
A Comparison of Requirements Management in Agile

vs. Predictive Projects

Dallas Rosson Daniel R. Herber

Naval Undersea Warfare Center Systems Engineering

Division Keyport Colorado State University

Keyport, WA Fort Collins, CO

Industrial and Systems Engineering daniel.herber@colostate.edu

University of Washington

Seattle, WA

dallas.j.rosson.civ@us.navy.mil

Alexandra Trani Thomas H. Bradley

Naval Undersea Warfare Center Systems Engineering

Division Keyport Colorado State University

Keyport, WA Fort Collins, CO

thomas.bradley@colostate.edu

Copyright © 2025 by Dallas Rosson, Daniel R. Herber, Alexandra Trani, and Thomas H. Bradley.

Abstract. Agile and Predictive-style approaches each have their own pros and cons, managing project

requirements in different, often conflicting ways. Applying these styles independently to critical software

systems can result in adverse effects. Agile-style requirements management, typically documented in

Connextra-style User Stories, offers customers and stakeholders the flexibility to adapt requirements as projects

evolve. The highly detailed and structured Predictive-style requirements management, often documented in

INCOSE style “shall” statements, provides clear visibility into system functions and supports communication

with developers. Understanding the benefits and limitations of each style equips developers with an expanded

toolset, increased perspective, and the ability to apply each style more effectively to projects. By thoughtfully

combining the strengths of both requirements management styles, a more comprehensive requirements

baseline can be established, minimizing risks for both customers and programs.

Keywords. Agile, Software Systems Engineering, Scrum, Software Requirements

Introduction

There are significant differences between Agile and Predictive styles of project management. Projects

managed with iterative and flexible Agile methods focus on customer needs and desires without a high

burden of documentation and planning. Because flexibility is prioritized, Agile projects can quickly pivot in

response to changing customer needs. In general, Agile practitioners rely on “stories” in lieu of requirements

to communicate customer needs to development teams.

mailto:daniel.herber@colostate.edu
mailto:dallas.j.rosson.civ@us.navy.mil
mailto:thomas.bradley@colostate.edu


In contrast, projects managed with Predictive methods (e.g., the Waterfall methodology) rely on extensive

upfront planning to capture customer needs, goals, and requirements in documentation. Documentation is

created with the objective of clear communication and effective capture of project scope. The Department

of Defense (DoD), along with many other groups and companies in the software engineering industry,

are increasingly adopting Agile project methodologies. Yet, as this article demonstrates, there are cases

where traditional, Predictive project management remains ideal. This article will illustrate the benefits

and drawbacks of each requirements management framework for DoD software development projects by

comparing requirements management, traceability transformation, and goals to requirements refinement.

This paper is organized in seven sections. Section 2 and 3 begin with an introductory overview of the Agile

and Predictive development methodologies. Section 4 presents a comparison of requirements management in

Predictive versus Agile projects, discussing the benefits and drawbacks of each. A comparison of requirements

traceability is explored in Section 5. In Section 6, we argue that Agile requirements, or User Stories, are

actually goals and do not meet the definition of traditional requirements. Finally, we conclude in Section 7

by presenting the need for a system capable of combining the strengths of both the Agile and Predictive

methods.

Overview of Agile Software Development

Agile project management is preferred in software development projects for its flexibility (Fowler and

Highsmith, 2001; Grenning, 2017). Using these principles, multiple ways of executing Agile projects have

been developed including Crystal, eXtreme Programming, and Scrum (Ashmore and Runyan, 2014). Agile

practices have further evolved to program and business management through the utilization of scaling Agile

with methods such as Scrum of Scrums (SoS) or the Scaled Agile Framework (SAFe) (Hohl et al., 2018).

Agile project management is most useful for high-risk, low-certainty projects in which the requirements

are only partially known (Project Management Institute, 2017; Wysocki, 2012). Agile reduces project risk

through incremental delivery of developed capabilities in conjunction with frequent customer interactions and

demonstrations (Project Management Institute, 2017; Schwaber and Sutherland, 2020). As shown in Figure 1,

software development teams deliver minimum viable products to customers in small, iterative increments,

re-prioritizing work backlogs at each iteration, and utilizing a customer feedback loop to integrate changes

driven by learning generated from the delivery of product increments. This iterative and incremental approach

helps to lower risk and optimize predictability through customer and subject matter expert engagement with

the development team (Schwaber and Sutherland, 2020). By focusing on the most important need of a

Figure 1. Adaptive Development Approach

2



Figure 2. Example Agile Scrum Development Lifecycle

customer and then iteratively revisiting the project requirements, Agile methods seek to make use of Lean

thinking, reducing waste and focusing on what the customer needs, lowering overhead burdens (Hines et al.,

2004).

Knowledge work (e.g., planning, scheduling, resource allocation) is difficult for humans to perform within

complex systems (Davenport, 2005). Scrum, one of the most widely used forms of Agile programmanagement

(Paulk, 2013; Rauf and Al Ghafees, 2015), assists with this effort by optimizing heuristics, providing

continuous feedback, and creating external, cognitive artifacts like sticky notes, models, and the Scrum Board

(Verwijs, 2020; Verwijs and Russo, 2023). Figure 2 shows an example of the Scrum product lifecycle. This

lifecycle is a constant loop, progressing through the closed loop stages of Plan, Build, Test, Deploy Increment,

and Review. During the Build Stage, a Daily Scrum activity occurs. After the Review stage, a Final Product

might be produced if the Product Owner deems the product ready for production. This execution loop occurs

each Sprint and continues until project completion.

Through this iterative process, Agile software development focuses on lightweight, flexible, and adaptable

project execution. Agile Scrum further codifies the broader Agile methodology by implementing a structured

framework that includes an iterative development cycle called a Sprint. Agile Scrum practitioners plan projects

in Sprint increments, modifying execution plans as customer needs and requirements change. Through the

utilization of Agile project management tools, Agile practitioners can adapt to project with minor impact on

cost, schedule, and performance.

Overview of the Predictive Development Methodology

Traditionally, project management is predicated on a Predictive lifecycle (Wysocki, 2012).Predictive life-

cycles are expected to have little flexibility or change over the course of execution, have readily available

and stable team members, and accept negligible risk (Project Management Institute, 2017). These projects

are most successful when “project and product requirements can be defined, collected and analyzed at the

start of a project” (Project Management Institute, 2021). This type of project management is well-suited for

construction, with a repeatable and sequenced progression of work (Project Management Institute, 2017;

Project Management Institute, 2021). An example Predictive lifecycle flow is shown in Figure 3 where project

phases are executed in a serial manner, starting with the Plan phase and working through all phases until the

Deploy phase is completed. Many modern software projects have evolving project and product requirements,

are high risk, and have significant uncertainty, making it hard to apply the Predictive development approach

to these types of projects successfully (Project Management Institute, 2017; Project Management Institute,

2021; Wysocki, 2012).

3



Figure 3. Example Predictive Lifecycle

The Predictive methodology of project management is a linear and serial effort. The previous phase must be

completed prior to moving to the next phase (Project Management Institute, 2021). Phases are not repeated,

and work products should not be touched upon again (Wysocki, 2012). The only feedback loop that is present

in this type of model normally occurs during the Test portion of the lifecycle. Defect fixes and changes can

be approved and performed during this period. One of the major issues with this linear model is that when

changes are requested or defects occur, there is a resultant extension of the project completion date, which

creates Earned Value compromising problems (Wysocki, 2012).

When applied to software projects, Predictive development has many documented issues. Due to the strict

adherence in an attempt to “provide straightforward, systematic, and organized processes” through detailed

planning and documentation, it commonly fails to adapt to the “rapidly changing business requirements”, a

focus on project metrics, such as Earned Value, and less of a focus on flexibility in execution for process

improvement (Flora and Chande, 2014). For the Predictive approach to work, a large emphasis on apriori

planning, measurement, and control is put in place. If very little is expected to change throughout a project

or when a product is difficult to change after development execution begins, this approach is a very good

use of time resources (Project Management Institute, 2021). Unfortunately, modern software development

projects frequently change and are relatively inexpensive to alter after development. Thus, when compared

to Agile methods, Predictive methods lack needed flexibility in project execution and prove more costly due

to larger overhead and planning burdens. Metrics of project performance for Predictive projects are often

not a reflection of reality, with the most common being Earned Value, lacking the ability to track software

execution and health (Project Management Institute, 2017). As a result, most software development projects

have moved away from the traditional, Predictive project management methodology.

Requirements management is different across Predictive and Agile projects. Predictive projects generate

detailed requirements documents that are baselined prior to the start of development efforts (Project Man-

agement Institute, 2021). Agile projects use more flexible requirements, generally gathered at a very high

level, to form an idea of what a project goal should be prior to the start of development (Project Management

Institute, 2017). Predictive focuses on having a solid plan and sticking to it, whereas Agile focuses on

flexibility in execution and welcoming changes (Fowler and Highsmith, 2001; Project Management Institute,

2017; Project Management Institute, 2021).

Predictive and Agile methods are dramatically different and are best applied in different scenarios. Predic-

tive methods are best suited to projects with minimal risk of change and uncertainty for which a detailed

requirements document can be generated. In these cases, detailed planning can lead to cost savings through

the avoidance of unnecessary schedule slippage and cost planning. Predictive approaches are most suited

to applications such as manufacturing and construction, where the final product is known, tolerances are

documented, and the customer has a low likelihood of presenting changes to requirements (Project Manage-

ment Institute, 2021; Wysocki, 2012). Agile methods are suited for medium to high risk projects with a high

degree of uncertainty where it is easy to pivot and course correct in the middle of project execution. In these

types of projects, requirements do not need to be fully specified prior to the start of development. Instead,

requirements can be elicited and documented at a higher level where customer needs and goals are noted but

not necessarily down to the atomic level (Fowler and Highsmith, 2001; Project Management Institute, 2017;

Wysocki, 2012). This is especially applicable in the software development industry, as producing code has

4



little overhead cost outside of labor. Preplanning is not required for these projects nor are there concerns of

retooling, logistics and supply issues.

A Comparison of Requirements Management in Predictive versus Agile

Projects

Predictive-style requirements are described in IEEE and INCOSE documentation. IEEE stipulates that

requirements statements “translate or express a need and its associated constraints and conditions” and are

“written in a language which can take the form of a natural language” (IEEE, 2011). INCOSE further defines

requirements utilizing specified language, such as a ”shall” statement (INCOSE Requirements Working

Group, 2023). These requirements are very detailed and must meet the following characteristics: necessary,

appropriate, unambiguous, complete, singular, feasible, verifiable, validatable, correct, and conforming

(INCOSE Requirements Working Group, 2023). Furthermore, the set of requirements must adhere to the

following characteristics: complete, consistent, feasible, comprehensible, validatable, and correct (INCOSE

Requirements Working Group, 2023). Requirements management in Predictive projects is, therefore, a

detailed and large undertaking. The goal of an initial baseline requirements set is to have a fully formed

vision and understanding of the proposed system.

In contrast, Agile DoD projects usually generate requirements in the form of Connextra User Stories. The

Connextra form of User Story is written as the following: “As a role, I want goal, [so that][benefit]” (Fowler

and Highsmith, 2001). These User Stories became popular through the ideas of eXtreme Programming,

where development teams use User Stories to “understand the flow of requirements from initial ideas to final

product” (Hines et al., 2004). These User Stories are stored by the developers in a backlog where they are

prioritized by a Product Owner who sets priority according to their understanding of customer needs and

desires (Das et al., 2021).

User Stories are tracked via a system called “Story Points”. Story Points “rate the relative work, risk, and

complexity of a requirement or story” (Project Management Institute, 2017). As it is difficult to know exactly

how much work, risk, or complexity a work item will have without breaking the item down into an atomic,

easily testable, and understandable state, this can be a difficult task to accomplish. Many teams use a form of

Story Pointing called Planning Poker to form a level set baseline for Story Point values (Das et al., 2021;

Mountain Goat Software, 2024). Each team has a different method to set point equivalency, and it can

take time for the point values to stabilize with a new team. Experienced developers are of great assistance

in this aspect, and it is recommended that teams be made up of junior and senior developers, as a study

performed by Mahnic et al. found that “optimism bias caused by group discussion diminishes or disappears

by increasing the expertise of people involved in the group estimation process” (Mahnic and Hovelja, 2012).

Furthermore, the complexity of estimation increases as groups can become over-confident in the accuracy of

their estimates when given tasks more difficult than are usually presented. Software developers often have

problems predicting their own capability of work, and overall experience can be very “narrow” (Jorgensen,

2004). Therefore, while Story Pointing efforts can be effective in an experienced and fully realized team

with mixed experience levels, there are valid concerns regarding the validity of storming to norming teams

and their ability to estimate software project workloads adequately.

So, although both Agile and Predictive methods use these techniques to develop and communicate customer

intent, in practice, they are not equivalently effective in various project contexts. For example, 46% of

customers report Agile projects as “unsuccessful” within the boundaries of client benefits, cost control, and

time control (Azanha et al., 2017). Furthermore, for Agile projects to be successful, customers must actively

participate in the process and are expected to be “Collaborative, Representative, Authorized, Committed,

and Knowledgeable” (Atlassian, 2023). Ineffective communication and poor requirements development are

driving factors for failure in Agile projects (Bijan et al., 2013).

5



Figure 4. The Transformation of Disconnected System Artifacts to a Requirements Traced System

The use of thorough, standardized, and atomic requirements in the form of Predictive-style ”shall” statements

increases the ability of developers and customers to communicate with one another, directly leading to

improved system and problem domain understanding (Rosson, 2024). Especially in the instantiation phases

of projects where Needs, Goals, and Requirements are generated – even if they are solely high-level and

abstract. Because of the limited and abstract nature of User Stories, their use can lead to vague requirements

as well as confusion within Agile project development teams. Problems in cost, schedule, and performance

are even more likely to arise as availability of stakeholders is reduced.

A Comparison of Requirements Traceability

Introduction to Requirements Traceability

Requirement owners must trace requirements to needs for project success (Dove et al., 2023). Requirements

traceability is defined as “the ability to describe and follow the life of a requirement in both a forwards

and backwards direction (i.e., from its origins, through its development and specification, to its subsequent

deployment and use, and through periods of ongoing refinement and iteration in any of these phases)” (Chief

Information Officer, 2010). Mature projects include traceability not only during one point in time, such as

between customer requirements and system requirements, but also throughout time as requirements change

and evolve (Boehm, Lane, et al., 2007). Through the application of traceability, the disparate artifacts that

encompass a system are connected through linkages to other system components. Figure 4 shows how

individual and disconnected system artifacts flow through a transformation activity where needs, goals, and

requirements are traced directly to the artifacts, resulting in a network of system components. Maintaining

traceability of system artifacts to individual requirements creates greater visibility and understanding of the

system.

Agile Requirements Traceability

Agile practitioners recognize the importance of requirements traceability as a key enabler in maintaining

customer focus during the software development process (Lee et al., 2003). Yet, requirements traceability is

not inherent in Agile Scrum and is not mentioned in the Scrum Guide, Agile Software Development, or the

Agile Practice Guide (Dingsoyr et al., 2010; Hines et al., 2004; Project Management Institute, 2017). Agile

projects generally track requirements at four levels: Epics, Features, User Stories, and Tasks. Traceability

utilization beyond the hierarchy prescribed by basic User Stories is not standardized across the development

industry.

The basic hierarchy that is found in most Agile Scrum Product Backlogs follows the format of Epic→ Feature

6



→ User Story → Task. The relationship between a User Story and a Task is a one-to-many relationship.

Epics are the highest form of User Story representing an idea that is too large to comprehend by itself, or more

clearly, “a large User Story that cannot be delivered as defined within a single iteration or is large enough to

be split into smaller User Stories” (Cohn, 2004; Rehkopf, 2010). Many teams use Epics to track unrealized

ideas within a Product Backlog prior to a team identifying the deliverable needed (Agile Alliance, n.d.).

Features are the next step down from Epics. The relationship between Epics and Features is a one-to-many

relationship (Britsch, 2017). Feature, though not well defined, are generally realized as a larger grouping

of User Stories too big to be depicted as a single item, but too small to be considered Epics. User Stories

clustered in this way are tied to specific common functionality (Britsch, 2017; Guay, 2019; Lee et al., 2003).

The User Story is beneath Features in the hierarchy. The relationship between Features and User Stories is a

one-to-many relationship. As described above, User Stories are an “end goal, not a feature, expressed from

the software user’s perspective” that is to be realized in the software system (Rehkopf, n.d.). Each User Story

should be small enough to be completed within one Sprint cycle (Agile Modeling, n.d.; Britsch, 2017). In

the most basic of terms, a User Story is “something a user wants” (Cohn, n.d.). Finally, User Stories can be

further broken down into Tasks (Agile Modeling, n.d.). This hierarchical traceability is shown in Figure 5.

For example, Agile Scrum User Stories track traceability to roles through natural language in the Connextra

format. Many times, this is expressed as a defined “Persona” (Maloney, n.d.; Szabo, 2017). The purpose of

the persona is to assist the Agile Scrum team in discovering the value of the product they are making (Maloney,

n.d.). A Persona is “a customer profile that puts a face on the facts by encapsulating and representing the data”

(Broschinsky and Baker, 2008). In other words, Personas are a fictionalized representation of a customer

type that Agile Scrum software developers use to gain insight into customer needs, goals, and requirements

(Cooper, 2004; Szabo, 2017). This traceability can be useful but is limited as it does not identify specific

stakeholders as requirement owners. Rather, it identifies customer types, which software developers may or

may not have access to for elaboration of needs, goals, and requirements. Agile Scrum teams that do not use

Personas often do not have firm definitions of user roles.

Precluding organizational directives, each Agile Scrum team is free to cherry-pick what parts of User Story

requirements traceability the team desires. Some Scrum Teams will ensure that there is as high a level of

traceability as possible for their projects. Other teams will ignore traceability altogether, outside of the

minimal traceability that User Stories have built in inherently. Therefore, there cannot be a definitive case

set forth that the majority of Agile Scrum teams utilize good requirements traceability.

Predictive-Style Requirements Management Traceability

INCOSE emphasizes that traceability is “critical to managing relationships” (INCOSE RequirementsWorking

Group, 2023) and establishing traceability is an essential activity in the Technical Processes (INCOSE, 2023).

In the INCOSE standard, traceability allows systems engineers to “understand then identify, location,

relationships, pedigree, origin of data, materials, and parts of the objects/entities/items” (INCOSE, 2023).

Figure 5. Agile Scrum User Story Hierarchy

7



Figure 6. INCOSE Requirements Management Traceability

Requirements, both as a set and individually, are traced vertically and horizontally (INCOSE Requirements

Working Group, 2023). Vertical traceability is of a hierarchical nature (INCOSE, 2023). Practitioners

commonly refer to relationships of this type as “parent-child” relationships. The parent is directly “above”

the child in the hierarchy. Tracing requirements in this manner allows for a top-down perspective of a system

and defines a system’s hierarchical architecture.

Horizontal traceability is used to trace requirement data through system lifecycles and across a given level

of system architecture (INCOSE, 2023; INCOSE Requirements Working Group, 2023). Linkages of items

generated in a lifecycle stage that are to be used by another lifecycle stage are an example of horizontal

traceability. Horizontal traceability relationships are referred to as “peer” relationships (INCOSE, 2023). By

tracing relationship connections both vertically and horizontally, a network representing the full view of the

system of interest emerges, decreasing the effect of the large and interconnected systems’ complexity.

Due to the way that requirements are documented in Predictive requirements management, any item can be

traced to any other item. Documentation of linkages to other artifacts that each requirement traces to is part

of a requirements register, linking each unique line item to other unique line items, as shown in Figure 6.

Thorough tracing of requirements is not only encouraged but required in the technical processes (INCOSE,

2023). Without the built-in traceability, many requirements registers would be flat files and indecipherable to

most people. Examples of common traceability found in INCOSE requirements are parent-child relationships,

source derivation, interfaces, and dependencies (INCOSE, 2023).

Model-Based Systems Engineering (MBSE) activities expand upon traceability in Predictive requirements

management, directly increasing the level of visibility and understanding that requirements offer. As MBSE

efforts, specifically SysML, rely heavily on INCOSE requirements definition and standards, MBSE should

be considered a part of Predictive Requirements Management rather than a neutral third-party methodology.

Requirements managed in SysML allow for additional traceability relationships realized through metadata

connections. These relationships include, but are not limited to, derive, refine, satisfy, verify, and trace (dos

Santos Soares and Vrancken, 2008; Friedenthal et al., 2015; Wheaton and Herber, 2024). When making use

of other MBSE tools such as Model-based Structured Requirements (MBSR), even more detailed traceability

is allowed for, such that attributes “can be linked to other model elements that represent aspects of the

physical system, precise mathematical conditions, test cases, etc.” through the use of stereotypes (Herber and

Eftekhari-Shahroudi, 2023). A stereotype is a form of metadata that defines how an existing meta class may

be extended, enabling the use of platform, domain-specific terminology, or a notion in place of, or in addition

to, the ones used for the extended meta class (Herber and Eftekhari-Shahroudi, 2023). Further, documenting

8



the rationale of requirements is incredibly important to traceability and the understanding of the “why” of the

requirement itself. AnMBSE engineer can easily accomplish this through the «rationale» stereotype in MBSE

linked to a textual comment detailing the rationale (Herber, Narsinghani, and Eftekhari-Shahroudi, 2022).

With modeling, linkage relationships are easily understood by a larger audience, as the media presented does

not require mental modeling to visualize. Rather, the connections are plainly drawn in a graphical manner.

The INCOSE methodology of integrating traceability directly into requirements management in an open and

flexible manner is much more robust and useful for system modeling and understanding complex systems.

INCOSE requirements traceability allows for modularity through the flexibility to allow a requirement to be

traced to any system element, giving clear visibility into how requirements are being met. This visibility

directly results in increased verification and validation capabilities through a clearer understanding of the

system. Utilizing MBSE techniques, requirements can be traced directly to system architecture, better

displaying how requirements are being realized through implementation. Tracing requirements back through

derivations, sources, interfaces, documentation, and many other inputs allows systems engineers to fully

conceptualize the problem space, building a mental model of not only what needs to be built, but also how

and why each requirement is necessary.

Requirements Traceability Conclusions

Both Agile Scrum User Stories and INCOSE style requirements management have a form of traceability

inherent in the system. The traceability is present in diverse ways in both systems. INCOSE requirements

management uses a structured, bidirectional, and hierarchical methodology that has firm rules that require-

ments engineers must follow (INCOSE, 2023; INCOSE Requirements Working Group, 2023). Agile Scrum

User Stories allow for a more diverse inheritance process, but it is generally considered a good form to follow

a top-down hierarchical structure. Requirements management style “shall” statements have inherent trace-

ability to any other item that may affect them, whereas Agile Scrum User Stories are self-contained, except

in cases where teams use metadata, which is not generally proscribeda. Both styles of requirements have

traceability, though INCOSE requirements management presents a more robust capability. Although both

Agile Scrum User Stories and INCOSE requirements management methodologies include built-in traceability,

User Stories’ traceability is not as robust as requirements management style “shall” statements. User Stories

have minimal traceability, prescribing only a “parent-child” relationship. This restriction can be overcome,

but requires outside intervention using such tools as Jira. INCOSE requirements management builds modular

and flexible traceability into the system, allowing for traceability to any other requirement or system element.

Not only does it allow for a greater range of traceability capability, but requirements management also

dictates that all requirements should name types of traceability outside of the “parent-child” relationship,

such as requirement derivation, verification methods, how requirements are refined, and how requirements

are satisfied in the system. This allows for a more robust mental model to be built by the development team,

facilitating an increased likelihood of delivering what the customer needs while minimizing rework that

results in project cost, schedule, and performance slippages. It is clear that although User Stories do have

minimal traceability inherent in the Connextra format, INCOSE requirements management outperforms User

Stories in every metric.

Goals versus Requirements

Introduction to Goals

ISO/IEC/IEEE 29148-2018 states the following about goals, “The term ‘Goal’ (sometimes called ‘business

concern’ or ‘critical success factor’) refers to the overall, high-level objectives of the system. Goals provide

the motivation for a system, but are often vaguely formulated. It is important to assess the value (relative to

priority) and cost of goals” (IEEE, 2011). Goals are abstract expressions of a customer’s desire for a system

function or performance, whereas requirements often describe a functionality at a much lower level. Goals

9



Figure 7. Goals - Traceability and Relationships

are normally vaguely formed and are tied to cost-to-benefit analysis and document stakeholder intention,

refining the system vision into objectives to be fulfilled (Pohl, 2010).

Goals are commonly associated with scenarios in requirements management (Pohl, 2010). Pohl states

scenarios “describe concrete system interactions and hence enable the stakeholders to describe concrete

examples of satisfying the identified goals” (Pohl, 2010). Goals describe what the stakeholders want.

Scenarios describe situations in which the goal is used or needed. Goals and scenarios work well together to

assist in the development of new requirements as stakeholders detail what the system “should” do (Pohl,

2010). Goal traceability and relationships are shown in Figure 7.

User Stories as Goals

User Stories are not detailed enough to be considered true requirements, as they do not have all the metadata

associated with an INCOSE requirements management style requirement. The simple structure of the

Connextra User Story format prevents a full understanding of the domain and system function and relations

to be drawn from a User Story (Günes and Aydemir, 2020). User Stories are realistically goals and not

requirements. In the Connextra format, the word “goal” is used instead of requirement, further reinforcing

this (Lucassen et al., 2016). As User Stories are more aligned with goals because they lack the detail to be

considered true requirements. Thus, documentation using solely ambiguous User Stories creates problems in

understanding the proposed system domain and functionality. The problems, if left undetected, propagate

throughout the Agile software development process and documentation, which leads directly to a result of

negative effects on the system in development (Amna and Poels, 2022). By relying on goals instead of

detailing requirements at the lowest level possible, software developers risk incomplete understanding of the

problem domain resulting in improper software architecture. This outcome leads to waste in the form of

rework with impacts on cost, schedule, and performance in a project (Boehm and Turner, 2004).

10



Conclusions

Predictive-style requirements offer more engineering and technical rigor through built-in robust traceability

and metadata than User Stories, however, User Stories offer a high-level, abstract, and easy-to-execute

system. Both forms of requirements management offer minimal traceability to user, or persona, types,

needed function, and reasoning. User Stories are used in Agile software development, and Predictive-style

requirements are more often used in traditional, Predictive projects. Neither lends themselves solely to fully

successful software project execution.

Agile Scrum User Stories should not be considered requirements when compared to the Predictive definition,

as User Stories are too abstract to communicate customer needs. Instead, they are goals. They are abstract

definitions of what a customer needs and wants in a system. The abstract nature of User Stories can directly

cause the introduction of defects, both in requirements and in the system, through misunderstanding or

miscommunication with the customer. This lack of understanding of the problem domain causes difficulty

in the performance of thorough Verification and Validation activities, increasing development cost and

adversely affecting the project schedule. Without a detailed baseline of complete and correct requirements, the

introduction of technical debt occurs in the form of poor documentation and a lack of overall organizational

knowledge of system structure, which in turn impedes the knowledge transfer of architecture and functional

understanding.

Predictive-style “shall” statements are concrete statements of what a customer needs a system to do. These

statements can be too rigid in management and tracking to allow for the flexibility software developers

need to perform Agile development. By requiring in-depth, detailed, and atomic requirements up front,

the flexibility inherent in software development is lost. Writing overly detailed requirements becomes

a wasted effort because many requirements become obsolete as customer feedback is incorporated into

work backlogs. A complete and consistent set of requirements is necessary for full system Verification

and Validation activities. Predictive-style requirements management provides this capability despite the

significant drawback of reduced flexibility in project performance.

The traceability of requirements is imperative for understanding the full system domain. Requirement

traceability is inherent in Predictive-style requirements management, as not only are parent-child relationships

capable down to the nth level, but MBSE and other modern Predictive-style requirements management

methodologies allow for full traceability to all system elements. In contrast to Predictive-style requirements

management, Agile requirements management does not have thorough traceability horizontally and vertically

throughout the system life cycle. This creates difficulties in the performance of Verification and Validation

activities, possibly introducing defects, lack of documentation, and impaired understanding of the problem

domain. Predictive-style requirements management has a very thorough and rigorous traceability inherent in

the system, but the drawbacks hinder the acceptance of this method in software projects.

Both Predictive-style “shall” statements and User Stories have benefits and drawbacks when applied to Agile

software projects, and neither individually fully captures the needs of development teams with regard to

executing projects. Due to the lack of large-scale traceability and metadata linkages, Agile User Stories alone

do not meet the needs of critical software systems, such as systems in the defense, medical, aerospace, and

financial sectors. Predictive requirements management is not flexible on its own to allow ease of tracking in

Agile Scrum Sprints, as requirements are considered too “low” in scope. On the basis of the above reflections

on the current state of Agile and Predictive requirements management, it is clear that a dual system is needed.

Initial requirements elicitation through Predictive requirements management methods should be performed to

create a requirements baseline. From this initial baseline, Epics can be drawn and traced directly to individual

requirements. In this way, the flexibility of User Stories can be taken advantage of while the traceability and

rigorous technical documentation of Predictive requirements management can still be employed.

11



References

Agile Alliance. (n.d.). Agile glossary [Accessed 14 APR 2024]. https://www.agilealliance.org/glossary

Agile Modeling. (n.d.). User stories: An agile introduction [Accessed 14 APR 2024]. https://agilemodeling.

com/artifacts/userStory.htm

Amna, A. R., & Poels, G. (2022). Ambiguity in user stories: A systematic literature review. Information and

Software Technology, 145.

Ashmore, S., & Runyan, K. (2014). Introduction to agile methods. Addison-Wesley Professional.

Atlassian. (2023). R4j - requirements management for jira [Accessed 27 JAN 2024]. https:////marketplace.

atlassian.com/apps/1213064/r4j-requirements-management-for-jira?tab=overview&hosting=cloud

Azanha, A., Argoud, A. R. T. T., d. Camargo Junior P D, J. B., & Antoniolli, P. D. (2017). Agile project

management with scrum. International Journal of Managing Projects in Business, 10(1), 121–142.

Bijan, Y., Yu, J., Stracener, J., & Woods, T. (2013). Systems requirements engineering—state of the method-

ology. Systems Engineering, 16(3), 251–377.

Boehm, B., Lane, J. A., Koolmanojwong, S., & Turner, R. (2007). Agile software development. Springer.

Boehm, B., & Turner, R. (2004). Balancing agility and discipline: A guide for the perplexed. Addison-

Wesley/Pearson Education.

Britsch. (2017). The basics: Epics, stories, themes & features,” the digital business analyst [Accessed 14 APR

2024]. https://thedigitalbusinessanalyst.co.uk/epics-stories-themes-and-features-4637712cff5c

Broschinsky, D., & Baker, L. (2008). Using persona with xp at landesk software, an avocent company. Agile

2008 Conference.

Chief Information Officer. (2010). Dodaf dod architectural framework version 2.02 [Accessed 03 MAR 2024].

https://dodcio.defense.gov/library/dod-architecture-framework/

Cohn, M. (n.d.). Epics, features and user stories [Accessed 14 APR 2024]. https://www.mountaingoatsoftware.

com/blog/stories-epics-and-themes

Cohn, M. (2004). User stories applied for agile software development. XP Atlanta.

Cooper, A. (2004). Inmates are running the asylum, the: Why high-tech products drive us crazy and how to

restore the sanity. Sams Publishing.

Das, S., Ali, Z., Bandi, S.-N., Bhagat, A., Chandrakumar, N., Kucheria, P., Pariente, M., Singh, A., & Tipping,

B. (2021). Engineering artificially intelligent systems. Springer.

Davenport, T. H. (2005). Thinking for a living: How to get better performances and results from knowledge

workers. Harvard Business Review Press.

Dingsoyr, T., Dyba, T., & Moe, N. B. (2010). Agile software development: Current research and future

directions. Springer Berlin, Heidelberg.

dos Santos Soares, M., & Vrancken, J. (2008). Model-driven user requirements specification using sysml.

Journal of Software, 3(6), 57–68.

Dove, R., Lunney, K., Orosz, M., & Yokell, M. (2023). Systems engineering agility in a nutshell. INCOSE

Insight, 26(2).

Flora, H. K., & Chande, S. V. (2014). A systematic study on agile software development methodologies and

practices. International Journal of Computer Science and Information Technologies, 5(3), 3626–

3637.

Fowler, M., & Highsmith, J. (2001). The agile manifesto. Software Development, 9, 28–35.

Friedenthal, S., Moore, A., & Steiner, R. (2015). A practical guide to sysml: The systems modeling language.

Elsevier Inc.

Grenning, J. (2017). Agile uprising podcast: Interview with james grenning.

Guay, C. (2019). Scrum tips: Differences between epics, stories, themes and features [Accessed 14 APR

2024]. https://const.fr/blog/agile/scrum-differences-epics-stories-themes-features/

12

https://www.agilealliance.org/glossary
https://agilemodeling.com/artifacts/userStory.htm
https://agilemodeling.com/artifacts/userStory.htm
https:////marketplace.atlassian.com/apps/1213064/r4j-requirements-management-for-jira?tab=overview&hosting=cloud
https:////marketplace.atlassian.com/apps/1213064/r4j-requirements-management-for-jira?tab=overview&hosting=cloud
https://thedigitalbusinessanalyst.co.uk/epics-stories-themes-and-features-4637712cff5c
https://dodcio.defense.gov/library/dod-architecture-framework/
https://www.mountaingoatsoftware.com/blog/stories-epics-and-themes
https://www.mountaingoatsoftware.com/blog/stories-epics-and-themes
https://const.fr/blog/agile/scrum-differences-epics-stories-themes-features/


Günes, T., & Aydemir, F. B. (2020). Automated goal model extraction from user stories using nlp. 2020

IEEE 28th International Requirements Engineering Conference (RE).

Herber, D. R., & Eftekhari-Shahroudi, K. (2023). Building a requirements digital thread from concept to testing

using model-based structured requirements applied to thrust reverser actuation system development.

9th International Conference on Recent Advances in Aerospace Actuation Systems and Components.

Herber, D. R., Narsinghani, J. B., & Eftekhari-Shahroudi, K. (2022). Model-based structured requirements in

sysml. IEEE 2022 International Systems Conference (SysCon).

Hines, P., Holweg, M., & Rich, N. (2004). Learning to evolve: A review of contemporary lean thinking.

International Journal of Operations & Production Management, 24(10), 994–1011.

Hohl, P., Klünder, J., van Bennekum, A., Lockard, R., Gifford, J., Münch, J., Stupperich, M., & Schneider, K.

(2018). Back to the future: Origins and directions of the “agile manifesto” – views of the originators.

Journal of Software Engineering Research and Development, 6(15).

IEEE. (2011). Systems and software engineering — life cycle processes — requirements engineering.

INCOSE. (2023). Systems engineering handbook, 5th edition.

INCOSE Requirements Working Group. (2023). Guide to writing requirements. International Council on

Systems Engineering (INCOSE).

Jorgensen, M. (2004). A review of studies on expert estimation of software development effort. The Journal

of Systems and Software, 70(2), 37–60.

Lee, C., Luigi, G., & Xiaoping, J. (2003). An agile approach to capturing requirements and traceability. Pro-

ceedings of the 2nd international workshop on traceability in emerging forms of software engineering

(TEFSE 2003).

Lucassen, G., Dalpiaz, F., van der Werf, J. M. E. M., & Brinkkemper, S. (2016). The use and effectiveness of

user stories. Requirements Engineering: Foundation for Software Quality.

Mahnic, V., & Hovelja, T. (2012). On using planning poker for estimating user stories. The Journal of Systems

and Software, 85(9), 2086–2095.

Maloney, B. (n.d.). What are user personas? [Accessed 14 APR 2024]. https://resources.scrumalliance.org/

Article/user-personas

MountainGoat Software. (2024). Planning poker [Accessed 27 JAN2024]. https://www.mountaingoatsoftware.

com/agile/planning-poker

Paulk, M. C. (2013). A scrum adoption survey. Software Quality Professional, 15(2).

Pohl, K. (2010). Requirements engineering: Fundamentals, principles, and techniques. Springer Berlin,

Heidelberg.

Project Management Institute. (2017). Agile practice guide.

Project Management Institute. (2021). The standard for project management and a guide to the project

management body of knowledge.

Rauf, A., & Al Ghafees, M. (2015). Gap analysis between state of practice & state of art practices in agile

software development. Proceedings of Agile Conference (AGILE).

Rehkopf, M. (n.d.). User stories with examples and a template [Accessed 14 APR 2024]. https://www.

atlassian.com/agile/project-management/user-stories#:~:text=A%20user%20story%20is%20the,

the%20end%20user%20or%20customer

Rehkopf, M. (2010). Agile epics: Definition, examples, and templates [Accessed 03 MAR 2024]. https://www.

atlassian.com/agile/project-management/epics.%20%5BAccessed%2014%2004%202024%5D/

Rosson, D. (2024). Merging systems engineering methodologies with the agile scrum framework for depart-

ment of defense software projects [Doctoral dissertation, Colorado State University].

Schwaber, K., & Sutherland, J. (2020). The scrum guide. Ken Schwaber; Jeff Sutherland.

Szabo, P. W. (2017). User experience mapping. Packt Publishing.

13

https://resources.scrumalliance.org/Article/user-personas
https://resources.scrumalliance.org/Article/user-personas
https://www.mountaingoatsoftware.com/agile/planning-poker
https://www.mountaingoatsoftware.com/agile/planning-poker
https://www.atlassian.com/agile/project-management/user-stories#:~:text=A%20user%20story%20is%20the,the%20end%20user%20or%20customer
https://www.atlassian.com/agile/project-management/user-stories#:~:text=A%20user%20story%20is%20the,the%20end%20user%20or%20customer
https://www.atlassian.com/agile/project-management/user-stories#:~:text=A%20user%20story%20is%20the,the%20end%20user%20or%20customer
https://www.atlassian.com/agile/project-management/epics.%20%5BAccessed%2014%2004%202024%5D/
https://www.atlassian.com/agile/project-management/epics.%20%5BAccessed%2014%2004%202024%5D/


Verwijs, C. (2020). Thinking by sprinting: What cognitive science tells us about why scrum works [Accessed

25 JAN 2024]. https://www.scrum.org/resources/blog/thinking-sprinting-what-cognitive-science-

tells-us-about-why-scrum-works

Verwijs, C., & Russo, D. (2023). A theory of scrum team effectiveness. ACM Transactions on Software

Engineering and Methodology, 32(3), 1–51.

Wheaton, J., & Herber, D. R. (2024). Digital requirements engineering with an incose-derived sysml meta-

model. Conference on Systems Engineering Research (CSER) 2024.

Wysocki, R. K. (2012). Effective project management: Traditional, agile, extreme, sixth edition. Wiley.

14

https://www.scrum.org/resources/blog/thinking-sprinting-what-cognitive-science-tells-us-about-why-scrum-works
https://www.scrum.org/resources/blog/thinking-sprinting-what-cognitive-science-tells-us-about-why-scrum-works

	Introduction
	Overview of Agile Software Development
	Overview of the Predictive Development Methodology
	A Comparison of Requirements Management in Predictive versus Agile Projects
	A Comparison of Requirements Traceability
	Introduction to Requirements Traceability
	Agile Requirements Traceability
	Predictive-Style Requirements Management Traceability
	Requirements Traceability Conclusions

	Goals versus Requirements
	Introduction to Goals
	User Stories as Goals

	Conclusions

