing defects, lack of documentation, and impaired understanding of the problem
domain. Predictive-style requirements management has a very thorough and rigorous traceability inherent in
the system, but the drawbacks hinder the acceptance of this method in software projects.

Both Predictive-style “shall” statements and User Stories have benefits and drawbacks when applied to Agile
software projects, and neither individually fully captures the needs of development teams with regard to
executing projects. Due to the lack of large-scale traceability and metadata linkages, Agile User Stories alone
do not meet the needs of critical software systems, such as systems in the defense, medical, aerospace, and
financial sectors. Predictive requirements management is not flexible on its own to allow ease of tracking in
Agile Scrum Sprints, as requirements are considered too “low” in scope. On the basis of the above reflections
on the current state of Agile and Predictive requirements management, it is clear that a dual system is needed.
Initial requirements elicitation through Predictive requirements management methods should be performed to
create a requirements baseline. From this initial baseline, Epics can be drawn and traced directly to individual
requirements. In this way, the flexibility of User Stories can be taken advantage of while the traceability and
rigorous technical documentation of Predictive requirements management can still be employed.

11

References

Agile Alliance. (n.d.). Agile glossary [Accessed 14 APR 2024]. https://www.agilealliance.org/glossary

Agile Modeling. (n.d.). User stories: An agile introduction [Accessed 14 APR 2024]. https://agilemodeling.
com/artifacts/userStory.htm

Amna, A. R., & Poels, G. (2022). Ambiguity in user stories: A systematic literature review. Information and
Software Technology, 145.

Ashmore, S., & Runyan, K. (2014). Introduction to agile methods. Addison-Wesley Professional.

Atlassian. (2023). R4j - requirements management for jira [Accessed 27 JAN 2024]. https:////marketplace.
atlassian.com/apps/1213064/r4j-requirements-management-for-jira?tab=overview&hosting=cloud

Azanha, A., Argoud, A. R. T. T., d. Camargo Junior P D, J. B., & Antoniolli, P. D. (2017). Agile project
management with scrum. International Journal of Managing Projects in Business, 10(1), 121-142.

Bijan, Y., Yu, J., Stracener, J., & Woods, T. (2013). Systems requirements engineering—state of the method-
ology. Systems Engineering, 16(3), 251-377.

Boehm, B., Lane, J. A., Koolmanojwong, S., & Turner, R. (2007). Agile software development. Springer.

Boehm, B., & Turner, R. (2004). Balancing agility and discipline: A guide for the perplexed. Addison-
Wesley/Pearson Education.

Britsch. (2017). The basics: Epics, stories, themes & features,” the digital business analyst [Accessed 14 APR
2024]. https://thedigitalbusinessanalyst.co.uk/epics-stories-themes-and-features-4637712cff5c

Broschinsky, D., & Baker, L. (2008). Using persona with xp at landesk software, an avocent company. Agile
2008 Conference.

Chief Information Officer. (2010). Dodaf dod architectural framework version 2.02 [Accessed 03 MAR 2024].
https://dodcio.defense.gov/library/dod-architecture-framework/

Cohn, M. (n.d.). Epics, features and user stories [Accessed 14 APR 2024]. https://www.mountaingoatsoftware.
com/blog/stories-epics-and-themes

Cohn, M. (2004). User stories applied for agile software development. XP Atlanta.

Cooper, A. (2004). Inmates are running the asylum, the: Why high-tech products drive us crazy and how to
restore the sanity. Sams Publishing.

Das, S., Ali, Z., Bandi, S.-N., Bhagat, A., Chandrakumar, N., Kucheria, P., Pariente, M., Singh, A., & Tipping,
B. (2021). Engineering artificially intelligent systems. Springer.

Davenport, T. H. (2005). Thinking for a living: How to get better performances and results from knowledge
workers. Harvard Business Review Press.

Dingsoyr, T., Dyba, T., & Moe, N. B. (2010). Agile software development: Current research and future
directions. Springer Berlin, Heidelberg.

dos Santos Soares, M., & Vrancken, J. (2008). Model-driven user requirements specification using sysml.
Journal of Software, 3(6), 57-68.

Dove, R., Lunney, K., Orosz, M., & Yokell, M. (2023). Systems engineering agility in a nutshell. INCOSE
Insight, 26(2).

Flora, H. K., & Chande, S. V. (2014). A systematic study on agile software development methodologies and
practices. International Journal of Computer Science and Information Technologies, 5(3), 3626—
3637.

Fowler, M., & Highsmith, J. (2001). The agile manifesto. Software Development, 9, 28-35.

Friedenthal, S., Moore, A., & Steiner, R. (2015). 4 practical guide to sysml: The systems modeling language.
Elsevier Inc.

Grenning, J. (2017). Agile uprising podcast: Interview with james grenning.

Guay, C. (2019). Scrum tips: Differences between epics, stories, themes and features [Accessed 14 APR
2024]. https://const.fr/blog/agile/scrum-differences-epics-stories-themes-features/

12

https://www.agilealliance.org/glossary
https://agilemodeling.com/artifacts/userStory.htm
https://agilemodeling.com/artifacts/userStory.htm
https:////marketplace.atlassian.com/apps/1213064/r4j-requirements-management-for-jira?tab=overview&hosting=cloud
https:////marketplace.atlassian.com/apps/1213064/r4j-requirements-management-for-jira?tab=overview&hosting=cloud
https://thedigitalbusinessanalyst.co.uk/epics-stories-themes-and-features-4637712cff5c
https://dodcio.defense.gov/library/dod-architecture-framework/
https://www.mountaingoatsoftware.com/blog/stories-epics-and-themes
https://www.mountaingoatsoftware.com/blog/stories-epics-and-themes
https://const.fr/blog/agile/scrum-differences-epics-stories-themes-features/

Giines, T., & Aydemir, F. B. (2020). Automated goal model extraction from user stories using nlp. 2020
IEEFE 28th International Requirements Engineering Conference (RE).

Herber, D. R., & Eftekhari-Shahroudi, K. (2023). Building a requirements digital thread from concept to testing
using model-based structured requirements applied to thrust reverser actuation system development.
9th International Conference on Recent Advances in Aerospace Actuation Systems and Components.

Herber, D. R., Narsinghani, J. B., & Eftekhari-Shahroudi, K. (2022). Model-based structured requirements in
sysml. IEEE 2022 International Systems Conference (SysCon).

Hines, P., Holweg, M., & Rich, N. (2004). Learning to evolve: A review of contemporary lean thinking.
International Journal of Operations & Production Management, 24(10), 994—-1011.

Hohl, P., Kliinder, J., van Bennekum, A., Lockard, R., Gifford, J., Miinch, J., Stupperich, M., & Schneider, K.
(2018). Back to the future: Origins and directions of the “agile manifesto” — views of the originators.
Journal of Software Engineering Research and Development, 6(15).

IEEE. (2011). Systems and software engineering — life cycle processes — requirements engineering.

INCOSE. (2023). Systems engineering handbook, 5th edition.

INCOSE Requirements Working Group. (2023). Guide to writing requirements. International Council on
Systems Engineering (INCOSE).

Jorgensen, M. (2004). A review of studies on expert estimation of software development effort. The Journal
of Systems and Software, 70(2), 37-60.

Lee, C., Luigi, G., & Xiaoping, J. (2003). An agile approach to capturing requirements and traceability. Pro-
ceedings of the 2nd international workshop on traceability in emerging forms of software engineering
(TEFSE 2003).

Lucassen, G., Dalpiaz, F., van der Werf, J. M. E. M., & Brinkkemper, S. (2016). The use and effectiveness of
user stories. Requirements Engineering: Foundation for Software Quality.

Mabhnic, V., & Hovelja, T. (2012). On using planning poker for estimating user stories. The Journal of Systems
and Software, 85(9), 2086—-2095.

Maloney, B. (n.d.). What are user personas? [Accessed 14 APR 2024]. https://resources.scrumalliance.org/
Article/user-personas

Mountain Goat Software. (2024). Planning poker [Accessed 27 JAN 2024]. https://www.mountaingoatsoftware.
com/agile/planning-poker

Paulk, M. C. (2013). A scrum adoption survey. Sofiware Quality Professional, 15(2).

Pohl, K. (2010). Requirements engineering: Fundamentals, principles, and techniques. Springer Berlin,
Heidelberg.

Project Management Institute. (2017). Agile practice guide.

Project Management Institute. (2021). The standard for project management and a guide to the project
management body of knowledge.

Rauf, A., & Al Ghafees, M. (2015). Gap analysis between state of practice & state of art practices in agile
software development. Proceedings of Agile Conference (AGILE).

Rehkopf, M. (n.d.). User stories with examples and a template [Accessed 14 APR 2024]. https://www.
atlassian.com/agile/project-management/user-stories#:~:text=A%?20user%20story%20is%20the,
the%20end%20user%200r%20customer

Rehkopf, M. (2010). Agile epics: Definition, examples, and templates [Accessed 03 MAR 2024]. https://www.
atlassian.com/agile/project-management/epics.%20%5BAccessed%2014%2004%202024%5D/

Rosson, D. (2024). Merging systems engineering methodologies with the agile scrum framework for depart-
ment of defense software projects [Doctoral dissertation, Colorado State University].

Schwaber, K., & Sutherland, J. (2020). The scrum guide. Ken Schwaber; Jeff Sutherland.

Szabo, P. W. (2017). User experience mapping. Packt Publishing.

13

https://resources.scrumalliance.org/Article/user-personas
https://resources.scrumalliance.org/Article/user-personas
https://www.mountaingoatsoftware.com/agile/planning-poker
https://www.mountaingoatsoftware.com/agile/planning-poker
https://www.atlassian.com/agile/project-management/user-stories#:~:text=A%20user%20story%20is%20the,the%20end%20user%20or%20customer
https://www.atlassian.com/agile/project-management/user-stories#:~:text=A%20user%20story%20is%20the,the%20end%20user%20or%20customer
https://www.atlassian.com/agile/project-management/user-stories#:~:text=A%20user%20story%20is%20the,the%20end%20user%20or%20customer
https://www.atlassian.com/agile/project-management/epics.%20%5BAccessed%2014%2004%202024%5D/
https://www.atlassian.com/agile/project-management/epics.%20%5BAccessed%2014%2004%202024%5D/

Verwijs, C. (2020). Thinking by sprinting: What cognitive science tells us about why scrum works [Accessed
25 JAN 2024]. https://www.scrum.org/resources/blog/thinking-sprinting-what-cognitive-science-
tells-us-about-why-scrum-works

Verwijs, C., & Russo, D. (2023). A theory of scrum team effectiveness. ACM Transactions on Software
Engineering and Methodology, 32(3), 1-51.

Wheaton, J., & Herber, D. R. (2024). Digital requirements engineering with an incose-derived sysml meta-
model. Conference on Systems Engineering Research (CSER) 2024.

Wysocki, R. K. (2012). Effective project management: Traditional, agile, extreme, sixth edition. Wiley.

14

https://www.scrum.org/resources/blog/thinking-sprinting-what-cognitive-science-tells-us-about-why-scrum-works
https://www.scrum.org/resources/blog/thinking-sprinting-what-cognitive-science-tells-us-about-why-scrum-works

	Introduction
	Overview of Agile Software Development
	Overview of the Predictive Development Methodology
	A Comparison of Requirements Management in Predictive versus Agile Projects
	A Comparison of Requirements Traceability
	Introduction to Requirements Traceability
	Agile Requirements Traceability
	Predictive-Style Requirements Management Traceability
	Requirements Traceability Conclusions

	Goals versus Requirements
	Introduction to Goals
	User Stories as Goals

	Conclusions

