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Abstract

Dynamics are playing an increasingly important role in many engineering

domains as these systems become more active and autonomous. Designing

a dynamic engineering system can be challenging. In this thesis, both the

problem formulation and solution methods will be discussed for designing a

dynamic engineering system. A case is made for the inclusion of both the

physical and control system design into a single design formulation. A par-

ticular class of numerical methods known as direct transcription is identified

as promising solution method. These principles are then demonstrated on

the design of a wave energy converter, a device that captures energy present

in ocean waves. This system is of particular interest since a successful de-

sign hinges on exploiting the natural dynamics of the interaction between the

ocean waves and the physical wave energy converter. A number of numer-

ical studies are presented that identify both novel and previously observed

strategies for the maximizing energy production of an ocean wave energy

converter.

ii



To Ashley and my parents,

for their love and support.

iii



Acknowledgments

First and foremost, I would like to express my gratitude towards my ad-

viser, Professor James T. Allison, for his invaluable guidance throughout my

graduate studies and thesis work. What started off as a grading position

quickly turned into a collaboration on wave energy research, stemming from

his passion for research and teaching.

I would especially like to thank Ashley for her continuous support and love

during my studies which includes, but is not limited to, listening to me talk

about my research and always having time to review my writing. I want

also to recognize my family who have always supported me. My mother and

father have always encouraged me to pursue my academic and life interests,

for which I am forever grateful.

There are many members of the Engineering System Design Lab who pro-

vided invaluable research and academic assistance throughout my graduate

studies. This includes Jeff Arena, Anand Deshmukh, Chen Ge, Tinghao Guo,

Allen Kaitharath, Ashish Khetan, Danny Lohan, Jason McDonald, Xin Niu,

and Lakshmi Rao. Allen, Chen, and Xin also were invaluable collaborators

on a number of wave energy related projects.

I would also like to thank the Department of Industrial & Enterprise Sys-

tems Engineering not only for their financial assistance through Teaching

Assistantships, but their constant effort to create a challenging and engaging

engineering curriculum throughout my graduate and undergraduate studies.

Finally, I would like to acknowledge the support of Deere & Company and

in particular the John Deere Technology Innovation Center in Champaign.

My work with them was an instrumental step from my undergraduate to

graduate studies, and made for an enjoyable transformation from student

to researcher. I would like to thank Hank Roark especially for his guidance

and patience; in addition to Prof. Allison, he sparked my interest in many

research fields.

iv



Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 The Design of Ocean Wave Energy Converters . . . . . . . . . 1
1.2 The Design of Dynamic Engineering Systems . . . . . . . . . 8
1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 2 Dynamic System Design Optimization . . . . . . . . 12
2.1 Optimal Control-System Design . . . . . . . . . . . . . . . . . 13
2.2 Optimal Physical-System Design . . . . . . . . . . . . . . . . . 19
2.3 Optimal Dynamic System Design . . . . . . . . . . . . . . . . 21
2.4 Solving Optimal Dynamic System Design Problems . . . . . . 24

Chapter 3 Direct Transcription . . . . . . . . . . . . . . . . . . 34
3.1 Direct Transcription Preliminaries . . . . . . . . . . . . . . . . 34
3.2 Numerical Approximation of Differential Equations . . . . . . 38
3.3 Additional Comments . . . . . . . . . . . . . . . . . . . . . . 44

Chapter 4 Wave Energy Converter Design . . . . . . . . . . . 49
4.1 Modeling Ocean Waves . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 WEC Design for Maximum Energy Extraction . . . . . . . . . 63
4.4 Power-Take Off Design . . . . . . . . . . . . . . . . . . . . . . 66
4.5 Design Objectives and Constraints . . . . . . . . . . . . . . . 66

Chapter 5 Numerical Studies on WEC Design . . . . . . . . . 71
5.1 Regularization Penalty Parameter . . . . . . . . . . . . . . . 71
5.2 Regular Waves . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3 Irregular Waves . . . . . . . . . . . . . . . . . . . . . . . . . . 94

v



Chapter 6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Appendix A Problem Structure and Sparsity Pattern
for the WEC Design Problem . . . . . . . . . . . . . . . . . 107
A.1 Hessian Calculation . . . . . . . . . . . . . . . . . . . . . . . 108
A.2 Linear Constraint Calculation . . . . . . . . . . . . . . . . . . 109
A.3 Quadratic Constraint Calculation . . . . . . . . . . . . . . . . 111
A.4 Creating Sparse Matrices in Matlabr . . . . . . . . . . . . . 112

Appendix B Additional Figures . . . . . . . . . . . . . . . . . . 119

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

vi



List of Figures

1.1 Approximate yearly average global distribution of wave
power levels in kW per meter of wave front [7]. . . . . . . . . . 2

1.2 Illustrations of various common devices used to capture
wave energy [20]. . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Simple heaving point absorber WEC. . . . . . . . . . . . . . . 6
1.4 Illustration of the differences between sequential design and

co-design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Visualization of two simple path constraints. . . . . . . . . . . 16
2.2 Visualization of a simple boundary constraint. . . . . . . . . . 17
2.3 Methods of solving an optimal control-system design problem. 30
2.4 Illustration of time discretization and potential defect con-

straints where • is the current state value used in the opti-
mization algorithm and ◦ is the predicted state value for:
a) single shooting, b) multiple shooting, c) DT local col-
location, d) DT global collocation. . . . . . . . . . . . . . . . 30

2.5 Methods for solving a optimal dynamic system design problem. 33

3.1 Illustration of the location of equidistant and Legendre grid
points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Illustration of the sparsity pattern of defect constraint Ja-
cobian (shaded region indicates possible nonzero elements). . . 46

4.1 Regular wave definitions. . . . . . . . . . . . . . . . . . . . . . 50
4.2 Superposition of 8 regular wave components to create an

irregular wave using the Bretschneider spectrum with S(ω)
on the top and η(t) on the bottom. . . . . . . . . . . . . . . . 53

4.3 Bretschneider spectrum with H1/3 = 4 m and Tp = 8 s. . . . . 54
4.4 Heaving cylinder wave energy converter. . . . . . . . . . . . . 56
4.5 a) Design space of a/h and b/h with data points n, l from

[114], white feasible region, all curves drawn using neural
network, darker lines indicate smaller geometric ratio b)
Rr(ω,xp) using n points c) mr(ω,xp) using 5 points d)
Rr(ω,xp) using 5 points. . . . . . . . . . . . . . . . . . . . . . 60

vii



5.1 Sensitivity studies to determine the appropriate value for
Rpen in regular waves (all four cases considered). . . . . . . . 72

5.2 The effect of Rpen on the phase space of the objective func-
tion for Case 1 (note that the Rpen values are in the north-
east corners). . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 The effect of Rpen on the phase space of the objective func-
tion for Case 3 (note that the Rpen values are in the north-
east corners, grey shading indicates infeasible regions). . . . . 75

5.4 Sensitivity studies to determine the appropriate value for
Rpen in irregular waves (only Case 1 considered). . . . . . . . 77

5.5 Poor solution with Rpen = 10−6 in an irregular wave using a
global collocation method (note that the solution is feasible
and mesh tolerances are met according to the optimization
algorithm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.6 Energy results for all four cases in a regular wave (Emax =
3.37 MJ and optimum located at ◦). . . . . . . . . . . . . . . 81

5.7 Optimal solutions for Cases 1 and 2 in a regular wave (grey
shading indicates infeasible regions). . . . . . . . . . . . . . . 82

5.8 Optimal solutions for Cases 3 and 4 in a regular wave (grey
shading indicates infeasible regions). . . . . . . . . . . . . . . 83

5.9 Energy results for all four cases in a regular wave with
|z| ≤ 4 m (Emax = 1.75 MJ and optimum located at ◦). . . . 85

5.10 Optimal solutions for Cases 1 and 2 in a regular wave with
|z| ≤ 4 m (grey shading indicates infeasible regions). . . . . . 86

5.11 Optimal solutions for Cases 3 and 4 in a regular wave with
|z| ≤ 4 m (grey shading indicates infeasible regions). . . . . . 87

5.12 Final Rpen values for all four cases in a regular wave. . . . . . 89
5.13 Final Rpen values for all four cases in a regular wave with

|z| ≤ 4 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.14 Sensitivity study on regular wave period length with both

unconstrained and constrained heave amplitude. . . . . . . . 92
5.15 Energy results normalized by the HCWEC’s radius for a

variety of cases (optimum located at ◦). . . . . . . . . . . . . . 94
5.16 Optimal solution for Case 1: FPTO ∈ R, P ∈ R in an irreg-

ular wave. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.17 Optimal solution for Case 2: FPTO ∈ R+, P ∈ R in an

irregular wave. . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.18 Optimal solution for Case 3: FPTO ∈ R, P ∈ R+ in an

irregular wave. . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.19 Optimal solution for Case 4: FPTO ∈ R+, P ∈ R+ in an

irregular wave. . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.20 Energy extraction vs. Cmax for Case 1. . . . . . . . . . . . . . 102
5.21 Power trajectory for various levels of Cmax for Case 1. . . . . 102

viii



5.22 Phase space of the objective for two levels of maximum
power (red dotted lines indicate maximum power curve). . . . 103

A.1 Matlabr code for Hessian calculation using the index
method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.2 Hessian sparsity pattern for WEC design problem using
trapezoidal quadrature (red indicates nonzero element). . . . 115

A.3 Matlabr code for linear constraint calculation using the
row method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.4 Linear constraint matrix A sparsity pattern for WEC de-
sign problem using the trapezoidal rule (red indicates nonzero
element). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

A.5 Matlabr code for constraint Jacobian calculation using
the diagonal method. . . . . . . . . . . . . . . . . . . . . . . 117

A.6 Nonlinear constraint Jacobian sparsity pattern for WEC
design problem (red indicates nonzero element). . . . . . . . . 118

B.1 The effect of Rpen on the phase space of the objective func-
tion for Case 2 (note that the Rpen values are in the north-
east corners, grey shading indicates infeasible regions). . . . . 119

B.2 The effect of Rpen on the phase space of the objective func-
tion for Case 4 (note that the Rpen values are in the north-
east corners, grey shading indicates infeasible regions). . . . . 120

B.3 Position trajectories for various values of the regular wave
period with both unconstrained and constrained heave am-
plitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.4 Phase space of the objective function for Cases 1 and 2
in an irregular wave (grey shading indicates infeasible re-
gions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

B.5 Phase space of the objective function for Cases 3 and 4
in an irregular wave (grey shading indicates infeasible re-
gions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B.6 Visualization of the slamming path constraint (z − η ≤
b) for all four cases in an irregular wave (horizontal line
indicates the maximum allowed value of this constraint). . . . 124

ix



List of Tables

2.1 Proposed effectiveness of problem formulations for ODSD. . . 32

4.1 Four design cases of the power and control force constraint. . . 68

5.1 Parameters for regular wave studies. . . . . . . . . . . . . . . 79
5.2 Case results in a regular wave. . . . . . . . . . . . . . . . . . . 81
5.3 Case results in a regular wave with |z| ≤ 4 m. . . . . . . . . . 85
5.4 Comparison of unconstrained and constrained average power

results in a regular wave. . . . . . . . . . . . . . . . . . . . . . 88
5.5 Parameters for irregular wave studies. . . . . . . . . . . . . . . 95
5.6 Case results in an irregular wave. . . . . . . . . . . . . . . . . 95

x



List of Abbreviations

AAO All-at-Once

ANN artificial neural network

BS Bretschneider spectrum

BVP boundary value problem

DAE differential algebraic equation

DT direct transcription

D → O discretize-then-optimize

HC heaving cylinder

LG Legendre-Gauss

LGL Legendre-Gauss-Lobatto

LGR Legendre-Gauss-Radau

LTI linear time-invariant

MDF Multidisciplinary Feasible

MDO multidisciplinary design optimization

NLP nonlinear programming

OCSD optimal control-system design

ODE ordinary differential equation

ODSD optimal dynamic system design

OPSD optimal physical-system design

O → D optimize-then-discretize

PMP Pontryagin’s maximum principle

PTO power take-off

QCQP quadratically constrained quadratic program

QP quadratic program

SWL still water level

WEC wave energy converter

xi



List of Symbols

a cylinder radius [m]

aU acceleration vector for the translation modes [m/s2]

aΩ acceleration vector for the rotation modes [rad/s2]

A wave amplitude [m]

A state matrix (also constant linear constraint matrix)

α empirical coefficient in Bretschneider spectrum

b cylinder draft [m]

b constant linear constraint vector

B input matrix

β empirical coefficient in Bretschneider spectrum

c wave celerity [m/s]

C control subspace

C path constraint function

C[tk] discretized path constraint vector at time point tk

CD drag coefficient [0.81 for HC]

D differentiation matrix

e disturbance

E energy [J]

ε penalty method termination tolerance [ε > 1]

η wave elevation [m]

f objective function

fRatio ratio of successive objective functions in penalty method

fd state derivative function

fd[tk] discretized state derivative function at time point tk

Fb buoyancy force [N]

Fe excitation force [N]

xii



FPTO power take-off force [N]

Fr radiation force [N]

Fv viscous force [N]

Fw wave force [N]

F external force vector [N]

g gravitational constant [9.81 m/s2]

g inequality constraint function

gp plant constraint function

G gradient

γs Runge-Kutta constant for stage s

h height above the ocean floor [m]

hk kth time step size [s]

h equality constraint function

H wave height [m]

H(·) Hamiltonian
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ż heave velocity [m/s]

z̈ heave acceleration [m/s2]

Z radiation impedance [Nm/s]

ζ defect constraint matrix or vector

ζ[tk] defect constraint vector at time point tk

0 matrix or vector of zeros

xv



Chapter 1

Introduction

Dynamics are playing an increasingly important role in many engineering

domains as these systems become more active and autonomous. Designing a

dynamic engineering system can be challenging. Legacy design formulations

need to be reevaluated, and newer methods should be considered that favor

more natural formulations which directly account for the dynamics. Special

numerical methods can efficiently and reliability find solutions for these prob-

lems. The design of wave energy converters (WECs) is promising application

area for dynamic system design optimization.

1.1 The Design of Ocean Wave Energy Converters

Energy is the largest commodity in the world and its influence on mod-

ern society is ever-increasing [1]. A subset of the world energy resources

is renewable energy, which is defined as energy produced through sources

that are near inexhaustible or can be replenished in a short amount of time.

Examples include: solar, wind, geothermal, hydropower, biomass, and ocean

energy. Significant concerns have been raised on both the national and global

level regarding nonrenewable energy sources including the dependence on for-

eign supplies (e.g., fossil fuels) and their influence on global warming [2–4].

Although renewable resources have the potential to alleviate these concerns,

most are unable to compete with the low energy prices of nonrenewables,

primarily fossil fuels. Ocean energy is a promising class of renewable energy

but it is still considered to be in the early stages of technology development

[5, p. 3]. The five categories that capitalize on a distinct ocean-based physical

phenomenon include wave energy, tidal energy, marine currents, temperature

gradients, and salinity gradients [6]. Wave energy is generated from the wind

passing over the surface of the sea. This work will focus on improving the

1
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Figure 1.1 Approximate yearly average global distribution of wave power
levels in kW per meter of wave front [7].

performance of WECs that capture wave energy and turn it into a usable

energy resource.

The characteristics of wave energy provide strong evidence for the engi-

neering investment required to capture usable energy. These positive char-

acteristics include:

� Highest power density — When compared to other renewable sources [8].

� High availability — Wave energy is typically quantified by a high utility

factor, which is the quotient between the rated power and the average

energy production. Due to the storage and transport capacity of ocean

waves, usable energy remains after the wind ceases [9]. This translates

up to a 90% availability at a given site, while solar and wind power are

typically available 20% to 30% of the time [10].

� Large resource — Estimates for the practical potential world-wide energy

contribution of wave energy is estimated at 2,000 TWh/year [8] and the

fraction available for United States (US) consumption is estimated at

117 TWh/year [11]. These large energy figures are due to the vast ocean

regions where the power density is high. The average annual power

density of the world’s ocean waves can be seen in Fig. 1.1. The National

2



Renewable Energy Laboratory estimates harnessing 20% of the wave

energy potential from coastal US with 50% efficiency would be equivalent

to all of the hydrogeneration throughout the US in 2003, equating to

nearly 24,000 MW [12].

� Low environmental impact — Wave energy has low negative interaction

with the surroundings according to Electric Power Research Institute

[13]. Offshore WECs have a relatively low visual profile. Visual distur-

bance and public acceptance have been major factors that have hindered

the development of many energy projects.

There are a number of negatives associated with wave energy that need

consideration during any development project, including:

� Large variations in power — WECs need to be designed to survive all

possible conditions. The extreme circumstances of the “100-year” storm

wave can be up to 100 times the average power. These large spikes in

power can damage the WEC.

� Harsh operating environment — The ocean is an extremely corrosive en-

vironment and the device is constantly exposed to marine growth.

� Difficult access conditions — Access to offshore structures for deployment

or maintenance can be difficult and costly.

The first wave power patent was granted in 1799 to Monsieur Girard of

Paris [8]. A long period passed with little work on producing commercially

viable WECs, but after the oil crisis in 1973, interest was elevated. Follow-

ing a period of reduced funding and activity in the 1980’s, funding for wave

energy research increased again in the late 90’s, mainly due to the Kyoto

conference on the reduction of CO2 emissions and the growing realization of

shortness and insecurity of national energy supplies. An early book by Mc-

Cormick provides a summary of some of the early proposals and patents [14].

In 2006, fifty-three different wave energy technologies were being developed

[6].

All WECs transform wave power into electrical power through at least one

mechanical intermediate system. One such system is a floating or submerged

body that moves along with the waves and a power take-off (PTO) system

3



that converts this relative motion into electrical power [15, p. 1]. This implies

that the most fundamental task of a WEC is to generate a wave that interferes

destructively with the incident wave, thus imparting all of the wave’s power

into the mechanical component of the WEC, meaning WECs need to be

exceptional wave generators [16, 17]. Radiation resistance, also known as the

wave damping coefficient, is derived from the physical profile of the WEC

and plays a key role in determining amount of power that can be absorbed

and subsequently sold [18, p. 12].

There are reviews of available WEC technologies [19–21]. A few of the most

prevalent classifications are summarized and some common WEC topologies

( 1 to 7 ) are shown in Fig. 1.2.

� Point absorber — This is typically a buoy-like device with horizontal

dimensions that are small compared to the incident wavelengths and it

oscillates according with one or more degrees of freedom. An example

is Ocean Power Technology’s Powerbuoy ( 2 ) [22]. Some heaving multi-

point absorber systems are the FO3 (collection of 2 ) [23] and the Wave

Star (similar to a collection of 1 ) [24].

� Attenuator — These typically have a slender profile that is installed par-

allel to the wave propagation direction and “ride” the wave during its

operation. An early design was Cockerell’s Rafts ( 4 ) [14, p. 101], and

a current commercial design is the Pelamis ( 4 ) [25].

� Terminator — Their installation direction is parallel to the wave front

(perpendicular to the predominant wave direction) and physically inter-

cept the incoming wave [19]. An example is Salter’s duck ( 5 ) [26].

There are others characterized by their modes of operation, including sub-

merged pressure differential devices, oscillating wave surge converters, oscil-

lating water columns, and overtopping devices ( 7 ) [19].

To illustrate the basic principles behind wave energy conversion consider

the simple point absorber WEC that is constrained to move in a heaving

motion ( 1 ) shown in Fig. 1.3. The mechanical component is connected to

a PTO moored to the ocean floor. Various shapes have been proposed for

the mechanical component including spheres and cylinders [27]. The vertical

position of the device’s mass center (z) is measured from the still water

4



TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AA 

PTO

PTO

P
T
O

P
T
O

P
T
O

PTO

PTO

1 

2 

3 

4 5 

6 

7 

HeavingOvertopping

device

Pitching
Heaving &

pitching

Seawater

Buoy
Buoy

Buoy

Buoy

Plate

Cable

Raft

Yoke

Spine

Duck

Flap

Figure 1.2 Illustrations of various common devices used to capture wave
energy [20].

level (SWL), which is h meters above the ocean floor. The wave elevation

is denoted η(t). As buoyancy forces the heaving WEC upward, motion is

resisted by the PTO. Work is done on the PTO at the rate:

P (t) = FPTO(t)ż(t) (1.1)

where FPTO(t) is the PTO force and ż(t) is the vertical velocity of the device.

The common goal when designing such a device is to maximize the energy

5
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absorbed over a desired time horizon, or mathematically:

max E(t) =

∫ tf

t0

P (t)dt (1.2)

where the time horizon is defined between t0 and tf .

A number of different PTOs have been studied including simple mathemat-

ical models similar to Eqn. (1.1) [28, 29], hydraulic-electric apparatuses [19,

30], rotating electric machines [31], and linear electric machines [20, 32–34].

Most of these PTOs are actively controlled, i.e., the force produced by the

PTO is determined by the operator. This control trajectory through time is

frequently calculated through a feedback controller which utilizes the current

state information from the system (such as the position and velocity of the

device). Optimal control strategies for various design objectives have been

developed for simple waves (e.g., reactive [27], latching [30], and declutching

[28]). However, Tedeschi et al. demonstrated that these control strategies

are inferior in more complex waves [31]. An alternative approach to feedback

controllers (or any type of structured control) is open-loop control design.

With these approaches, the control trajectory is directly designed, allowing

for solutions that can produce the true system performance limits [28, 29,

35, 36]. This approach can also prove useful in the early stages of the design

6



process where the entire system has not been specified yet. For example, an

engineer may not know which type of PTO is going to produce the optimal

system-level performance, but directly designing FPTO(t) could result in a

optimal target trajectory for the future PTO design.

The key issue with the design of ocean WECs are the challenges associated

with constructing a technology that is properly adapted to the constraints

given by the natural resource [1, p. 16]. With some the previously discussed

challenges, it is easy to see that the development of a WEC is a highly cross-

disciplinary task [18, pp. 3-4]. The community has not converged to preferred

WEC designs (see Fig. 1.2). The classifications provided have substantial di-

versity (e.g., the many ideas and concepts associated with point absorbers

involving a variety of engineering disciplines [5, p. 5]). When an engineering

optimization problem requires the analysis of multiple disciplines, it is classi-

fied as a multidisciplinary design optimization (MDO) problem [37]. Typical

analysis domains include the wave-structure interaction and is coupled with

the disciplines associated with the PTO (e.g., electrical, hydraulic, or both).

In addition to the complexity of the system-level analysis, the specific do-

mains have their own associated complexity. Early work in WEC design was

performed in the frequency domain [27]. This technique requires a num-

ber of assumptions, including linearity and regular incident waves. Regular

waves are harmonic or sinusoidal waves (e.g., η(t) = A sinωt), whereas irreg-

ular waves are a superposition of many regular wave components and better

model real seas and their stochastic nature. Many authors have stated that

there is a fundamental difference between designing WECs for irregular ver-

sus regular waves. Drew et al. asserted that designing for a single frequency

of the incident sea wave will not predict the performance in real systems [19].

Tedeschi et al. emphasized the need to use time-dependent solutions since

the instantaneous extracted power in irregular waves is required for realistic

analysis [31].

Critical practical constraints also need to be accounted for when designing

WECs. Initial research was based on unconstrained formulations. Only a

small number of prototypes have been produced since practical constraints

were ignored [5, p. 5]. Some practical constraints include:

� Stroke constraint — Intended to prevent the mechanical limitations on

the stroke of the device, e.g., imposed by the limited height of a hydraulic

7



piston [5, 38].

� Control force restriction — Necessary to decrease the control forces to

practical levels, particularly for the case where the tuning is to be deliv-

ered by the PTO system [5, 38]. This restriction is typically imposed by

electromechanical and/or economic limitations.

� Slamming constraint — Intended to reduce the probability that the me-

chanical component rises out of the water, and therefore subjected to

bottom slamming [5, 29]. This constraint is imposed by the hydrody-

namic limitations, and special attention is typically required to model

the complex water-entry phenomena associated with hydrodynamic pres-

sures and loads.

� Other constraints include wave velocity, frequency, output voltage, out-

put current, and physical constraints [39, p. 8]

Occasionally designs are based on engineering intuition. For example, Eriks-

son discusses the benefits of using a linear generator to reduce the complexity

of the mechanical interface [20, p. 19]. While this is a valid strategy, engi-

neering complexity should not be removed unless the final design is going

to provide a satisfactory response. The designer cannot make this tradeoff

without knowing the upper limits of both the wave-buoy system and wave-

buoy-PTO system. These requirements motivate a method to compare fairly

the various types of proposed designs. Such a method would result in the

true system performance limits for each proposed design.

In summary, a proper WEC design formulation should directly address

the multidisciplinary nature, the constraints, and the dynamics of the WEC

system design problem.

1.2 The Design of Dynamic Engineering Systems

The framework established by multidisciplinary design optimization of dy-

namic engineering systems directly addresses the key points in WEC design

[40]. Problems are posed as constrained mathematical optimization prob-

lems. Equation (1.2) is an example but may also be subject to constraints,

such as the power in Eqn. (1.1), must always be positive (i.e., P (t) ≥ 0).
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A core principle in this framework is the integrated design of both the phys-

ical elements (or plant) of the system and the control in order to achieve the

best possible system performance. The preferred approach simultaneously

considers the plant and control design as a single system-level optimization

problem. This approach is often referred to as co-design [41–45]. Using

this approach, the designer can capitalize on the synergy between physical

and control system design decisions to produce designs with superior perfor-

mance [40, 46–48]. In comparison, a traditional sequential approach designs

the physical system first, then is held fixed while the control is optimized.

This procedure can be iterated [41, 42]. A graphic comparison of the sequen-

tial approach to co-design is shown in Fig. 1.4. The sequential approach can

only make changes in either the plant subspace (P) or control (C) subspace

and follows the sequence of design variable iterations as:

(
C0,P0

)
→
(
C0,P1

)
→
(
C1,P1

)
→
(
C1,P2

)
→
(
C2,P2

)
→ · · ·

whereas the co-design sequence makes changes in both domains simultane-
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ously:

(
C0,P0

)
→
(
C1,P1

)
→
(
C2,P2

)
→
(
C3,P3

)
→
(
C4,P4

)
→ · · ·

These subspace iterations are likely not the same due to the differences in

their update methods, i.e., (C1,P1)seq 6= (C1,P1)co-design. In addition, inte-

grated approaches are sometimes necessary to find feasible solutions, espe-

cially in demanding dynamic systems [40]. Another advantage is the ability

to exploit the passive dynamics (dynamic behavior without active control) of

the system which has been shown to produce exceptional designs in robotic

manipulators [48, 49]. A co-design approach is the natural way to handle

the WEC design problem since a successful design hinges on exploiting the

natural dynamics of the ocean wave-mechanical component interaction.

Often WEC studies consider both plant and control design at some point

during the design process. For example, a set of optimization variables could

include the mechanical component’s shape and size (plant) and the PTO force

(control). However, many studies fix the physical design before an optimal

controller can be identified. Frequently the majority of the engineering costs

are placed into a physical prototype which is difficult to change later in

the design process. The control strategy, however, can be easily modified

and tested with the physical prototype, producing a realized energy capture.

A co-design approach aims to produce a better physical design before the

prototype is created.

One final aspect of co-design is its ability to leverage other simultaneous

design methods, i.e., methods which perform the system analysis and design

in a simultaneously manner. The class of direct transcription (DT) methods

are simultaneous approaches to solving an optimal control problem. These

are direct methods where the problem is first discretized and then transcribed

to a nonlinear programming (NLP) formulation. In other words, an infinite-

dimensional optimal control problem is transcribed to a finite-dimensional

NLP [50, 51]. DT can be used to solve the open-loop optimal control aspect

on the WEC design problem [29]. Control and physical constraints are also

easily incorporated in a DT setting (such as the practical WEC constraints)

[29, 35, 36]. These methods have recently been extended to co-design prob-

lems with a high level of success [29, 47, 52].
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1.3 Thesis Overview

Chapter 2 is split into two main sections. The first reviews dynamic system

design optimization formulations and the second presents a qualitative dis-

cussion of various methods that can be used to solve dynamic system design

problems. Chapter 3 outlines direct transcription with a focus on the addi-

tional defect constraints and favorable properties of the method. Chapter 4

focuses on the mathematical modeling of the wave energy converter design

problem while reviewing previous work. Chapter 5 contains a number of

numerical studies on the wave energy converter design problem employing

a proper dynamic system design optimization formulation and direct tran-

scription. Chapter 6 presents the conclusion. These chapters accomplish the

following objectives:

(1) To present a unified framework for both control- and physical-system

design of dynamic engineering systems

(2) To discuss the merits of current methods to solve dynamic system de-

sign optimization problems

(3) To demonstrate the usefulness of direct transcription when solving dy-

namic system design problems

(4) To better understand both the optimal control- and physical-system

design of wave energy converters

11



Chapter 2

Dynamic System Design
Optimization

Our first step in understanding how to design a dynamic engineering system

is a discussion of how the solution to an NLP can produce useful engineering

designs. The formulation of a general nonlinear program is:

min
x

f(x) (2.1a)

subject to :

h(x) = 0 (2.1b)

g(x) ≤ 0 (2.1c)

where x are the optimization variables, the objective function, f(x), is in

Eqn. (2.1a), the equality constraints are Eqn. (2.1b), and the inequality con-

straints are Eqn. (2.1c) (see Refs. [53, 54] for NLP textbooks). The optimiza-

tion variable vector is x = [x1, . . . , xnx ]
T ∈ Rnx . The constraint functions are

vector-valued: h(x) = [h1, . . . , hnh ]T and g(x) =
[
g1, . . . , gng

]T
.

This abstract problem can be related back to engineering design through

an analytic representation of the design problem (see Ref. [55] for traditional

physical-system design formulations and Refs. [51, 56] for control-system de-

sign formulations). Optimization variables are substituted for numeric design

variables that are inputs to an analytic expression of the design objective.

Transferring the design from a qualitative description to mathematical for-

mulation can be decidedly challenging. For example, how does one quantify

the aesthetics of an automobile? However, in the overall design of an au-

tomobile, average fuel economy might be more important during different

stages of the design process and can be quantified naturally. Engineering

intuition can often be used to quantify a dynamic system design problem in

a format consistent with Prob. (2.1), but as we will explore soon, solving this

type of problem can be exceedingly difficult.
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2.1 Optimal Control-System Design

We will first discuss the optimal control-system design (OCSD) as it is an

important part of the general dynamic system design formulation. The goal

of an OCSD problem is to determine the state trajectories, ξ(t), and the

control trajectories, u(t), that produce the best possible system performance.

As the word trajectory implies, dynamics are fundamental to these systems.

Constraints on trajectories must also be satisfied to produce feasible system

performance. The OCSD problem is stated as:

min
u(t),t0,tf

∫ tf

t0

L (t, ξ(t),u(t)) dt+M (t0, ξ(t0), tf , ξ(tf )) (2.2a)

subject to :

ξ̇ − fd (t, ξ(t),u(t)) = 0 (2.2b)

C (t, ξ(t),u(t)) ≤ 0 (2.2c)

φ (t0, ξ(t0), tf , ξ(tf )) ≤ 0 (2.2d)

Problem (2.2) consists of a number of critical components reminiscent of

Prob. (2.1): the cost functional or objective function in Eqn. (2.2a), the dy-

namic constraints in Eqn. (2.2b), the algebraic path constraints in Eqn. (2.2c),

and the boundary constraints in Eqn. (2.2d).

Optimal control is a well-developed subject; many scholars date its origins

in the storied Brachystochrone challenge set forth by Johann Bernoulli in

1697 [57]. However, the very nature of these formulations lead to extremely

challenging solution efforts. An OCSD problem is infinite-dimensional since

we are designing a trajectory that varies in time, whereas many traditional

engineering design problems operate on a finite-dimensional optimization vec-

tor. Another way of viewing the minimization procedure in Prob. (2.2) is the

selection of the best trajectory among all feasible trajectories for the system

[58, p. 2]. Initial work with infinite-dimensional optimization started with

calculus of variations, which seeks an optimal path without the framework

of a actively controlled system [57, 58].

First, we should understand the how powerful a problem placed in this

formulation can be, i.e., the ability to find novel optimal solutions both be-

yond the bounds of human creativity and encompassing an incredibly useful

problem archetype. Even with these claims, one might point out the lack
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of physical-system design in this formulation; this will be discussed in the

following sections.

Objective function, Eqn. (2.2a) — The first term is an integral calculated

over the time horizon t0 to tf . Inside this integral is the Lagrange term or

running cost, L(·), which could depend on time, state, and control. Some

common engineering design problems have running costs of fuel consump-

tion rate, extracted power, or limited motion. These sample running costs

all share the property that they are trajectories that are integrated, which

we might be interested in minimizing or maximizing to produce the desired

system performance. The second term is known as the Mayer term or ter-

minal cost, M(·), and depends only on the initial and final behavior of the

system where t0 and tf may be included as optimization variables. This term

allows us to pose a diverse set of problems including minimum time to climb

for an aircraft, or the maximum height of a fuel-limited rocket. If both these

terms are present, the problem is often term a Bolza objective problem.

Simple transformations exist to convert a Bolza objective problem into a

Lagrange only (M≡ 0) or Mayer only(L ≡ 0) problem if certain assumptions

are met [58, p. 87]. Starting with a convertingM→ L, we must assume the

M only depends on the initial or final state values. The transformation then

is:

M
∣∣
tf

=M
∣∣
t0

+

∫ tf

t0

(
Mt(t, ξ) +Mx(t, ξ) · fd (t, ξ,u)

)
dt (2.3)

whereM
∣∣
t
≡M(t, ξ). We now can see whyM can only depend on the initial

or final state; Eqn. (2.3) can either removeM
∣∣
tf

orM
∣∣
t0

depending on which

term is not present. Thus, the equivalent Mayer cost now only contains an

integral over the time horizon completing the conversion to Lagrange only

form. Converting L →M can be done through an additional state variable

ξ0 with the assumption that L satisfies the same regularity conditions as

fd(·) [58, p. 87]. The dynamics of ξ0 will naturally be equivalent to L with

an arbitrary initial value for the ordinary differential equation (ODE):∫ tf

t0

L (t, ξ,u) dt = ξ0(tf ) (2.4a)

ξ̇0 = L (t, ξ,u) , ξ0(t0) = 0 (2.4b)
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These transformations will provide important insights later when trying to

solve Prob. (2.2) numerically.

Dynamic constraints, Eqn. (2.2b) — The distinction between the state

derivatives and the functions that calculate the state derivatives is a sub-

tle one: there are different methods of finding ξ̇. One way is to use the

actual derivative function based on natural phenomenon while another is

with derivative function approximation using only the states. But the set

of dynamic constraints specifies that these two approaches must arrive at

the same values. As stated before, this is an infinite-dimensional problem

so these constraints can be viewed as pointwise over the entire time interval

[56, p. 123]. These are first-order differential equations and in general are

nonlinear [59, p. 11]. A linear time-invariant (LTI) system is:

ξ̇(t) = Aξ(t) + Bu(t) (2.5)

where A is the state matrix and B is the input matrix. Although LTI

systems are typically taught in early university courses on control, they are

the exception rather than the rule when it comes to the dynamic behavior of

realistic physical systems [59, pp. 6-11]. Linear voltage versus current laws

for resistors and linear force versus velocity laws for friction are really just

approximations of more complex nonlinear behavior [59, p. 11]. Meaningful

formulations of realistic engineering design problems will need to capture this

behavior. For an LTI system, state trajectories can be computed with the

following equation:

ξ(t) = eA(t−t0)ξ0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ (2.6)

where eAt is the state transition matrix and the integral term is a convolution

integral [59, p. 43]. This equation will be revisited in the discussions of

additional dynamic system design formulations.

Path constraints, Eqn. (2.2c) — Many traditional engineering constraints

can be formulated naturally as path constraints. Two examples include pre-

venting an aircraft from crashing into the ground or requiring an automobile

to follow a desired drive cycle. Other important states or derived states (such

as power) often need to be constrained. Temperature, position, force, pres-

sure, current, stress, and power are all common examples. These constraints
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create a multipoint boundary value problem (BVP) where the locations in

time when the path constraints become active are not known a priori since

the constraints may enter or exit activity multiple times throughout the time

horizon [56, p. 126]. They are also known as algebraic path constraints since

the ODE system is transformed into a system of differential algebraic equa-

tions (DAEs) when inequality constraints become active. For every degree

of freedom lost by imposing an algebraic relationship through an active path

constraint, one state or control variable will now be determined via an al-

gebraic constraint. In active systems, control inputs normally become the

algebraic variable since they are independent, while state variables still must

satisfy physics or other natural phenomena [60]. As additional inequality

constraints become active, the DAE index may increase, increasing solution

difficulty due to numerical errors [56, pp. 124-125]. Two simple path con-

straints are shown in Fig. 2.1. The lower path constraint becomes active at

only a single point during the time horizon while C1 remains active for an

extended period of time. If active control is present when C1 is active, the

state value is already known and assuming this is the only state, the control

can be calculated through an algebraic relationship.

Boundary constraints, Eqn. (2.2d) — These constraints have some similar-

ities with path constraints but are viewed as discrete since they only are

considered at the boundary time values [56, p. 123]. Unlike path constraints,

we know when boundary constraints are active even if time boundaries vary
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in the problem (i.e., we still know the values of t0 and tf when evaluating a

boundary constraint). Final or initial states values might be set for a par-

ticular problem, i.e., the solution must guide the system to/from a specific

target. A simple boundary constraint that requires the state to be equal to

a at tf is shown in Fig. 2.2. This requirement is only enforced at a single dis-

crete point. The upper trajectory in this visualization is infeasible since the

constraint is not satisfied but the general state trend is similar to the feasible

path. Final time state boundary constraints can be challenging to satisfy

since they are an accumulation of previous derivative values. Alternative

paths may exist that satisfy the boundary condition.

Other common boundary constraints include kinematic relationships in

robotics [61]. These constraints might require an algebraic variable that

depends on the states (e.g., the end position of the robotic manipulator

depends on the state joint angles). In Ref. [62], the state derivative at the

boundary is constrained in the space station attitude control problem. One

final example is a periodic constraint, i.e., the initial and final values need to

be equivalent so the system can undergo an optimal repetitive cycle. This

constraint type will prove to be especially useful in WEC design problems

[29].

Time dependence — We can remove the time dependence in Prob. (2.2) by
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making the following substitution:

ξn+1 = t, ξ̇n+1 = 1, ξn+1(t0) = t0 (2.7)

where time is now another state variable.

Multiple phases — In many problems, it is necessary or convenient to view

the dynamic trajectory as a collection of phases. A phase is defined as a

portion of the overall trajectory where the set of DAEs remain unchanged. If

the problem has different sets of DAEs, the sets must be in different phases

[56, p. 108]. There are other numerical reasons to create a multiphase prob-

lem, even if the DAEs remain unchanged. These reasons will be explored in

Section 2.4.2.

The addition of phases requires the addition of a new type of constraint

to the formulation in Prob. (2.2) known as linkage constraints:

L
(
tplf , ξ

pl(tf ), t
pr
0 , ξ

pr(t0)
)
≤ 0 (2.8)

where pl and pr are the “left” and “right” phase numbers in the set of possible

phase numbers [63] . In many cases, the states need to be continuous between

the phases, which would be represented by a special case of Eqn. (2.8):

ξpl(tf )− ξpr(t0) = 0 (2.9)

In addition, Prob. (2.2) needs to be modified with some combination of

phase objectives, and the boundary constraints need to include indicators

for switching from one phase to another, known as events. Events are often

based on specific time or state values. For example in a multistage rocket, one

might have an event condition active when a specific stage is out of fuel. The

linkage conditions would not be continuous since mass is lost instantaneously

between the stages [64].

Closed-loop control — In most practical implementations, we need to design

a feedback controller (and often we need to design an observer to estimate

states that cannot be measured directly). A simple form of feedback control

is a full-state feedback regulator, where the control input is defined as u(t) =

−Kfeedξ(t). Assuming this control structure, the OCSD problem may be

solved with respect to the gain matrix Kfeed instead of the u(t). The set of
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trajectories possible will feedback controllers are only a subset of all possible

trajectories, which might limit the performance. Limiting the performance of

the system should be a calculated decision, not a modeling convenience. The

true system performance limits can only be identified while directly designing

the control with open-loop control. Karbowski et al. makes the case that a

“fair” comparison between hybrid vehicles designs can only be made if the

open-loop optimal control is used [65]. General control laws may be identified

from the open-loop solutions. In Prob. (2.2), u(t) should be replaced with

the control design variables, xc, if we are using a parametrized version of the

control.

2.2 Optimal Physical-System Design

Many dynamic engineering systems existed before control theory. The design

of these systems was solely dependent on what could be changed within the

physical-system. These systems relied much more heavily on passive dynam-

ics without the possibility of active control. Due to a number of reasons,

many optimal physical-system design (OPSD) efforts forgo more compre-

hensive treatment of the system dynamics for simplified versions (such as

steady-state or pseudostatic models) or static analysis that neglects dynamic

effects altogether [40]. Approximations of actual dynamic system perfor-

mance metric are also commonly made (such as mass [66] or gravity balance

[67]). While some problems can be adequately solved with these simplifica-

tions, the overall performance of the system could be improved with more

complete dynamic models, and potentially support the solution of more de-

manding dynamic systems [40].

Even if comprehensive dynamic models are in use, they are normally de-

veloped for control design, and do not allow physical design changes. OPSD

requires system models that incorporate realistic dynamics while providing

flexibility in the physical design space. These models have the form:

ξ̇(t) = fd (t, ξ(t),xp) (2.10)

where xp is a vector of plant design variables. If we consider once again an
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LTI system, the state trajectories could be computed with the following:

ξ(t) = eA(xp)tξ0 (2.11)

where the system matrix A(xp) depends on the plant design variables xp.

With this system, it is obvious that the plant design affects the state trajec-

tories, and OPSD on these systems will only be possible if models of the form

shown in Eqn. (2.10) are available. Models of this form will require more de-

velopment effort than models with the form given in Eqn. (2.2b) [40]. For

example, dynamic models for linear electric generators are commonly param-

eterized by lumped, dependent parameters such as the inductance and ca-

pacitance [34]. We cannot directly change these quantities as a designer, but

they have a substantial impact on the dynamic performance of the system.

Independent quantities such as geometric variables should be used instead.

The goal of the OPSD problem is to identify the best possible system

performance by modifying the plant variables, which will produce different

state trajectories. The OPSD problem is stated as:

min
xp,t0,tf

∫ tf

t0

L (t, ξ(t),xp) dt+M (t0, ξ(t0), tf , ξ(tf ),xp) (2.12a)

subject to :

ξ̇ − fd (t, ξ(t),xp) = 0 (2.12b)

C (t, ξ(t),xp) ≤ 0 (2.12c)

φ (t0, ξ(t0), tf , ξ(tf ),xp) ≤ 0 (2.12d)

which similar to Prob. (2.2) but lacking u(t). This problem contains similar

constraints as before, but they may also depend on xp. In the physical-

system design community, it is common to combine the path and boundary

constraints into a single plant constraint that accounts for the influence of

the dynamic response on the physical design requirements denoted:

gp (t, ξ(t),xp) ≤ 0 (2.13)

This single constraint does not provide the same insights found with path and

boundary constraints in the optimal control-system formulation [29]. This

distinction in Prob. (2.2) is made because the solution methods treat these
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constraints differently. The OPSD solution approaches can also benefit from

these classifications. As stated in the previous section, path constraints are

continuous while boundary constraints are discrete. A common continuous

plant constraint is bounding the stress or deflection of a member, while a

boundary constraint might involve geometric requirements or mass calcula-

tion [47, 55].

A number of researchers have studied Prob. (2.12). Wang and Arora re-

viewed methods for solving the OPSD based on DT where the states were

discretized [68]. Guo and Allison also used DT to solve the OPSD of genetic

regulatory circuits [69]. Structural optimization problems have long been

formulated as OPSD when considering the dynamics. Kang et al. provided

a review of approaches for optimizing structures subject to transient loads

[70], and Barthelemy and Haftka reviewed approximation methods relevant

to this problem class [71]. Finally, OPSD has been used in designing more

general mechanical systems [72, 73].

2.3 Optimal Dynamic System Design

In the previous two sections we separately discussed problem formulations

for OCSD and OPSD. However, treating these as separate problems provides

no guarantee that the result will be the optimal system-level design. Let

us consider for a final time an LTI system with active control and dynamic

models in the same form as Eqn. (2.10):

ξ(t) = eA(xp)(t−t0)ξ0 +

∫ t

t0

eA(xp)(t−τ)B(xp)u(τ)dτ (2.14)

Here the convolution integral, which directly impacts the states, depends

on both plant and control variables! An integrated solution approach is re-

quired to capitalize on the synergistic relationship between physical- and

control-system designs [40, 46–48]. Creating a single system-level optimiza-

tion problem that combines OCSD and OPSD is known as co-design [41–

45]. We will define the optimal dynamic system design (ODSD) problem by
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combining Prob. (2.2) and Prob. (2.12):

min
xp,u(t),t0,tf

∫ tf

t0

L (t, ξ(t),u(t),xp) dt+M (t0, ξ(t0), tf , ξ(tf ),xp) (2.15a)

subject to :

ξ̇ − fd (t, ξ(t),u(t),xp) = 0 (2.15b)

C (t, ξ(t),u(t),xp) ≤ 0 (2.15c)

φ (t0, ξ(t0), tf , ξ(tf ),xp) ≤ 0 (2.15d)

where all appropriate functions of the problem may depend on the plant and

control variables, and plant and control constraints are categorized as either

path and boundary constraints.

Differing from Prob. (2.15), a traditional approach is to use a sequential

strategy, where the alternating physical- and control-system design prob-

lems are optimized (also see Fig. 1.4) [41, 42]. However, some formulations

and/or models can only accommodate the effect of plant design on the con-

trol design problem. Therefore, iterating between the two problems is not

possible [40]. If a dynamic system can be simulated in a passive mode, the

dynamics can be directly considered during the plant design iterations. For

example, with a passive-active automotive suspension, the passive suspen-

sion (i.e., mechanical links, spring, damper, etc.) can be optimized first for

comfort and handling [44]. Then the optimal passive design could be used by

the OCSD problem. But many systems require active control for simulations

(e.g., robotic manipulators). In these cases the sequential approach cannot

directly account for the dynamics in both domains. In some systems, meth-

ods have been developed to help guide the physical design towards improved

active dynamic performance which require active control without directly

including it in the design formulation [74].

Still considering the sequential approach, Allison and Herber discussed

five different classes of plant design problems that include different levels

of approximated system objectives, dynamics, and control [40]. They made

the case against approximated system objectives in favor of the true system

performance objective being used in the plant design problem. In addition

when considering the effect of the active control in the plant design phase,

the solution quality will be improved and iterated sequential co-design will
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be possible.

A number of researchers have asserted that co-design problems are funda-

mentally multiobjective, i.e., there are at least two independent objectives

[75–77]. While intrinsic tradeoffs in the system (e.g., cost vs. performance)

may require a specific co-design problem to be multiobjective, a problem is

not automatically multiobjective if it is a co-design problem. Legacy design

practices can lead to OPSD problems that have different design objectives

than the control problem [40]. When separate plant and control objectives

are used, the plant objective is often an approximation of the real system

objective (e.g., gravity balance approximating energy efficiency or reduced

mass leading to more favorable dynamics).

Legacy design processes may also lead to separate plant objectives. When

physical design is performed in isolation (e.g., the mechanical engineers and

control engineers do not collaborate during the design process), using a plant

objective that is not directly connected to dynamics or active control (such

as mass or other static measures) is a logical choice. It might be challenging

to adopt an integrated systems design approach, but abandoning familiar

design objectives and adopting objectives that more accurately reflect overall

system will design components that produce the best overall system behavior.

Integrated system design requires consistent use of the same system objective

(or objectives even if this is an inherently multiobjective problem) across all

system elements.

We can now analysis a reduced but still equivalent statement of Prob. (2.15)

using some of the items discussed in the previous section to get at the core

of ODSD:

min
xp,u(t),t0,tf

M (ξ(t0), ξ(tf ),xp) (2.16a)

subject to :

ξ̇ − fd (ξ(t),u(t),xp) = 0 (2.16b)

C (ξ(t),u(t),xp) ≤ 0 (2.16c)

φ (ξ(t0), ξ(tf ),xp) ≤ 0 (2.16d)

We now have a problem that only has a terminal cost (using the transfor-

mation in Eqn. (2.4)) and no time dependence (using the transformation in

Eqn. (2.7)). This presentation of the ODSD problem might be more easily
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compared to a traditional constrained engineering design problem. The key

difference is the system of ODEs that need to be satisfied in Eqn. (2.16b),

which will be at the core of the methods used to solve this problem.

2.4 Solving Optimal Dynamic System Design Problems

This section will focus on the methods developed to solve the various prob-

lems posed in the previous sections. First, indirect methods for OCSD will

be discussed with direct methods following. We will go deeper into the many

direct approaches in order to identify the best approaches for ODSD. Finally,

we will discuss ways to combine the methods for OCSD and OPSD in order

to solve the ODSD problem.

2.4.1 Indirect Methods for OCSD

The earliest methods for solving OCSD were indirect methods, which are

based on the elegant mathematics of calculus of variations [78, p. 201]. The

two common approaches are Pontryagin’s maximum principle (PMP) and

dynamic programming (which leads to the Hamilton-Jacobi-Bellman equa-

tion) [58, pp. 102,156]. These approaches can be compared: PMP satisfies

only the necessary condition for optimality while the HJB satisfies the suf-

ficient condition [58, pp. 168-170]. Therefore, we will proceed by describing

an approach aligned with PMP. This method relies on a derived quantity

known as the Hamiltonian:

H(ξ,u,p, p0) = p0L (ξ,u) + 〈p, fd (ξ,u)〉 (2.17)

where p is the adjoint vector or costate, p0 is the nonpositive scalar abnormal

multiplier, and 〈p, fd〉 is the inner product
∑n

i=1 pifdi [58, p. 103]. The

abnormal multiplier is zero only in degenerate cases, so assuming this is

not the case, we can normalize the problem to p0 = −1. An augmented

Hamiltonian can be constructed to include path constraints [56, p. 125]:

Ĥ(ξ,u,p, p0,µ) = H(ξ,u,p, p0) + 〈µ,C(ξ,u)〉 (2.18)
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Using the first-order necessary condition, it can be shown that the following

conditions are required at an optimum solution to an OCSD problem [58,

79]:

Ĥ(ξ∗,u∗,p∗, p∗0,µ
∗) ≤ Ĥ(ξ∗,u,p∗, p∗0,µ

∗) ∀t (2.19a)

ξ̇∗ =
∂Ĥ(ξ∗,u∗,p∗, p∗0,µ

∗)

∂p
(2.19b)

ṗ∗ = −∂Ĥ(ξ∗,u∗,p∗, p∗0,µ
∗)

∂ξ
(2.19c)

〈p∗, fd (ξ∗,u∗)〉 = 0, p∗0 ≤ 0, [p∗0,p
∗] 6= 0 ∀t (2.19d)

〈µ∗,C(ξ∗,u∗)〉 = 0, µ∗ ≥ 0 (2.19e)

Appropriate boundary or transversality conditions (2.19f)

where Eqn. (2.19a) is the augmented Hamiltonian minimization condition,

Eqn. (2.19b) is the state equation, Eqn. (2.19c) is the Euler-Lagrange equa-

tion, and Eqns. (2.19d) and (2.19e) are analogous to the Karush-Kuhn-Tucker

conditions in constrained finite-dimensional optimization [55, p. 195]. In ad-

dition, there are typically a number of boundary or transversality conditions

based on the particular problem. Often the state variables have initial con-

ditions specified and the adjoint variables have final conditions [51, pp. 243-

246]. Additional conditions can typically be applied regarding Ĥ(·) such as

it is constant or zero depending on the problem [58, p. 103].

Indirect approaches can lead to important insights into the structure of

the solution, such as with the linear quadratic regulator (LQR) [78, p. 201].

However, it can be quite challenging to solve these equations analytically.

Hamiltonian derivatives are required and finding analytic expressions neces-

sitate “an intelligent user with at least some knowledge of optimal control

theory” [56, p. 129]. Many problems deal with complicated black box func-

tions or use table interpolation which do not have analytic forms for their

derivatives [78, p. 162]. Finally, this approach is not flexible since for every

new problem, the relevant derivatives need to be recalculated [56, p. 129].

Therefore, numerical methods are often employed.

Numeric indirect methods are termed optimize-then-discretize (O → D)

methods since the relevant optimality conditions are explicitly derived using

Eqns. (2.19) and then are discretized through the state and Euler-Lagrange
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equations into a boundary value problem (BVP) [51, pp. 243-246]. With path

constraints, multiple BVPs will need to be linked for each arc that a path

constraint is active since a new set of DAEs will need to be solved. However,

the number of constrained subarcs and the sequence of constrained/uncon-

strained arcs are unknown a priori, so it is quite difficult or even impossible

to construct the correct BVP. Another issue with numeric indirect meth-

ods is standard solution procedures are not robust. An initial guess for the

costates must be given, but these are not physical quantities, so we have no

good way of providing a reasonable estimate [56, p. 129]. Furthermore, even

with a reasonable guess, the numerical solution of the adjoint equations in

Eqn. (2.19c) can be very ill-conditioned. Since Eqns. (2.19b) and (2.19c) are

coupled together, the numerical integration procedure can produce “wild”

trajectories even with a reasonable guess, and these trajectories are challeng-

ing to perform iterations on [79, pp. 214-215]. One method used to remedy

this numerical issue is to perform the integration over short time intervals,

known as indirect multiple shooting, and adding the necessary additional

variables and boundary constraints.

2.4.2 Direct Methods for OCSD

Direct methods of optimal control are known as discretize-then-optimize

(D → O) methods [51, pp. 243-246]. These methods do not use calculus

of variations or directly state the optimality conditions. Instead, the con-

trol and/or state are parametrized using function approximations and the

cost is approximated using numerical quadrature [78, p. 141]. This creates a

discrete, finite-dimensional problem that then is optimized using large-scale

NLP solvers [51, pp. 243-246].

This formulation requires an accurate level of parameterization of the con-

trol (and possibly the state) profiles. The mathematics are not as elegant as

indirect methods (e.g., finite-difference methods may need to be used) which

produces a solution that is challenging to use to gain insight into the struc-

ture of the problem. Also, no costate is produced from NLP solution so it

is difficult to know if we are at the true optimal solution [78, p. 201]. There

are two main classes of direct methods: sequential and simultaneous. Se-

quential methods only parametrize the control while simultaneous methods
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parametrize both the state and control. Sequential methods will be discussed

first.

Single shooting — This is the most basic sequential method and is also

known as direct shooting [78, p. 181]. Given initial conditions and a set

of control parameters, the DAE model is solved in an inner loop through

conventional DAE solvers (forward simulation) such as a Runge-Kutta based

method. The OCSD problem using a shooting method is expressed as:

min
u(t),t0,tf

∫ tf

t0

L (t, ξ(t),u(t)) dt+M (t0, ξ(t0), tf , ξ(tf )) (2.20a)

subject to :

C (t, ξ(t),u(t)) ≤ 0 (2.20b)

φ (t0, ξ(t0), tf , ξ(tf )) ≤ 0 (2.20c)

where :

ξ̇ − fd (t, ξ(t),u(t)) = 0 (2.20d)

where the use of a DAE solver is expressed with “where:” since it is no longer

a constraint. This is a Multidisciplinary Feasible (MDF) formulation1 since

all the analysis tasks are nested inside a single optimization algorithm loop

[37].

The parameters representing the control variables are then updated by

the NLP solver in the outer loop. For example, if the control variables are

represented as polynomials, the optimization is performed with respect to

the polynomial coefficients. Due to the use of conventional DAE solvers, this

approach has the advantage of easily finding feasible solutions to the state

equations, but needs to a perform full simulation for each perturbation in the

optimization algorithm. Repeated numerical integration of the DAE model,

however, does not guarantee convergence with open-loop unstable systems

[51, pp. 243-246] and the resulting solution can be very sensitive to the choice

of control [78, p. 181]. This strategy is the easiest to construct out of all the

direct methods, since reliable and efficient codes for DAE and NLP solvers

are naturally linked [51, pp. 243-246].

Multiple shooting — A more robust version of the single shooting, multiple

shooting better handles unstable DAEs (similar motivation for using indirect

1One of the basic forms of MDO in Ref. [37]
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multiple shooting to mitigate unstable costate dynamics). This approach

partitions the time horizon into smaller time segments and separate DAE

models are constructed on each element [51, pp. 243-246]. This can now

be viewed as a multiphase problem that requires continuity constraints, i.e.,

continuous states at each time segment (see Eqn. (2.9)). This introduces

additional variables at the beginning and end of each time segment.

A number of of the numerical issues with shooting methods were discussed

with a numeric case study [80]. Sequential approaches typically produce low-

accuracy solutions and are computationally inefficient, i.e., compared to the

soon to be discussed local and global collocation methods. Even with a large

number of control variables, the solution may not converge to the optimal

solution with shooting but may with the same number of control variables

using local or global collocation. Many of these issues are due to the inability

to efficiently handle path and boundary constraints. Since the states are

calculated through a forward simulation, we have to numerically approximate

how local control perturbations will affect the global state trajectory (see

Figs. 2.1 and 2.2). This leads to simultaneous approaches that forgo the

nested analysis of sequential methods for a large set of constraints.

Simultaneous approaches, also as known as direct transcription, parametrize

both the state and control trajectories. These approaches no longer require

any nested calculations with DAE solvers but instead add a large number

of equality constraints that ensure feasible dynamics. These constraints will

be analogous to the dynamic constraints in Eqn. (2.2b). These additional

constraints are termed defect constraints and take the general form:

ζ (t,Ξ,U) = 0 (2.21)

where t, Ξ, and U are the discretized time, state, and control. However, we

can only guarantee a feasible solution if the optimization algorithm termi-

nates properly. There are a number of ways to form these constraints, which

will be explored in Chapter 3.

DT is a special case of the All-at-Once (AAO) MDO formulation2 due to

ability to perform simultaneous analysis and design [37, 81]. Path constraints

2One of the basic forms of MDO in Ref. [37]
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are now no more complicated than dynamic constraints, mitigating the com-

putational issues that can be experienced with shooting methods [50, 78,

p. 200]. This new large NLP formulation has a specific structure and sparsity

pattern that can be exploited in NLP solvers to reduce total computational

effort [51, pp. 243-246]. Simultaneous approaches have been shown to have

good convergence properties and handle unstable DAEs [50, 82–84]. Finally,

these approaches have specific advantages for singular control problems and

high-index path constraints [50]. This collection of desirable properties make

DT a strong candidate for use in solving the OPSD problem. There are two

basic classifications of DT: local and global.

Local collocation — In a local method, low degree polynomial approxi-

mations are used and the problem is divided into a large number of finite

elements (located at the values of the discretized time vector, t). Typically,

polynomials with degrees less than four are used in local collocation without

varying the degree from element to element, hence another common term

being time-marching methods. This is typically accomplished with Runge-

Kutta methods such as Euler’s, trapezoidal, and Hermite-Simpson [82]. The

details of local collocation will be discussed in Section 3.2.1.

Global collocation — Also known as pseudospectral methods, the state

is approximated using an appropriate set of global trial (basis) functions

(e.g., Lagrange or Chebyshev polynomials) and the dynamics are orthogo-

nally collocated (i.e., the collocation points are the roots of an orthogonal

polynomial) [82]. These are higher order methods that can have higher accu-

racy with a smaller degree of discretization [78, p. 222]. The details of global

collocation will be discussed in Section 3.2.2.

In Fig. 2.3, the multitude of methods available to solve an OCSD are cate-

gorized. Figure 2.4 illustrates the location of potential defect constraints for

each of the direct methods, highlighting the main features of each approach

(although the illustrations may vary slightly for the exact method used). In

the single shooting case, the dynamics are always feasible. There is no need

for any defect constraints since the state value used in the optimization algo-

rithm is always the same as the predicted value. In multiple shooting, a defect

constraint will be required between phases since the initial value used in the

simulation from t4 to t8 needs to be equal to the final value of the simulation
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Figure 2.3 Methods of solving an optimal control-system design problem.
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algorithm and ◦ is the predicted state value for: a) single shooting, b)
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from t1 to t4. Multiple shooting will require a smaller number of defect con-

straints and have a higher level of feasibility during the optimization routine

when compared to DT. On the other hand, DT will require a larger number

of defect constraints, namely at every interior value of t (and possibly the

endpoints). Local collocation will use the current state and control values to

predict the next state value. Global collocation will have defect constraints

at the same locations as local collocation and will have defect constraints on

the states if they are written in integral form [78, p. 234]. In all cases, the

current state value used in the optimization algorithm (•) and the predicted

value (◦) should coincide. This implies the discretized state trajectory is

feasible.

2.4.3 Combining Methods for OCSD and OPSD

Key to the solving the ODSD problem is an integrated approach that solves

the OCSD and OPSD together. This can be accomplished with co-design.

There are two main co-design approaches: nested and simultaneous. Another

co-design approach uses the Augmented Lagrangian Coordination to decom-

pose the ODSD problem and utilizes coupling variables to link the OCSD

and OPSD problems [46]. These approaches have been shown to produce

better results than sequential system design [48]. We will now review the

two main approaches and discussed their applicability to challenging ODSD

problems.

Sequential system design — This is the conventional approach to solve an

ODSD problem [41, 85–89]. Here, there are at least two separate optimization

problems: one to solve the OPSD problem and one for the OCSD problem

(illustrated in Fig. 2.5a). Changes to the plant variables can only be made

during the optimization of the OPSD problem then must be held fixed when

trying to solve the OCSD problem (see Fig. 1.4). As stated previously, itera-

tive sequential design can be performed if dynamics can be directly accounted

for in both domains (dashed line in Fig. 2.5a). This approach does not ac-

count for the coupling between the domains but does often produce feasible

system designs. A taxonomy of sequential design formulations was presented

in Ref. [40]. The OCSD problem can be solved with the previously discussed

methods while the OPSD problem may utilize simplified dynamics or direct
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Table 2.1 Proposed effectiveness of problem formulations for ODSD.

ODSD
Sequential Nested Simultaneous

O
C

S
D Indirect 7 7 7

Shooting 7 — —
DT 7 3 33

methods to properly account for the dynamics (i.e., shooting approaches us-

ing forward simulation [40] or direct transcription for simultaneous dynamics

and plant design [68, 69]).

Nested co-design — Also known as bi-level co-design, this approach requires

two optimization routines: an outer-loop that solves the OPSD problem and

an inner-loop that finds the optimal control for each candidate plant design

considered by the outer-loop (illustrated in Fig. 2.5b) [90]. Nested co-design

is a special case of the MDF formulation [42, 91] but the classification of

the OCSD subproblem depends on the specific method used (e.g., nested co-

design with DT contains both MDF and AAO formulations). The main ad-

vantage of nested co-design is the ability to leverage existing OCSD methods

to solve the inner-loop problem efficiently without the complication of man-

aging plant-design variables [40]. A number of studies have utilized nested

co-design with many resulting in the optimal system-level design [29, 44, 47,

52].

Simultaneous co-design — Both plant and control design decisions are made

concurrently in simultaneous co-design. Therefore, this formulation will ac-

count for all dynamic system interactions and plant-control design coupling

to lead to the system-level optimal value [90]. The key to using this approach

is having dynamic models available that can directly handle changes in the

plant design, and then be used with a sequential or simultaneous method for

handling the dynamics. Simultaneous co-design has been shown to produce

excellent results in demanding dynamic systems [47–49, 52, 67].

Table 2.1 lists all of the OCSD and ODSD methods, and a proposed effec-

tiveness is presented for each possible combination (3: desirable and 7: un-

desirable). Indirect methods for OCSD are denoted “undesirable” since their
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Figure 2.5 Methods for solving a optimal dynamic system design problem.

formulations contain multiple BVPs and numerically sensitive costate cal-

culations. Sequential system design is also always undesirable since it does

not account for the coupling between the plant and control designs. Shooting

methods are potentially tractable if the problem is well-behaved and contains

a limited number of path and boundary constraints. However, the models

need to be in the same form as Eqn. (2.10). Co-design methods utilizing DT

are the most promising methods. The ability to naturally include path and

boundary constraints is essential in an ODSD problem [47]. A simultaneous

co-design formulation combined with DT performs the analysis and design

of both the control and plant concurrently.

Now that a general discussion of both the problem formulation and solution

approaches for ODSD has been presented, we can focus on the details of a

promising ingredient for solving ODSD: direct transcription.
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Chapter 3

Direct Transcription

This chapter will discuss the class of DT methods introduced in Section 2.4.2.

DT has become quite popular and has been used to solve many challenging

engineering problems. The value of these methods to solve complex, real-

world, industrial-strength problems was demonstrated in 2007 when DT was

used to calculate a 180-degree maneuver of the International Space Station

without using any propellant, saving NASA millions [92]. A number of com-

mercial [63, 93–98] and open-source [99, 100] DT software implementations

are available. First, some preliminaries will be given. Then two different

approaches for approximating the ordinary differential equations will be pre-

sented, followed by a discussion on the problem structure and some additional

comments.

3.1 Direct Transcription Preliminaries

We need to convert the continuous ODSD problem in Prob. (2.15) into a

discrete problem with a finite number of optimization variables. This is

known as transcription [56, p. 132]. We start by dividing the entire time

horizon into multiple segments such that:

t0 < t1 < · · · < tnt−1 < tnt (3.1)

where nt + 1 is the number of discrete time values, tnt = tf , hk = tk − tk−1

is the kth time step, and Ik is the segment [tk−1, tk]. The discretized time

vector will be:

t =
[
t0 t1 · · · tnt

]T
(nt+1)×1

(3.2)

where the components of t are also called node, grid, or mesh points. The
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simplest choice for t is a uniform grid, i.e., each grid point is equidistant from

one another:

tk = t0 + k
tf − t0
nt

{k | k ∈ N0, k ≤ nt} (3.3)

Other discretization schemes are based on orthogonal polynomials and their

roots [101, pp. 229-230]. Legendre-Gauss-Lobatto (LGL) points, Legendre-

Gauss (LG) points, and Legendre-Gauss-Radau (LGR) points are all com-

mon sets used in DT [83, p. 41]. Locations of these points are obtained from

the roots of a Legendre polynomial, Pnt+1(τ), or a linear combination of a

Pnt+1(τ) and its derivatives. These schemes may contain neither, one, or

both endpoints and tend to be distributed more densely towards the edges of

the interval. This is to avoid Runge’s phenomenon (divergent interpolation)

which can occur while using equidistant mesh points with a polynomial ap-

proximation [83, p. 45]. An illustration of these discretization schemes over

the time horizon can be seen in Fig. 3.1. Additional points can be added for

an arbitrary value of nt + 1. Please refer to Ref. [83, pp. 39-45] for a more

detailed discussion of the family of Legendre-Gauss points.

Concurrently with increasing the number of collocation points in the dis-

cretization scheme, the time horizon can be broken up into small segments to

better approximate the continuous problem. Additional linkage constraints

need to be applied to make the segments continuous (see Eqns. (2.8) and (2.9)).

Each segment will have its own collocation points designed to best approxi-

mate the local behavior of the dynamics. This approach is especially useful
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for nonsmooth problems [102].

In addition to discretizing the time horizon, the states and controls need to

be moved from the continuous function to a discrete approximation. Most of

these will be included as optimization variables. When the ODSD problem

has been solved, the discrete states and controls will be defined at all time

points:

Ξ =


ξ[t0]

ξ[t1]
...

ξ[tnt ]

 =


ξ1[t0] ξ2[t0] · · · ξnξ [t0]

ξ1[t1] ξ2[t1] · · · ξnξ [t1]
...

...
. . .

...

ξ1[tnt ] ξ2[tnt ] · · · ξnξ [tnt ]


(nt+1)×nξ

(3.4a)

U =


u[t0]

u[t1]
...

u[tnt ]

 =


u1[t0] u2[t0] · · · unu [t0]

u1[t1] u2[t1] · · · unu [t1]
...

...
. . .

...

u1[tnt ] u2[tnt ] · · · unu [tnt ]


(nt+1)×nu

(3.4b)

where nξ is the number of state variables, nu is the number of control vari-

ables, and the notation [·] indicates this is using the discretized version of

the preceding variable. It is important to note that not all the discretization

schemes in Fig. 3.1 include both endpoints. Therefore, the numerical method

used to obtain the values in Eqn. (3.4) may not be directly including these

points as optimization variables. The defect constraints will use Ξ and U

and are organized as:

ζ =


ζ[t1]

...

ζ[tnt ]

 =


ζ1[t1] ζ2[t1] · · · ζnξ [t1]

...
...

. . .
...

ζ1[tnt ] ζ2[tnt ] · · · ζnξ [tnt ]


nt×nξ

(3.5)

We also need to discretize the Lagrange term:∫ tf

t0

L (t, ξ(t),u(t),xp) dt ≈ ψ (t,Ξ,U,xp) (3.6)

Path and boundary constraints are algebraic expressions that need to be
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evaluated as well:

C =


C[t0]

C[t1]
...

C[tnt ]

 =


C1[t0] C2[t0] · · · CnC [t0]

C1[t1] C2[t1] · · · CnC [t1]
...

...
. . .

...

C1[tnt ] C2[tnt ] · · · CnC [tnt ]


(nt+1)×nC

(3.7a)

φ =
[
φ1 φ2 · · · φnφ

]
1×nφ

(3.7b)

where nC is the number of path constraints and nφ is the number of boundary

constraints. We note that path constraints are evaluated at each point in t,

while boundary constraints are evaluated only once. The discretized version

of Prob. (2.15) utilizing DT is:

min
xp,Ξ,U,t0,tf

ψ (t,Ξ,U,xp) +M(ξ[t0], t0, ξ[tf ], tf ,xp) (3.8a)

subject to:

ζ (t,Ξ,U,xp) = 0 (3.8b)

C (t,Ξ,U,xp) ≤ 0 (3.8c)

φ(ξ[t0], t0, ξ[tf ], tf ,xp) ≤ 0 (3.8d)

where the discretized states are included as optimization variables and defect

constraints replace the dynamic constraints.

For clarity, the discretized derivative function and Lagrange term may be

denoted as:

fd[t] ≡ fd(t, ξ[t],u[t],xp) (3.9a)

L[t] ≡ L(t, ξ[t],u[t],xp) (3.9b)
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3.2 Numerical Approximation of Differential Equations

Consider the time interval Ik over which the solution of ξ̇ = fd(·) is desired.

Integrating this differential equation over Ik results in the following solution:

ξ[tk] = ξ[tk−1] +

∫ tk

tk−1

fd (τ, ξ(τ),u(τ),xp) dτ (3.10)

In single shooting, we use a DAE solver to sequentially solve Eqn. (3.10)

(i.e., given ξ[tk−1] solve for ξ[tk]). Thus the final result is a feasible solution

to the system of differential equations. The calculation of defect constraints

can use the same underlying methods but instead of a solving the states in

a sequential manner through the time horizon, the entire collection of mesh

points will be solved in an iterative manner, searching for both a feasible and

optimal collection of states. The underlying methods used here are termed

collocation methods which provide a numerical solution of ordinary differ-

ential equations. We need to select a finite-dimensional space of candidate

solutions (typically polynomials up to a certain degree). Then we will need

to find values for the optimization variables that satisfy the given equations

at the collocation points (namely the time points in Eqn. (3.2)). The next

two sections will look at local or global collocation implementations of DT.

3.2.1 Local Collocation: Runge-Kutta Methods

In a local method, low degree polynomial approximations are used and the

problem is divided into a large number of finite elements (located at the

values of the discretized time vector, t). Consider the integration over Ik in

Eqn. (3.10). We can divide this integration step into S subintervals:

τs = tk−1 + hkρs with: 0 ≤ ρ1 ≤ · · · ≤ ρS ≤ 1 (3.11)

We now apply a numerical integration formula (or quadrature) within an-
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other quadrature formula to arrive at a S-stage Runge-Kutta scheme:

ξ[tk] ≈ ξ[tk−1] + hk

S∑
s=1

γsfdks (3.12a)

fdks ≡ fdks
(
τs, ξks,uks,xp

)
(3.12b)

ξks = ξ[tk−1] + hk

S∑
`=1

νs`fdk` (3.12c)

where the parameters {ρs, γs, νs`} are known constants and can be repre-

sented in the Butcher array [56, p. 98] and uks is the estimated control value

at stage s. We will assume that uks is estimated as a piecewise linear func-

tion:

uks = u[tk−1] +
u[tk]− u[tk−1]

hk
hkρs (3.13)

Since Runge-Kutta methods are single step (i.e., they have no “memory”

and only use the local time points), adjustment of the time step hk is easy

to implement and independent of previous profile information. Directly con-

trolling the time step allows accurate location of nonsmooth events in the

state profiles. In addition, accurate solutions require that the state profile

be smooth only within a step and continuous across steps [51, p. 256]. There

are both explicit and implicit Runge-Kutta methods (implicit methods have

ξ[tk] show up on the right side of Eqn. (3.12a)). Explicit Runge-Kutta meth-

ods are generally unsuitable for stiff equations since their region of absolute

stability is small. We will now discuss four common Runge-Kutta schemes

and how they are included in the discrete ODSD problem formulation.

Euler forward — An explicit first-order scheme is the Euler forward method:

ξ[tk] ≈ ξ[tk−1] + hkfd[tk−1] (3.14)

This equation needs to hold true for all mesh points for feasible dynamics. Re-

arranging this constraint into negative null form gives the defect constraints
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for the Euler forward method:

ζ[tk] = 0 ∀k ∈ {k | k ∈ N, k ≤ nt} (3.15a)

where:

ζ[tk] = ξ[tk]− ξ[tk−1]− hkfd[tk−1] (3.15b)

Trapezoidal — The trapezoidal rule is an implicit second-order method:

ζ[tk] = ξ[tk]− ξ[tk−1]− hk
2

(fd[tk] + fd[tk−1]) (3.16)

which needs to satisfy the same condition as Eqn. (3.15a).

Hermite-Simpson — The Hermite-Simpson is an implicit third-order method:

ζ[tk] = ξ[tk]− ξ[tk−1]− hk
6

(k1 + 4k2 + k3) (3.17a)

k1 = fd[tk−1] (3.17b)

k2 = fd

(
tk−1 + tk

2
, ξk,uk,xp

)
(3.17c)

k3 = fd[tk] (3.17d)

ξk =
1

2
(ξ[tk−1] + ξ[tk]) +

hk
8

(fd[tk−1]− fd[tk]) (3.17e)

uk =
1

2
(u[tk−1] + u[tk]) (3.17f)

which once again needs to satisfy the same condition as Eqn. (3.15a).

Classical fourth-order Runge-Kutta — This is another popular explicit scheme

given by:

ζ[tk] = ξ[tk]− ξ[tk−1]− hk
6

(k1 + 2k2 + 2k3 + k4) (3.18a)

k1 = fd[tk−1] (3.18b)

k2 = fd

(
tk−1 + tk

2
, ξ[tk−1] +

hkk1

2
,uk,xp

)
(3.18c)

k3 = fd

(
tk−1 + tk

2
, ξ[tk−1] +

hkk2

2
,uk,xp

)
(3.18d)

k4 = fd (tk, ξ[tk−1] + hkk3,u[tk],xp) (3.18e)

uk =
1

2
(u[tk−1] + u[tk]) (3.18f)
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which once again needs to satisfy the same condition as Eqn. (3.15a).

Recall the conversion from L → M in Eqn. (2.4) where we appended an

additional state, ξ0. If we calculate the final value of ξ0, we will have the

running cost for the problem. Any of the Runge-Kutta schemes can be used

to find this final value. Since the Euler forward and trapezoidal rules only

depend on the collocated points (i.e., all values of ρs are integers), compact

expressions can be shown for the approximation of L.

Quadrature using Euler forward — The simplest calculation requires only L
at the initial time:∫ tf

t0

L (t, ξ(t),u(t),xp) dt ≈ (tf − t0)L [t0] (3.19)

A composite method uses a set of points to better approximate the definite

integral [101, p. 255]. Composite Euler forward on a non-uniform grid is:

∫ tf

t0

L (t, ξ(t),u(t),xp) dt ≈
nt−1∑
k=0

hkL [tk] (3.20)

where composite Euler forward on a uniform grid is given by:

∫ tf

t0

L (t, ξ(t),u(t),xp) dt ≈ tf − t0
nt

nt−1∑
k=0

L [tk] (3.21)

Quadrature using trapezoidal rule — The simplest calculation using trape-

zoidal rule requires the values of L at both endpoints [101, p. 247]:∫ tf

t0

L (t, ξ(t),u(t),xp) dt ≈ tf − t0
2

(L [t0] + L [tf ]) (3.22)

The composite trapezoidal rule on a non-uniform grid is [101, p. 255]:∫ tf

t0

L (t, ξ(t),u(t),xp) dt ≈ 1

2

nt∑
k=1

hk (L [tk] + L [tk−1]) (3.23)
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Finally, the composite trapezoidal rule on a uniform grid is given by:

∫ tf

t0

L (t, ξ(t),u(t),xp) dt ≈ tf − t0
nt

(
L [t0]

2
+

nt−1∑
k=1

L [tk] +
L [tf ]

2

)
(3.24)

Note the similarities between the composite Euler forward and the trape-

zoidal rule. For large values of nt, these approximations will contain almost

the same terms, whereas the trapezoidal rule will only include the additional

value L[tf ]. These simple expressions can directly be used in the objective

of Prob. (3.8) rather than appending an additional state.

3.2.2 Global Collocation: Pseudospectral Methods

In pseudospectral methods, the state is approximated using an appropriate

set of global trial (basis) functions and the dynamics are orthogonally collo-

cated (i.e., the collocation points are the roots of an orthogonal polynomial)

[82]. These are higher-order methods that can have higher accuracy with a

smaller degree of discretization [78, p. 222]. Instead of integrating fd(·) over a

small interval Ik, we can use a Lagrange interpolating polynomial to approx-

imate ξ over the entire time horizon. We will proceed assuming flipped LGR

points although modifications can readily be made to use other discretization

schemes. Given a set of nt+1 support points of the continuous function ξ(t),

there exists a unique polynomial representation of degree nt such that:

ξ̂(tk) = ξ(tk) ∀k ∈ {k | k ∈ N0, k ≤ nt} (3.25)

The unique polynomial approximation of the continuous function is given by

the Lagrange polynomial approximation formula:

ξ(t) ≈ ξ̂(t) =
nt∑
p=0

ξ[tp]Lp(t) (3.26)

where the Lagrange polynomials defined as [101, p. 224]:

Lp(t) =
nt∏
m=0
m6=p

t− tm
tp − tm

(3.27)

42



These polynomials satisfy the so-called isolation property:

Lp(tm) =

1 if p = m

0 if p 6= m
(3.28)

This is an advantageous property since the interpolated value that the sup-

port points are equivalent to the actual function value. Since it is not a linear

combination of all the support points, the NLP formulation can utilize sparse

matrices, particularly for the Jacobian matrix of the constraints [83, p. 38].

The derivative of the Lagrange interpolating polynomial in Eqn. (3.26) is

given by:

ξ̇(t) ≈ ˆ̇ξ(t) =
nt∑
p=1

ξ[tp]L̇p(t) (3.29)

and we recall that:

ξ̇(t) = fd(t, ξ,u,xp) ≈ ˆ̇ξ(t) (3.30)

Therefore at the support points:

fd[tk] =
nt∑
p=1

ξ[tp]L̇p[tk] =
nt∑
p=1

Dkpξ[tp] (3.31)

where Dkp = L̇p[tk] is termed the differentiation matrix. We now have arrived

at the following set of defect constraints:

ζ[tk] = 0 ∀k ∈ {k | k ∈ N, k ≤ nt} (3.32a)

where:

ζ[tk] = fd[tk]−
nt∑
p=1

Dkpξ[tp] (3.32b)

The flipped LGR collocation scheme does not include the initial time point

but it is either a free optimization variable or known and an appropriate

constraint is introduced [78, p. 231].
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The Lagrange term is approximated with Gaussian quadrature:∫ tf

t0

L (t, ξ(t),u(t),xp) dt ≈
nt∑
k=0

wkL[tk] (3.33)

where wk are the quadrature weights that are dependent on the discretization

scheme [101, pp. 251-253].

Flipped LGR is currently the favored discretization scheme due to a num-

ber of properties: 1) the state, control, and costate converge exponentially, 2)

utilizes implicit Gaussian quadrature schemes, 3) no redundancy in control

at mesh points, 4) is most natural to implement [78].

3.3 Additional Comments

3.3.1 Mesh Refinement

After Prob. (3.8) is solved, we typically need to assess the accuracy of the

finite-dimensional approximation. The first step is to construct a continu-

ous solution using only the results of Prob. (3.8). Pseudospectral methods

already have a continuous approximation in Eqn. (3.26). Time-marching

methods can use Lagrange interpolating polynomials or any other interpo-

lation method [101, p. 219]. This continuous approximation will be used

instead of the exact solution because it is not generally available.

The solution error for a particular set of time points is evaluated by exam-

ining how closely the differential-algebraic constraint equations are satisfied

between collocation points [84, p. 100]. If the accuracy on this interval does

not satisfy the allowable tolerance, either the number of collocation points

can be increased or the interval can be subdivided into more approximating

subintervals. The mesh refinement algorithm iterates until all mesh toler-

ances are met. Betts discusses mesh refinement algorithms suitable for time-

marching methods in Ref. [56, pp. 152-162]. Darby presents a few hp-mesh

refinement algorithms for LGR-based pseudospectral methods, which deter-

mines the segment widths (denoted h) and the polynomial degree (denoted

p) in each segment simultaneously [84].
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3.3.2 Problem Structure and Sparsity

Many modern NLP algorithms can use a sparsity pattern to more efficiently

and reliably solve the problem. A matrix is said to be “sparse” when many

of the elements are zero. The problem structure that arises from DT has a

number of sparse matrices. Consider the following matrices that are used

in common NLP algorithms such as sequential quadratic programming and

interior-point methods [56, pp. 60-90]. The gradient of the objective is defined

as:

∇x

[
ψ

M

]
=

[
∂ψ
∂ξ

∂ψ
∂u

∂ψ
∂xp

∂ψ
∂t0

∂ψ
∂tf

∂M
∂ξ

∂M
∂u

∂M
∂xp

∂M
∂t0

∂M
∂tf

]
(3.34)

The subsequent derivative produces the Hessian:

∇xx

[
ψ

M

]
=



∂2ψ
∂ξ2

∂2ψ
∂ξ∂u

∂2ψ
∂ξ∂xp

∂2ψ
∂ξ∂t0

∂2ψ
∂ξ∂tf

∂2ψ
∂ξ∂u

∂2ψ
∂u2

∂2ψ
∂u∂xp

∂2ψ
∂u∂t0

∂2ψ
∂u∂tf

∂2ψ
∂ξ∂xp

∂2ψ
∂u∂xp

∂2ψ
∂x2

p

∂2ψ
∂xp∂t0

∂2ψ
∂xp∂tf

∂2ψ
∂ξ∂t0

∂2ψ
∂u∂t0

∂2ψ
∂xp∂t0

∂2ψ
∂t20

∂2ψ
∂t0∂tf

∂2ψ
∂ξ∂tf

∂2ψ
∂u∂tf

∂2ψ
∂xp∂tf

∂2ψ
∂t0∂tf

∂2ψ
∂t2f

∂2M
∂ξ2

∂2M
∂ξ∂u

∂2M
∂ξ∂xp

∂2M
∂ξ∂t0

∂2M
∂ξ∂tf

∂2M
∂ξ∂u

∂2M
∂u2

∂2M
∂u∂xp

∂2M
∂u∂t0

∂2M
∂u∂tf

∂2M
∂ξ∂xp

∂2M
∂u∂xp

∂2M
∂x2

p

∂2M
∂xp∂t0

∂2M
∂xp∂tf

∂2M
∂ξ∂t0

∂2M
∂u∂t0

∂2M
∂xp∂t0

∂2M
∂t20

∂2M
∂t0∂tf

∂2M
∂ξ∂tf

∂2M
∂u∂tf

∂2M
∂xp∂tf

∂2M
∂t0∂tf

∂2M
∂t2f



(3.35)

Finally, the constraint Jacobian is given by:

∇x

ζC
φ

 =


∂ζ
∂ξ

∂ζ
∂u

∂ζ
∂xp

∂ζ
∂t0

∂ζ
∂tf

∂C
∂ξ

∂C
∂u

∂C
∂xp

∂C
∂t0

∂C
∂tf

∂φ
∂ξ

∂φ
∂u

∂φ
∂xp

∂φ
∂t0

∂φ
∂tf

 (3.36)

For many problems (which do not consider plant design), the number of

nonzero elements in the Hessian matrix and Jacobian matrix is less than

1% [56, p. 51]. This is primarily due to the special mathematical form for

the defect and path constraint equations. Recalling the trapezoidal rule in

Eqn. (3.16), each defect constraint depends on two sets of state and control
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Figure 3.2 Illustration of the sparsity pattern of defect constraint
Jacobian (shaded region indicates possible nonzero elements).

variables defined at tk−1 and tk. As we increment through the possible values

of k, the previously used state and control values in ζ[tk−1] are also used in

ζ[tk] and nowhere else in the defect constraint equations. As illustrated in

Fig. 3.2, this creates a zigzag diagonal pattern and a large number of zero el-

ements. If these matrices are not given analytically, sparse finite differencing

can be used to numerically approximate them [56, pp. 52-54].

These patterns have been studied for both local and global collocation

methods. Betts demonstrates the sparsity pattern for most of the time-

marching methods [56, pp. 134-152]. In addition, he defines a reduced

optimization vector for certain forms of the defect constraint (namely the

Hermite-Simpson method). Patterson and Rao discuss computationally ef-

ficient methods for computing the sparse matrices that arise from the pseu-

dospectral discretization [103]. Recently, Allison et al. have discussed the

sparsity pattern in co-design formulations [47]. The problem structure and

sparsity pattern of the trapezoidal rule on the WEC design problem is dis-

cussed in Appendix A.

3.3.3 Singular Arcs

A singular arc is characterized by having both ∂H(·)
∂u

= 0 and det
(
∂2H(·)
∂u2

)
= 0.

This is likely to occur if the Hamiltonian is a linear function of u [56, p. 125].

Singular problems are notoriously hard to solve numerically. The Goddard

rocket problem is a common example where there are three distinct phases

of the optimal solution trajectory [56, p. 213]. The second phase is a singular
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arc and the control is highly oscillatory. This is because the control is not

uniquely determined on a singular arc unless the higher-order conditions are

imposed, such as:

d2

dt2

(
∂H

∂u

)
= 0

Adding this condition is a hybrid technique between direct and indirect meth-

ods because the analytic necessary conditions must be derived and the arc

sequence must be guessed. If mesh refinement is being used, it typically

attempts to correct the perceived inaccuracy on the singular arc by adding

grid points to this region; potentially not converging.

Betts discusses another approach to solve a different singular problem of

minimizing task time for an industrial robot [56, pp. 304-310]. Regularization

is performed by using a modified Lagrange term:

L̂ = L+Rpen 〈u,u〉 (3.37)

where Rpen ∈ R+ is a small penalty parameter and 〈·〉 is the inner product.

The control is now uniquely defined with this quadratic regularization and

if Rpen is small enough, the optimal solution will be close to the original

problem (i.e., |L∗| � |Rpen 〈u∗,u∗〉|) [56, p. 307]. This term is analogous

to the energy required to make control decisions. This term has been used

in Refs. [29, 36, 104]. Methods for selecting the penalty parameter will be

discussed in Section 5.1.

3.3.4 Open-Loop Control in Early Stage Design

In addition to the computational efficiency and numerical stability properties

of DT, another quality motivates a more fundamental level the investigation

of DT formulations for ODSD. Since DT is open-loop, no assumptions on

the control structure are imposed. This may prove especially helpful during

early-stage design when the control architecture is undefined. Open-loop

control solutions can provide insights into upper system performance limits

without the restrictions imposed by specific physical- and/or control-system

design [40, 105].

Consider the following design problems that could benefit from an open-
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loop control formulation: a novel hybrid powertrain for an automobile and

the PTO for a WEC converter. In the first problem, a hybrid powertrain

must determine actively the ratio of energy supplied by the hybrid power

sources (e.g., an internal combustion engine and electric machine) to the

various components of the automobile. For novel designs, control strategies

may not exist in the current state of the art. If we let this ratio be an open-

loop control decision, we can solve the ODSD problem to find the upper

system performance limits before a realistic controller is even designed. The

open-loop solutions can also provide insights into complex system dynamics,

and serve as a basis for developing implementable feedback control systems

[106–109].

The second problem is more pertinent to this work. Many different PTOs

have been proposed for WECs (see Sec. 4.4). However without knowing the

true upper performance limit of the wave-mechanical system, we will not

know how close we are to a truly optimal system design. The open-loop

solutions can provide possible directions for physical-system design, such as

which PTO architecture will closely match the optimal open-loop trajectories

[29, 36, 105].

With the general ODSD problem defined and the main numerical solution

approach described, we can formulate the design of WECs as an ODSD

problem.
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Chapter 4

Wave Energy Converter Design

A general overview of the design of ocean WECs was discussed in the Intro-

duction. This included an examination of the positive and negative charac-

teristics of this resource. The basic principles behind wave energy conversion

were shown including the some of the challenges associated with WEC de-

sign. This chapter will expand on this description by first discussing the

mathematical models for ocean waves and then the equations of motion that

describe the dynamics of a specific WEC architecture (namely 1 ). Previ-

ous work on maximizing energy extraction through both plant and control

design modifications will be reviewed along with various PTO mechanisms.

Finally, the ODSD formulation in Prob. (2.15) will be determined for WECs

by stating the relevant objectives and constraints.

4.1 Modeling Ocean Waves

To successfully extract energy from ocean waves, we need to understand their

general behavior. At a quick glance, ocean waves might seem random and

unpredictable. A wide array of phenomena contribute to wave generation

including the wind, astronomical forces, earthquakes, submarine landslides,

and other objects oscillating in the ocean. No single mathematical solution

exists for all types of ocean waves so approximations need to be utilized.

There are two primary categories of wind generated waves: sea and swell.

The latter have rounded crests and are traveling waves that have left their

region of primary wind energy transfer. This category is a candidate for the

simplest wave model: regular or harmonic waves. Seas, on the other hand,

are a train of waves driven by the prevailing local wind field. They are more

stochastic in nature than swells, i.e., the apparent wave length and period

vary continuously. Therefore, seas are more appropriately modeled as irreg-
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Figure 4.1 Regular wave definitions.

ular waves or a superposition of regular waves at many different frequencies

[110, pp. 5-2]. The irregular wave models can represent the natural wave

behavior in real locations.

4.1.1 Regular Waves

Assuming the wave moves in the positive x-direction, the wave profile, or the

shape of the water’s surface, can now be expressed as a function of both x

and t as follows:

η(t) =
H

2
cos(kx− ωt) (4.1)

where H is the wave height, k is the wave number, and ω is the wave angular

velocity. The wave period, T , for a regular wave along with H and h are

shown in Fig. 4.1. We now can apply potential theory if we make a number

of assumptions: the wave amplitude is small enough for linear theory and the

fluid is homogeneous, incompressible, and irrotational. Glossing over these

details (please refer to Refs. [27, 110]), a relationship between ω and k can

be found:

ω2 = kg tanh(kh) (4.2)

where g = 9.81 m/s2 is the gravitational constant. This is known as the dis-

persion relation for any arbitrary water depth h. In deep water, tanh(kh) =
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1, reducing Eqn. (4.2) to:

ω2 = kg (4.3)

With the dispersion relation in Eqn. (4.2), the wave celerity (c = λ/T = ω/k)

becomes:

c =

√
g

k
tanh(kh) (4.4)

Applying the deep water conditions, the phase velocity is found to be:

c =

√
g

k
=
g

ω
(4.5)

The total wave energy comes from summing the kinetic and potential energies

inside in the wave:

E =
1

8
ρgH2 (4.6)

where ρ = 1025 kg/m3 is the sea water density and the calculated energy is

per unit horizontal sea surface area. Continuing, the average work done or

power becomes:

P =
1

8
ρgH2 c

2

(
1 +

2kh

sinh(2kh)

)
(4.7)

Once again applying the deep water conditions:

P =
1

16
ρgH2c =

1

16

ρg2H2

ω
(4.8)

4.1.2 Irregular Waves

Irregular waves can be approximated as a superposition of a series of sinu-

soidal waves:

η(t) =
nr∑
i=1

ηi(t) =
nr∑
i=1

Hi

2
cos(kix− ωit+ θi) (4.9)

where nr is the number of regular wave components used to represent the
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irregular wave field, and {Hi, ωi, θi} are the wave height, angular frequency,

and phase for component i, respectively. The wave phase components, θi, are

random phase shifts. Increasing nr will improve the fidelity of the wave field

approximation. McTaggart noted that a minimum of 20 wave components

are needed to ensure accurate modeling of an irregular seaway [111].

Many of the equations in Section 4.1.1 can be directly applied using the

superposition principle. First, Eqn. (4.6) can quantify the total energy in the

irregular wave per unit horizontal sea surface area as:

E =
nr∑
i=1

1

8
ρgH2

i (4.10)

Next, modifying Eqns. (4.7) and (4.8) will show the average power to be:

(finite-depth) P =
nr∑
i=1

1

8
ρgH2

i

ci
2

(
1 +

2kih

sinh(2kih)

)
(4.11a)

(deep-water) P =
nr∑
i=1

1

16

ρg2H2
i

ωi
(4.11b)

4.1.3 Wave Energy Spectra

For a particular location, Fourier series analysis can be performed over a

large time horizon to extract the frequency characteristics of the irregular

wave field. An implicit assumption made during this analysis is the time

horizon will repeat itself after some lengthy period. This is from the fact that

an irregular wave is composed of regular components; therefore the irregular

wave itself will have a period. The goal of the Fourier series analysis is to find

the statistical properties of the location in terms of frequency and amplitude.

The statistical properties can be conveniently denoted by a wave spectrum,

S(ω). The amplitude of the ith component in Eqn. (4.9) is:

Ai =
Hi

2
=
√

2S(ωi)∆ωi (4.12)

where ∆ωi is the wave frequency interval for component i. Another method

for finding the wave spectrum other than data collection is through standard-

ized empirical expressions, which are accurate under certain assumptions.
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Figure 4.3 Bretschneider spectrum with H1/3 = 4 m and Tp = 8 s.

One common standardized spectrum is the Bretschneider (BS) spectrum that

describes a developing sea, also known as the two-parameter ITTC spectrum

[112]. The spectrum has the general form:

S(ω) =
α

ω5
e
−β/ω4 (4.13)

where α and β are the empirical coefficients given by:

α = 487

(
H1/3

T 2
p

)2

β =
1948.2

T 4
p

(4.14)

where H1/3 is the mean wave height of the highest third of the wave and Tp

is the modal period or the period associated with peak energy density.

A representative BS spectrum can be seen at the top of Fig. 4.2 with 8

discrete components. The bottom of this figure includes all 8 regular wave

components with varying frequency, amplitude, and phase shift along with
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their superposition to create an irregular wave. However, this is not an

accurate enough approximation of S(ω) so nr was increased to 21 in Fig. 4.3

to create a higher fidelity irregular wave.

Other common wave spectra include the one and two parameter Pierson-

Moskowitz, ISSC, Liu, JONSWAP, Scott, Ochi-Hubble bi-modal, TMA, and

Mitsuyasu [112]. Potential locations for WEC deployment are not described

by a single value for the wave spectrum parameters, but rather a set of them.

These sets usually are monthly approximations of the parameters [113, 114]

or frequency distributions of sea states [114].

4.2 Equations of Motion

Early work in HCWEC analysis was performed in the frequency domain [17,

27]. This technique requires a number of assumptions including regular inci-

dent waves. Many authors have stated that there is a fundamental difference

between designing WECs for irregular versus regular waves. Drew et al. as-

serted that a single frequency of the incident sea wave will not predict the

performance in real systems [19]. Additionally, Tedeschi et al. emphasized

the need to use time-dependent solutions since the instantaneous extracted

power in irregular waves is required for realistic analysis [31]. Time-domain

formulations allow the inclusion of unavoidable losses while frequency do-

main solutions do not [27, p. 182]. While irregular waves may appear to

be a hinderance to WEC design, WECs in irregular waves have the poten-

tial to produce better results than WECs in regular waves under similar

energy assumptions [38]. Real world WEC engineering systems also require

constraints (such as an inequality path constraint on the PTO power) [29].

Nonlinear path constraints are impossible to account for in the frequency

domain. Therefore, the analysis of the WEC dynamics will need to be per-

formed in the time domain to account of irregular waves and realistic design

constraints.

There are six modes of WEC body motion possible: surge (Ux), sway (Uy),

heave (Uz), roll (Ωx), pitch (Ωy), and yaw (Ωz) (see Ref. [27, p. 119] for the

notation convention). These modes are due to the interaction between ocean

waves and oscillating bodies. The dynamics of a WEC can be expressed
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Figure 4.4 Heaving cylinder wave energy converter.

using Newton’s law for rigid body dynamics in 3-dimensions:

maU = Fw + Fv + Fb + FPTO (4.15a)

IgaΩ + Ω× IgΩ = Mw + Mv + Mb + MPTO (4.15b)

where m is the mass of the body, aU is the acceleration vector for the trans-

lation modes (Ux, Uy, Uz), Ω is the angular velocity vector, aΩ is the acceler-

ation vector for the rotation modes (Ωx,Ωy,Ωz), Ig is the moment of inertia

tensor at the center of gravity, and F and M are the resulting forces and

moments acting on the WEC [115]. The subscripts denote forces and mo-

ments from a specific effect: w indicates effects directly from the wave, v

indicates effects from viscous losses, b indicates effects due to buoyancy, and

PTO indicates effects from the PTO. The wave force is typically broken up

into two different components: the radiation force and the excitation force

(i.e., Fw = Fr + Fe).

We will consider one of the more simple WECs, a heaving cylinder WEC

(HCWEC) connected to a PTO moored to the ocean floor (see Fig. 4.4)
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similar to the systems described in Refs. [32, 116]. This system is similar

to a point absorber, i.e., a heaving body WEC whose size is much smaller

than ocean wavelength and has only one mode of oscillation in the vertical

direction (Uz ≡ z) [17, 27]. The cylinder radius is a, while the draft of the

cylinder, b, is the submerged length in still water. In order to simplify the

plant design, the buoy is assumed to be of constant density and of length

2b. Therefore, the vertical position of the buoy mass center is measured from

the SWL. Using Eqn. (4.15) for only the heave mode, no moments will be

present and a single equation of motion is required:

mz̈ = −Fr + Fe − Fv − Fb − FPTO (4.16)

Each of these forces will now be described.

Radiation force — In the absence of an incident wave, an oscillating WEC

will generate a water wave. This wave will act on the WEC through a

radiation force. This concept is similar to the membrane of a loudspeaker

where an acoustic wave will be generated as a result of the oscillation of the

system [27, p. 49]. Considering a single mode of oscillation, this force can be

written as:

Fr = Zż (4.17)

where Z is the radiation impedance and ż is the heave velocity [27, pp. 126-

127]. It is convenient to split Z (since it is a complex function of ω) into real

and imaginary parts:

Z(ω,xp) = Rr(ω,xp) + iXr(ω,xp) (4.18)

whereRr(ω,xp) is the radiation resistance or added damping andXr(ω,xp) is

the radiation reactance. This both are functions of the plant design (typically

just the geometry in many studies but may also be a function of the WEC

architecture such as the differences between a cylinder and sphere). The first

term in Eqn. (4.18) represents the energy lost due to this motion, namely the

radiated power. In addition, some energy is stored in the water surrounding

the WEC. The velocity of the water adds some kinetic energy while gravity

acting on the deformed water surface adds some potential energy. This stored
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energy can be added to the energy stored in the mechanical system [27, p. 50].

The radiation reactance is typically written as:

Xr(ω,xp) = ωmr(ω,xp) (4.19)

where mr(ω,xp) is the added mass, which is usually positive [27, p. 50].

However, in certain cases the added potential energy is larger than the added

kinetic energy; therefore, the added mass becomes negative [117].

We can relate Rr and mr through Kramers-Kronig relations [27, p. 140].

The typical approach considers limω→∞mr(ω) since this quantity is nonzero.

Then the total radiation force can be written as:

Fr = mr(∞,xp)z̈ +

∫ t

−∞
kr(t− τ,xp)ż(τ)dτ (4.20)

where mr(∞) is the infinite-frequency added mass and kr(·) is the kernel

of a convolution term known as the impulse-response of the radiation force

or fluid memory term. This equation is also referred to as the Cummins

equation [118]. The fluid memory function is then:

kr(t,xp) =
2

π

∫ ∞
0

Rr(ω,xp)

ω
sin(ωt)dω (4.21)

Models that incorporate the convolution integral in Eqn. (4.20) are chal-

lenging to use with existing optimization algorithms as this integral results

in integro-differential equations that are computationally expensive to sim-

ulate. Another approach uses an approximate state-space model to more

efficiently calculate the radiation force [119]. However, this will add a large

number of additional states to the system. If we assume only linear and

monochromatic waves with only linear system elements, Eqn. (4.20) simply

becomes:

Fr = mr(ω,xp)z̈ +Rr(ω,xp)ż (4.22)

This leads to the most efficient (but also least accurate) approximation of

the radiation force in irregular waves:

Fr = mr(xp)z̈ +Rr(xp)ż (4.23)

58



where mr(xp) and Rr(xp) are constants according to a weighted value within

the range of relevant frequencies [18, p. 24]. One weight scheme uses weights

based on S(ω):

mr =
1∑nr

i=1 S(ωi)∆ωi

nr∑
i=1

mr(ωi)S(ωi)∆ωi (4.24a)

Rr =
1∑nr

i=1 S(ωi)∆ωi

nr∑
i=1

Rr(ωi)S(ωi)∆ωi (4.24b)

Any WEC study needs to be able to efficiently calculate these radiation

parameter functions such as mr, Rr, and kr. For simple geometries, such as

the HCWEC considered here, analytic solutions for these parameters have

been found [120, 121]. These solutions are exceedingly complex and would

take a large percentage of total computation time of any optimization algo-

rithm they were placed in (i.e., for every plant design change, these functions

would need to be recomputed).

An alternative approach is to directly compute Eqn. (4.20) in the time

domain by using seakeeping dedicated boundary element method codes such

as SeaFEM, ACHIL3D [122], and TĪMIT [123]. Other software codes exist

to directly compute the parameters such as WAMIT [124], DIODORE, and

AquaDyn [125]. These tools can also be applied to other shapes while the an-

alytic solutions are only valid for a specific, simple topology. These software

packages still have moderate computational demands that can slow down a

design optimization study.

If execution efficiency is paramount, a surrogate model can be constructed

that mimics the results of the more computationally expensive code as closely

as possible, while being computationally cheaper to evaluate [126]. The

strategy chosen for modeling the impedance coefficients involved data from

Ref. [114], which calculated mr and Rr from the analytic solution. The sur-

rogate model was created using an artificial neural network (ANN) with 10

hidden layers. The objective used when fitting the ANN was to preserve the

shape of the curves with the modeled points. Since a finite number of data

points were used (14 curves for each coefficient), input constraints are needed
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Figure 4.5 a) Design space of a/h and b/h with data points n, l from
[114], white feasible region, all curves drawn using neural network, darker
lines indicate smaller geometric ratio b) Rr(ω,xp) using n points c)
mr(ω,xp) using 5 points d) Rr(ω,xp) using 5 points.

to preserve model accuracy:

0.02 ≤ a/h ≤ 0.14 (4.25a)

0.08 ≤ b/h ≤ 0.40 (4.25b)

The derivation is based on the data point locations shown in Fig. 4.5a. Fig-

ure 4.5b demonstrates the effect of a on Rr(ω). Figure 4.5c and Fig. 4.5d

show the effect of b on both mr(ω) and Rr(ω). Note that the 3 inner curves

are at completely different locations than the collected data points. With

more data for different values of b/h, the surrogate model accuracy could be

improved.
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Excitation force — The HCWEC will experience a dynamic pressure tra-

jectory from the water when the wave passes [127, p. 22]. This force acts

on the immersed body even if no motion is present and is modeled so the

relative motion of the HCWEC does not effect its value [27, p. 51]. This

force includes potentials from both the undisturbed incident wave and the

diffracted wave. When considering bodies with a vertical axis of symmetry

oscillating in heave in regular waves and deep water, the excitation force is

given by:

Fe =

√
2ρg3Rr(ω,xp)

ω3
η(t) (4.26)

which is a relationship between the radiation resistance and the excitation

force [27, 30, 128]. In addition, since we are considering a point absorber

in the heave mode, the excitation force will be in phase with the incident

wave elevation although this is not the general case [27, p. 125]. For low

frequencies, the heave excitation force has a magnitude that is predicted

by Archimedes’ law, which neglects effects of wave interference and of wave

diffraction. For high frequencies, the force tends to zero, which was to be

expected because of the mentioned effects, but also because of the decrease

of hydrodynamic pressure with increasing submergence below the free water

surface [27, p. 134].

In irregular waves, the excitation force will be a linear combination of nr

regular waves if linear theory is assumed. Then the total excitation force is:

Fe =
nr∑
i=1

√
2ρg3Rr(ωi,xp)

ω3
i

ηi(t) (4.27)

Buoyancy force — Using linear theory the hydrostatic buoyancy force Fb is

proportional to the excursion z of the body from its equilibrium position:

Fb = ρgSwz (4.28)

where Sw is the water plane area of the body. Due to the constant cross-

sectional area of a HCWEC (i.e., the water plane area is independent of the

heave position), the buoyancy force is given by the following formula [27,
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p. 183]:

Fb = gρπa2z = kbz (4.29)

where kb is the buoyancy stiffness coefficient.

Viscous force — The viscous drag force can be expressed as:

Fv =
1

2
ρCDSwż|ż| (4.30)

where CD is the drag coefficient (0.81 for a HC [129]). If the WEC moves at

relatively slow speeds, a linearized version specific for a HCWEC is:

Fv =
1

2
CDρπa

2żmaxż = Rvż (4.31)

where Rv is the viscous resistance coefficient. This linearized version is not

the same as the friction due to the mechanism or other means for transmis-

sion.

PTO force — The PTO force will be modeled here as an open-loop con-

trol force. Frequently, the PTO modeling is motivated by reactive control,

i.e., modeled as a linear spring-damper system:

FPTO = kPTOz +RPTOż (4.32)

where the PTO stiffness kPTO corresponds to the capacitive term and the

PTO damping RPTO corresponds to the dissipative term. Assuming a regular

wave input and that these coefficients can be tuned, a PTO design of this

form can be found that maximizes energy extraction [28]. The PTO force in

Eqn. (4.32), however, is fundamentally limited in the trajectories that it can

produce. Many have used this PTO form to provide analytic solutions to a

variety of WEC problems [28, 33, 35, 38], but their results are only optimal

with respect to the specific simplified PTO architecture. In addition, this

form of the PTO does not predict the behavior in real PTO systems. There is

no reason to believe that this form for the PTO architecture will produce the

true system performance limits or provide insights into the optimal system

dynamics.

With all the forces defined, the general state space model can be written
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as:

ξ̇ = Aξ + Bu+ Ke (4.33)

where:

A =

[
0 a12

a21 a22

]
B =

[
0

b21

]
K =

[
0

k21

]

ξ =

[
z(t)

ż(t)

]
u = FPTO(t) e = Fe(t)

a21 =
−kb

m+mr

a22 =
−
(
Rr +Rv

)
m+mr

a12 = 1

b21 =
−1

m+mr

k21 =
1

m+mr

4.3 WEC Design for Maximum Energy Extraction

Since the start of rigorous engineering research of the design of WECs in

the 1970’s, many researchers have identified both plant and control design

principles to help maximize energy production.

While passive WECs (i.e., no active control of FPTO) can produce energy,

incorporating active control increases significantly energy production capabil-

ity [28, 31, 130], increasing economic competitiveness. Reactive control was

one of the earliest control strategies developed [27, p. 206]. Under the as-

sumptions of linearity and regular waves, it can be shown that the HCWEC’s

dynamic behavior can be described by a second-order transfer function with-

out zeros that will maximize energy production when the optimal velocity is

given by:

ˆ̇z∗ =
F̂e

2Rr

(4.34)

where ˆ̇z∗ is the complex amplitude of the velocity trajectory and F̂e is the

complex amplitude of the excitation force. Maximum energy production is

then produced when velocity is in phase with excitation force, but only when

the particularly narrow assumptions described above are valid, including reg-

ularity of incident waves. Another important implication of Eqn. (4.34) is

that a reactive control system—i.e., a PTO is required that can inject energy

into the wave-mechanical system, not just extract it—is required for optimal
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energy production. Bidirectional power flow helps exploit natural WEC dy-

namics [48, 49, 131] to maximize power production. Unfortunately, PTOs

capable of bidirectional power flow are difficult to implement in practice.

In addition, Tedeschi et al. demonstrated that reactive control in irregular

waves is an inferior control strategy [31]. Another caveat of reactive control

is large amplitudes for the heave position and velocity [132].

Wave energy extraction can be increased beyond what is possible through

optimal control strategies alone.

Many WEC studies do consider both the physical system design (e.g., a

and b for the design of a HCWEC) and the control system design (e.g., open-

loop optimal control or a feedback controller). This is one form of co-design

and is essential for the success of the WEC system since a successful design

hinges on exploiting the natural dynamics of the ocean wave-buoy interaction

[48, 49]. If the physical system is designed such that it resonates with incom-

ing waves, similar to the behavior of electromagnetic antennae or acoustic

microphones, energy extraction can be improved [27, p. 51]. Therefore, the

natural dynamics can be partially expressed with the natural frequency of a

heaving point oscillator in a regular wave is given by:

ω0 =

√
kb

m+mr(ω)
(4.35)

Since real ocean waves are not regular, WECs cannot simply be designed

according to the resonance conditions for a particular frequency. This can be

addressed by employing a WEC control system that boosts power production

in off-resonance conditions. One intuitive approach proposed by Budal and

Falnes involves ‘latching’ the system in place (i.e., ż = 0 for a short period of

time) [21]. The objective of latching control, sometimes referred to as phase

control [27, 30, 132], is to keep ż and Fe in phase (or at least to align the

extrema of these trajectories with respect to time). This strategy is motivated

by the phase requirement for reactive control presented in Eqn. (4.34).

Clement and Babarit has discussed another intuitive control strategy that

involves decoupling the WEC from the PTO known as declutching (i.e., set-

ting FPTO = 0 for a short period of time). They showed that a hybrid latching

and declutching (freewheeling) control strategy amplified power production

substantially, increasing it beyond the sum of the two strategies individually
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[28].

Optimal control formulations in the time domain have also been studied.

These studies often treat buoy velocity as the control input [27, 38, 132].

While PTO force trajectory can be calculated using the results of a velocity-

based solution, velocity (or any other system state) cannot be an indepen-

dent control input. Treating velocity as the control input simplifies solution

(e.g., it sidesteps singular optimal control formulations), but the PTO force

is a more realistic independent control variable. Clement and Babarit used

the simplified PTO model described in Eqn. (4.32) in formulating an optimal

control problem based on PMP; the resulting controller exhibited latching

behavior [28]. Lattanzio and Scruggs formulated a linear-quadratic-Gaussian

optimal control problem, finding the optimal casual control for a particular

generator arrangement [116].

DT has also been used to solve WEC problems. Abraham and Kerrigan

used a PTO model composed of a linear damper and an active element, re-

sulting in bang-bang control of both control inputs [35]. Allison et al. made

no assumptions on PTO architecture to explore the upper limits of HCWEC

performance and gain insight into principles of ideal WEC operation in reg-

ular and irregular ocean waves [29, 36]. Reactive, latching, and declutching

behavior all emerged as valid optimal control strategies depending on partic-

ular combinations of design and operating constraints.

A variety of suboptimal but more implementable control strategies have

been investigated. Valerio et al. have demonstrated a system than switches

controllers depending on season [133]. This seems to be a very natural propo-

sition since the sea states vary widely by season. Other methods such as

model predictive control [38], internal model control [133], and feedback lin-

earization [133] have been designed for realistic WEC control with varying

levels of success. Realistic controller implementations are necessary, but the

likelihood of success will depend on the initial controller architecture. A

more comprehensive review of many WEC control strategies can be found in

[134].

65



4.4 Power-Take Off Design

Realistic PTO systems have been develop that use hydraulics and electric

machines. Hydraulic PTOs have been proposed by some due to their ability

to absorb energy from the large, slow speeds of ocean waves and can utilize

accumulators to provide bidirectional power flow [19, 30, 135]. Although

they are able to drive generators at near constant speeds, they typically

suffer from low transmission efficiency. Some have proposed designs based

on linear electric machines [20, 32, 33]. This type of PTO has promise since

it can provide bidirectional power flow, but in many cases cannot provide

compressive (upward) force as it is typically connected via cables to the

buoy. Tedeschi et al. have proposed a PTO where the WEC is attached

to a rotational electric machine with power electronics via a gear box [31].

This PTO architecture has many advantages, including the ability to provide

bidirectional power flow and PTO force, rendering it an especially promising

PTO design strategy.

Using an open-loop trajectory to represent the PTO force, we only need

to make very limited assumptions on the PTO architecture; thus, the linear

PTO restriction has been removed, similar to the work performed in Ref. [29,

36]. Future studies could investigate the previously listed PTOs’ ability to

match the optimal open-loop trajectories or develop novel PTO architectures

that will create the identified optimal system dynamics for maximum energy

production.

4.5 Design Objectives and Constraints

We seek a formulation consistent with the ODSD problem in Prob. (2.15).

The objective and constraints will depend on the plant variables where ap-

propriate. The dynamic constraints (modeled with a state-space model that

depends on plant variables) were already presented in Eqn. (4.33).

4.5.1 Objective Function

Reconsidering the Eqn. (1.1) and Prob. (1.2), the maximization of energy

production over a finite time interval 0 → tf can be written as a uncon-
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strained minimization problem:

min
ξ,u,a,b

−
∫ tf

0

ż(t)FPTO(t)dt (4.36)

The states are included as optimization variables since DT methods will be

utilized when solving this problem. An additional quadratic penalty term

will be added since the control input appears linearly in the Hamiltonian

(see Section 3.3.3):

H(ξ, u,xp,p) = ξ2u+ 〈p,Aξ + Bu+ Ke〉 (4.37)

Consequently, maximizing energy production with respect to FPTO(t) is a

singular optimal control problem (which is difficult, but possible to solve)

[56]. Kasturi and Dupont added a quadratic penalty term to an analogous

mass-spring-damper system to enable efficient solution [104]. Clement and

Babarit also noted that their WEC system design problem was a singular

optimal control problem [28]. The unconstrained optimization formulation

with the penalty term is:

min
ξ,u,a,b

∫ tf

0

(
−ż(t)FPTO(t) +Rpen[FPTO(t)]2

)
dt (4.38)

where Rpen ∈ R+ is the penalty weight. The addition of the penalty term

perturbs the underlining problem, so using the smallest possible value of

Rpen that still facilitates solution is desirable. It is analogous to the energy

required for the PTO to make control decisions. This will be discussed more

in Section 5.1.

4.5.2 Inequality Path Constraints

Position Constraint — If the buoy completely leaves the water it will impact

the water on its way back down. This slamming of the HCWEC should be

avoided. The following constraint prevents this event:

z(t)− (η(t) + b) ≤ 0 (4.39)

Power Constraint — Practical PTOs (at least so far) cannot provide bidirec-
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Table 4.1 Four design cases of the power and control force constraint.

Case Cmin umin

1 −∞ −∞ Unconstrained
2 −∞ 0 No compressive PTO force
3 0 −∞ No reactive power
4 0 0 Both constraints

tional power flow [27] or would be cost prohibitive. Therefore, we would like

to study the effects on applying a power inequality path constraint on the

PTO force trajectory:

Cmin ≤ ż(t)FPTO(t) (4.40)

where Cmin can be either −∞ or 0. The former will be treated as an uncon-

strained power trajectory while the latter will ensure only positive power.

Control Force Constraint — Asymmetric control input bounds should be con-

sidered. Explicit bounds on the control would be of the form:

umin ≤ u ≤ umax (4.41)

In most previous studies no explicit control input bounds are employed,

although Hals and Falnes imposed symmetric PTO force constraints [38].

Asymmetric constraints (e.g., 0 ≤ FPTO ≤ Fmax) are useful for modeling WECs

where an upward force cannot be exerted on the buoy because of a cable con-

nection between the buoy and the PTO. Asymmetric constraints are difficult

to implement using conventional optimal control methods, highlighting the

value of the DT.

Considering the variations of Eqns. (4.40) and (4.41), four different combi-

nations of the power and control input constraints can be considered (see

Table 4.1).

4.5.3 Boundary Constraints

Periodic Constraints — Irregular waves are periodic since they are a sum

of periodic components. Typically, a few frequencies in wave spectrum are
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dominant as evident in S(ω). Using these dominant frequencies, an approxi-

mation for the period of the irregular wave can be found. For the solution to

be periodic as well, the states must be the same at the initial and final time:

ξ (tf )− ξ (0) = 0 (4.42)

Adding this constraint results in a periodic optimal control problem, which

arises in various applications including vibrating systems [104] and aircraft

cruise control [136]. Using a periodic optimal control approach for the design

of WEC control systems in irregular waves greatly reduces the computational

expense when compared to the conventional strategy of using a large time

horizon to achieve steady state behavior.

Time-Independent Plant Constraint — The mass of the HCWEC is equivalent

to the submerged mass:

m = ρπa2b (4.43)

This is relating a dependent variable to independent geometric design vari-

ables. In addition, the bounds on a, b from Eqn. (4.25) need to be included.

4.5.4 Complete WEC Design Problem Formulation

The complete WEC design problem formulation considered here is as follows:

min
ξ,u,a,b

∫ tf

0

(
−ż(t)FPTO(t) +Rpen[FPTO(t)]2

)
dt (4.38)

subject to:

ξ̇ − (Aξ + Bu+ Ke) = 0 (4.33)

z(t)− (η(t) + b) ≤ 0 (4.39)

Cmin − ż(t)FPTO(t) ≤ 0 (4.40)

umin − u ≤ 0 (4.41)

ξ (tf )− ξ (0) = 0 (4.42)

m− ρπa2b = 0 (4.43)
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With the complete WEC design problem defined, the next chapter will

be devoted to numerical studies of a HCWEC in both regular and irregular

waves. The studies will be designed to generate the optimal system dynamics

under a variety of practical design constraints.
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Chapter 5

Numerical Studies on WEC Design

This chapter will be devoted to a number of numerical studies on the WEC

design problem in both regular and irregular waves. Direct transcription will

be utilized in all of the examples.

5.1 Regularization Penalty Parameter

The first step is to investigate the appropriate values for the regularization

penalty parameter added in Eqn. (4.38). As mentioned in Section 3.3.3, Rpen

is a positive scalar, but we desire a small value in order to have minimal effect

on the original problem. The effect of Rpen will be presented without analyz-

ing the specifics of the solutions in order to first determine the appropriate

value of Rpen to perform this analysis.

5.1.1 Regular Waves with a Local Collocation Method

In order to determine the effect of Rpen on the WEC design problem in a regu-

lar wave, a parameter sweep from 10−3 to 10−10 was performed with all other

aspects of the problem fixed using a local collocation method. In Fig. 5.1a,

we see the optimal total energy extracted with the additional penalty term

removed post optimization versus various values of Rpen. For all four cases in

Table 4.1, the energy consumption was monotonically decreasing with Rpen.

However, we see that for small values of Rpen, the energy extraction is nearly

the same, similar to the comment made by Betts with regard to this regu-

larization procedure [56, p. 307]. Figure 5.1b demonstrates the relationship

between Rpen and the relative effect of the penalty term, which is calculated
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Figure 5.1 Sensitivity studies to determine the appropriate value for Rpen

in regular waves (all four cases considered).
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by:

Penalty =
Rpen

∫
〈u,u〉 dt∣∣∫ Ldt∣∣+
∫
Rpen 〈u,u〉 dt

(5.1)

The opposite trend is determined from this plot, which is expected. As we

decrease the penalty parameter, the effect of the penalty term decreases until

it is almost nonexistent around 10−8 for all four cases. However, there is a

discrepancy between Fig. 5.1a and Fig. 5.1b because the location of Rpen for

a nonchanging energy production is different than for a nearly zero penalty

term effect. Since the original objective was to maximize energy production,

it would be appropriate to stop when there is nonchanging energy production

even if a moderate percentage of the modified objective is due to the penalty

term (potentially near 20% for Cases 3 and 4). Also note the nonsmoothness

at a few values of Rpen, which was caused by numerical difficulties at these

points.

We still need to address the fact that we are now working with a modi-

fied objective function. The question is if this modification fundamentally

changes the result and potentially produces unusable solutions. The phase

space of the objective function (i.e., FPTO vs. ż) was observed for different

values of Rpen. The results for a widerange of Rpen values is shown in Fig. 5.2

for Case 1. Note that as Rpen decreases, the phase plots tend to converge

to a specific ellipse (in both size and angle). As it will be discussed in the

next section, for the smaller values, the optimal results are the same as for

reactive control; therefore, for small enough values of Rpen, the problem is

equivalent to the original objective. For Case 3 in Fig. 5.3, we once again

see a general convergence in the phase plot. However, if Rpen is too small,

we start to see singular control artifacts, such as instabilities in the phase

plots. This is more prominent in the Case 3 plots. The same plots for Cases

2 and 4 are in Figs. B.1 and B.2 with similar conclusions drawn. Therefore,

it seems reasonable to assume that results with a sufficiently small value for

Rpen will produce optimal solutions aligned with the original objective.

From these studies, a simple algorithm was developed to determined the

best value for Rpen outlined in Algorithm 1. The general idea is based on

Fig. 5.1a: decrease Rpen until the objective function is no longer changing

relative to the previous value. We first must select a large initial value for
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Algorithm 1: Finding the appropriate regularization parameter.

Data: large Rpen, 0 < κ < 1, ε > 1
Result: f ∗i , Rpen

1 f 0 ← 0
2 fRatio ←∞
3 while fRatio > ε do
4 i← i+ 1
5 f ∗i ← Solve minimization problem with Rpen

6 fRatio ← f∗i
f∗i−1

7 Rpen ← κRpen

8 end

Rpen such that the modified problem is sufficiently different than the original

(Rpen = 10−3 for regular wave cases). Next, a stopping tolerance ε should

be set to a value greater than 1 since we are assuming that the modified

objective is monotonically decreasing with respect to Rpen (ε = 1.01 in this

study). Finally, we need to set the update coefficient for Rpen, κ, which

should be between 0 and 1 to ensure a decreasing value at each iteration

(κ = 1
2

in this study).

5.1.2 Irregular Waves with a Global Collocation Method

A similar sensitivity study was performed to determine Rpen in an irregular

wave using a global collocation method. In Fig. 5.4, we see the optimal total

energy extracted with the additional penalty term removed post optimiza-

tion versus various values of Rpen for Case 1. From 10−6 to approximately

10−2, the energy production is monotonically decreasing with Rpen; similar

to what was observed in Fig. 5.1a. However below this value of Rpen, the

energy production became negative (i.e., the final solution was no longer ex-

tracting energy)! In Fig. 5.5, we see the final solution at 10−6. There are a

number of segments where the velocity and PTO force are rapidly switching.

It is important to note that this solution is feasible and the mesh tolerances

are met according to the optimization algorithm. This is an artifact of the

singular nature of the WEC design formulation. Unlike the local colloca-

tion Rpen sensitivity study, we cannot say that small enough values of Rpen

will produce the similar energy results; these solutions are also completely
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in irregular waves (only Case 1 considered).

impractical. Therefore, Algorithm 1 needs to be modified to stop near the

point where the energy production switches signs.

We no longer can say that these are truly optimal results since we cannot

arbitrarily decrease Rpen to converge to a final energy production value. In

addition, we cannot make the same claim that the regularization procedure

is not fundamentally perturbing the underlining problem. So why should we

consider these results? Even with these shortcomings, using a global colloca-

tion method to optimize energy production in irregular waves will still provide

design insights because these solutions strategies were seeking the optimal

energy extraction. It is important to remember that no design guidelines

were provided, only an objective and constraints. One example is the latch-

ing control strategy, where the velocity is held until it is approximately in

phase with the excitation force. However, this is a suboptimal strategy [28].

Therefore, all phenomena that arise are due to the desired natural dynamics

of the system.
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Table 5.1 Parameters for regular wave studies.

Parameter Value Parameter Value
H 4 m nt 100
T 8 s Rpen 10−5

h 10 m ε 1.01
FPTO,max 1010 N κ 1

2

żmax 103 m/s

5.2 Regular Waves

Regular waves are studied first because the optimal results can be compared

directly to the previously developed optimal control strategies such as re-

active, latching, and declutching. The trapezoidal rule was used for both

the defect constraints and numerical quadrature. The complete WEC design

problem was considered except for the position path constraint defined in

Eqn. (4.39) in order to investigate the more common unconstrained heave

amplitude problem. Nested co-design was used in order to keep the de-

fect constraints linear and therefore efficient to solve (see Appendix A). In

addition, because there are only two plant design variables (a,b), enumer-

ating many feasible combinations is possible. The NLP was solved using

Tomlabr1 with SNOPTr2. Some parameters used are listed in Table 5.1.

Many of the default values for SNOPTr were used except for the major

optimality and minor optimality tolerances. They needed to be decreased to

10−11 to produce stable results.

5.2.1 Unrestricted Heaving Amplitude

First, no limits will be placed on the heaving amplitude. The parametric

sweeps of (a, b) were performed for all four cases shown in Fig. 5.6. Adding

more constraints (Case 4 has the most constraints) increased numerical dif-

ficulties, as evidenced by the numerical noise in Cases 3 and 4. The location

of maximum energy extraction for each case is denoted by a white dot. Ta-

ble 5.2 characterizes each of these solutions. The wave, states, and control

1http://tomopt.com/tomlab/
2http://www.sbsi-sol-optimize.com/asp/sol_product_snopt.htm
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along with instantaneous power and phase space are plotted for each of the

four cases in Figs. 5.7 and 5.8.

Observing Fig. 5.6, we can see that the energy results for Cases 1 and

2 are the same (i.e., E1 = E2). This implies that the addition of the force

constraint does not degrade energy production. The power constraint, on the

other hand, did degrade the performance of the WEC. The overall pattern

in the results from Case 3 is similar to Cases 1 and 2, but has a lower in

energy value. All cases favored the largest possible a value. A larger a value

implies that there is more energy available to the WEC because the incident

wave striking it is wider. Also recalling Fig. 4.5, a large radius increases

the added resistance, which in turn increases the excitation force. Smaller b

values were also preferred. When combined with the larger radius, disk-like

cylinders were the desired design for all four cases. Case 4 had an optimal b

value that was not as small as possible, which might be due to the numerical

noise in this high energy region. This will be discussed more in Section 5.2.5.

We will now turn our attention to the optimal designs. For Case 1 in

Fig. 5.7a, all optimal trajectories were harmonic. The phase space plot of

the objective is an ellipse, which indicates that the instantaneous power was

harmonic. Since larger portions of the ellipse are in quadrants 2 and 4,

reactive power (P < 0) is used. The reactive control condition states that

the excitation force and velocity should be in phase. This condition was

met in Case 1 without any requirements that it should be met. Adding the

force constraint in Case 2 simply shifted the harmonic solution in Case 1.

Observe that the phase space is nearly the same except the ellipse is only in

quadrants 1 and 4 as required by the constraint. The implies that the optimal

velocity trajectories are identical. This solution requires large amounts of

reactive power and extremely high control forces; thus, may prove to be an

impractical design (not forgetting the maximum amplitudes of both Cases 1

and 2 would make a real HCWEC hit the sea floor or fly out of the water).

The addition of the power constraint in Case 3 restricts the phase space

from entering quadrants 2 and 4 (see Fig. 5.8a). In this case we see both

latching and declutching. Note when the phase trajectory stays in contact

with the velocity axis, the system is latched; and when it comes into contact

with the control axis, it is declutched. This behavior aligns the extremums of

the velocity and excitation force, the same condition as reactive control, but
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Figure 5.6 Energy results for all four cases in a regular wave (Emax = 3.37
MJ and optimum located at ◦).

Table 5.2 Case results in a regular wave.

Case 1 Case 2 Case 3 Case 4
a 1.4 m 1.4 m 1.4 m 1.4 m
b 0.8 m 0.8 m 0.8 m 0.933 m

Rpen 1× 10−9 1× 10−9 3× 10−6 3× 10−6

max |z| 14.5 m 27.5 m 4.3 m 3.0 m
max |ż| 11.4 m/s 11.4 m/s 6.3 m/s 3.3 m/s

max |FPTO| 810.2 kN 1612.3 kN 230.9 kN 143.9 kN
P 422.5 kW 422.5 kW 221.1 kW 85.5 kW
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ż
(m

/
s)

−1.5 −1 −0.5 0 0.5 1 1.5

−10

−5

0

5

10

P+

P+P−

P−

b) Case 4: FPTO ∈ R+, P ∈ R+

 

 

−20

−10

0

10

20

−1

−0.5

0

0.5

1

η z ż FPTO

Figure 5.8 Optimal solutions for Cases 3 and 4 in a regular wave (grey
shading indicates infeasible regions).
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energy is extracted for a much shorter time and at a lower rate. Once again,

we note that neither latching nor declutching requirements were provided

to the optimization algorithm—the behavior emerged naturally. Finally, the

result with both the force and power constraints is shown in Fig. 5.8b. Larger

periods of both latching and declutching are seen again. Only quadrant 1

is feasible but there is a special region where FPTO such that the phase

trajectory can extend in between quadrants 3 and 4. This is one reason

behind the numerical difficulties experienced in Case 4.

Cases 1 and 2 were very dynamic; the absolute maximum velocity and

position were unrealistically large. The power constrained cases had much

slower dynamics, but this was at the cost of reduced energy production.

Case 3 only produced 52% of the energy in Cases 1 and 2, while Case 4

produced only 20%.

5.2.2 Constrained Heaving Amplitude

Since the results in Section 5.2.1 were impractical for Cases 1 and 2, the

heave amplitude was constrained (i.e., |z| ≤ 4 m). Once again, parametric

sweeps of (a, b) were performed for all four cases shown in Fig. 5.9. Adding

more constraints (Case 4 has the most constraints) increased numerical dif-

ficulties, as evidenced by the numerical noise in Cases 3 and 4. The location

of maximum energy extraction for each case is denoted by a white dot. Ta-

ble 5.3 characterizes each of these solutions. The wave, states, and control

along with instantaneous power and phase space are plotted for each of the

four cases in Figs. 5.10 and 5.11.

Observing Fig. 5.11b, we see that the results from Case 4 are nearly the

same as the unconstrained case. Some minor differences are most likely due

to the final penalty parameter value. Once again, latching and declutching

are present. The solutions are nearly the same since the heaving amplitude

constraint was not violated in the previous study (i.e., max|z| = 3 m). All the

other cases did violate the constraint, so their motion needed to be reduced.

Cases 1 through 3 exhibited latching behavior in order to reduce the motion

of the WEC. In Case 1, we see a slight amount of reactive power and sym-

metric, mostly harmonic velocity trajectories when extracting power. When

compared to Case 3, the phase space must avoid quadrants 2 and 4; there-
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d) Case 4: FPTO ∈ R+, P ∈ R+

Figure 5.9 Energy results for all four cases in a regular wave with
|z| ≤ 4 m (Emax = 1.75 MJ and optimum located at ◦).

Table 5.3 Case results in a regular wave with |z| ≤ 4 m.

Case 1 Case 2 Case 3 Case 4
a 1.4 m 1.4 m 1.4 m 1.4 m
b 0.8 m 0.8 m 0.8 m 0.8 m

Rpen 1× 10−7 5× 10−7 3× 10−6 1× 10−5

max |z| 4.0 m 4.0 m 4.0 m 2.6 m
max |ż| 4.9 m/s 3.8 m/s 5.5 m/s 2.9 m/s

max |FPTO| 328.9 kN 336.2 kN 276.7 kN 137.3 kN
P 218.7 kW 122.6 kW 213.0 kW 61.7 kW
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Figure 5.10 Optimal solutions for Cases 1 and 2 in a regular wave with
|z| ≤ 4 m (grey shading indicates infeasible regions).
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ż
(m

/
s)

0 2 4 6 8

−4

0

4

0 2 4 6 8

−245

0

245

F
P
T
O
(k
N
)

t (s)

P
(M

W
)

0 2 4 6 8

0

0.2

0.4

0.6

0.8

FPTO (kN)

ż
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Figure 5.11 Optimal solutions for Cases 3 and 4 in a regular wave with
|z| ≤ 4 m (grey shading indicates infeasible regions).
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Table 5.4 Comparison of unconstrained and constrained average power
results in a regular wave.

Case 1 Case 2 Case 3 Case 4
Unconstrained 100% 100% 52% 20%

Constrained 52% 29% 50% 15%

fore, the velocity trajectories are no longer harmonic or symmetric but are

still aligned with the extremums of the excitation force. Enforcing only the

power constraint had a minor effect on the overall energy extraction. Case 3

was interesting because it performed the following sequence of strategies:

latching, energy extraction, declutching, and reactive power. This is inter-

esting because the extraction and reactive power trajectories were disjoint.

It seems as if the reactive power helped position the excitation force and

velocity during the extraction period.

In Table 5.4, the percentage of energy extracted relative to the maximum

is shown. We notice that the power constraint degrades performance more in

the unconstrained case. In addition, the force constraint did not degrade the

energy extraction in the unconstrained study, but did severely in the con-

strained study, even more so than the power constraint. The force constraint

in both studies produced one large “hump” of energy extraction. With the

freedom to position the HC, the magnitude of this hump was severely limited.

When both constraints are enforced, the energy results are poor. Therefore, if

we can create a PTO design that does not require both of these constraints, a

reasonable amount of energy production relative to the maximum is possible.

5.2.3 Final Penalty Parameter Values

Since Algorithm 1 was used to find the appropriate value for Rpen, we can

observe the final values at each point in the plant design space. The final

values for Rpen for the unconstrained and constrained studies are in Figs. 5.12

and 5.13.

For the unconstrained study, increasing a typically resulted in a small final

value for Rpen. Larger values of a directly result in larger forces. Since the

regularization procedure essentially limits the force if Rpen is too large, it is
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Figure 5.12 Final Rpen values for all four cases in a regular wave.
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Figure 5.13 Final Rpen values for all four cases in a regular wave with
|z| ≤ 4 m.
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natural to expect that larger optimal forces require a smaller final value for

Rpen. This can directly be observed when comparing Cases 1 and 2 because

they both have the same energy results. The forces required in Case 2 are

much larger, so the final values of Rpen are smaller when compared to Case 1.

Cases 3 and 4 experienced a significant amount of numerical sensitivity to

the final value of Rpen, although the general trend was that equivalent points

in the design space had larger final values of Rpen when compared to Cases 1

and 2.

For the constrained study, the results had similar trends. In general, the

final values for Rpen in this study were larger than in the unconstrained study

because the forces were generally lower.

5.2.4 Wave Period Sensitivity

Another sensitivity study was performed on the wave’s period. This is similar

to the ‘Budal diagram’ that explores the upper bounds on extractable energy

available to a WEC [132]. This study can be seen in Figs. 5.14 and B.3 with

the Case 1 assumptions (a = 1 m, b = 2 m). For the unconstrained case

in Fig. 5.14a, the average power increases with T , similar to Eqn. (4.11).

However, the resulting state trajectories are highly dynamic, i.e., both the

heaving amplitude and velocity are quite large (see Fig. B.3a). Therefore, it

is common to impose symmetric bounds on the heave amplitude to produce

more realistic results.

The constrained amplitude results are shown in Fig. 5.14b. For small

values of T , the results between the two formulations are the same because

the maximum amplitude does not naturally exceed 4 m (see Fig. B.3b and

note the increasingly step-like behavior of the position trajectory). After this

point, energy production decreases as the wave period length increases. This

result is consistent with the second upper power bound in the Budal diagram.

This corresponds to when the WEC’s swept volume (but not the wave energy

available in the sea) is exploited as much as possible [132]. However, the HC

still would leave the water during the regular wave period, motivating the

use of the asymmetric position path constraint in Eqn. (4.39).
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Figure 5.14 Sensitivity study on regular wave period length with both
unconstrained and constrained heave amplitude.
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5.2.5 Normalized Energy Results and Resonance

The energy results presented in Figs. 5.6 and 5.9 might not be aligned with

the true design goal because an increasing HC radius results in more available

energy since the capture width is larger. Therefore, we can normalize the

energy values by dividing each point in the design space by 2a (i.e., making

this modification directly on Figs. 5.6 and 5.9). These normalized results

are presented in Fig. 5.15 for a select few cases. We note that the optimum

locations are still located at the same positions. However in many cases for

a fixed value of b, there is an optimal a that is in the interior of our design

space.

To better under this observation, let us consider the resonance condition

in Eqn. (4.35). Nondimensionalizing the added mass coefficient to µ(ω) =

mr(ω)/(ρπa2b), the optimal draft can be calculated such that the HCWEC

resonates with the incoming regular wave:

b =
g

ω2 (1 + µ(ω))
(5.2)

This is consistent with statements in Ref. [27, p. 185]. The maximum value

µ(ω) attains in our feasible design space is ≈ 0.94. The angular frequency

these studies was 2π/T = 0.79 rad/s. Therefore, the smallest possible b

would be 8.2 m, which is outside our current feasible design space. How-

ever, the results are not trending toward large values of b, but smaller ones.

Smaller b values indicate higher frequency (or lower period) devices. Why

might this be the case? The resonance condition is a statement of when the

intrinsic reactance vanishes, not when energy production is maximized. The

excitation force depends on the plant design, i.e., a and b. In Fig. 4.5, we

note the slender cylinders (i.e., a � b) result in smaller values of Rr while

disk-like cylinders (i.e., a � b) result in larger values. The excitation force

is proportional to the square root of Rr (see Eqn. (4.27)) so we favor larger

excitation forces rather than resonance. The local optimums for fixed values

of b might be an ideal trade-off between resonance and excitation force.
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c) Case 1, |z| ≤ 4 m
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d) Case 2, |z| ≤ 4 m

Figure 5.15 Energy results normalized by the HCWEC’s radius for a
variety of cases (optimum located at ◦).

5.3 Irregular Waves

This section will discuss optimal energy extraction in irregular waves. All

studies use GPOPS-I3 to formulate the NLP, which employs the pseudospec-

tral method with LGR points and an hp-adaptive mesh refinement approach

[63]. This software package also uses SNOPTr to solve the underlying

sparse optimization problem. The complete WEC design problem including

the slamming constraint was considered. Because all cases in regular waves

tended towards the same plant design (a = 1.4 m and b = 0.8 m), this was

assumed to be the plant design. The initial guess for the states and control

was a completely declutched WEC (i.e., FPTO ≡ 0) obtained through a for-

3Current version available for licensing at http://www.gpops2.com/
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Table 5.5 Parameters for irregular wave studies.

Parameter Value Parameter Value
H1/3 4 m seed 10000
Tp 8 s tf 62.832 s
h 10 m setup.derivatives complex

FPTO,max 108 N setup.mesh.tolerance 10−5

żmax 10 m/s

Table 5.6 Case results in an irregular wave.

Case 1 Case 2 Case 3 Case 4
Rpen 1× 10−6 3× 10−6 5× 10−6 4× 10−6

max |z| 9.2 m 5.3 m 3.4 m 3.5 m
max |ż| 6.5 m/s 4.7 m/s 3.4 m/s 3.2 m/s

max |FPTO| 551.6 kN 278.7 kN 185.9 kN 210.1 kN
P 85.1 kW 44.6 kW 33.8 kW 25.4 kW

L̂ −3.7× 106 −1.6× 106 −5.0× 105 −1.5× 105

|ż| ≤ 10−3 0% 0% 23% 33%
|FPTO| ≤ 10−3 0% 36% 23% 42%

ward simulation of the derivative function. In addition, the sparsity pattern

was given manually. Some additional parameters used are listed in Table 5.5.

Poor results occurred if the optimization algorithm terminated due to reach-

ing the maximum iterations because the next mesh refinement iteration had

a poor solution to generate the new mesh.

5.3.1 Irregular Wave Cases

The optimal states, control, and power trajectories for Cases 1 to 4 are illus-

trated in Figs. 5.16 to 5.19. Finally, the results are summarized in Table 5.6.

In Case 1 in Fig. 5.16, we see strong levels of active control; the WEC is

nearly pulled to the bottom twice. This maneuver requires a lot of reactive

power, but results in large positive power spikes and typically occurs right

before the wave increases in elevation. The force trajectory was on the pos-

itive side. This differs from results in a regular wave for Case 1, which was

symmetric. The solution seems to indicate that extremums of the excitation
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force and velocity should be in phase (the reactive control condition) but was

not fully realized, perhaps due to the various constraints imposed. Overall,

the solution focused on extracting the most energy during the largest varia-

tions in η. For Case 2 in Fig. 5.17, the resulting solution was similar to Case 1

except the magnitudes of z and ż were smaller. PTO was declutched for 36%

of the entire time horizon. Since a negative PTO force could not assist in

placing the WEC in the proper position for maximum energy extraction, the

overall dynamics were less intense.

Cases 3 and 4 were challenging to solve. The drop-off shown in Fig. 5.4 was

hard to find and results slightly away from the ideal value of Rpen had poor

energy production. The values of Rpen selected still have some unrealistic

and nonoptimal PTO force spikes. Case 3 in Fig. 5.18 showed a fair amount

latching, which might be surprising because latching requires unique control

trajectories. Declutching was also seen and 46% of the entire solution was in

either of these states. The magnitude of the power trajectory is much smaller

than when the power constraint was not enforced; however, the energy pro-

duction was only 24% less than Case 2. Case 4 in Fig. 5.19 spent 75% of

the time in either latching or declutching. The amount of time latched was

more than Case 3, which was the opposite from the results based on regular

waves.

All four cases tried to align the excitation force and velocity as best as they

could under their various constraints. Similar to the unconstrained results

in regular waves, the relative energy results were:

E1 > E2 > E3 > E4 (5.3)

Also, the maximum velocity decreased with decreasing energy production.

The phase spaces of the objective function are in Figs. B.4 and B.5. The

general trajectories are similar to their regular wave counterparts. Some

points may stray into the infeasible regions either due to the numerical issues

or the fact that the path constraints are not checked in between the collocated

points. Finally, a visualization of the position path constraint (z − η ≤ b)

is shown in Fig. B.6. Note that in all four cases, this constraint was active

during specific parts of the time horizon. Case 1 exhibited extended periods

of this constraint being active.
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Figure 5.16 Optimal solution for Case 1: FPTO ∈ R, P ∈ R in an irregular
wave.
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Figure 5.17 Optimal solution for Case 2: FPTO ∈ R+, P ∈ R in an
irregular wave.
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Figure 5.18 Optimal solution for Case 3: FPTO ∈ R, P ∈ R+ in an
irregular wave.
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Figure 5.19 Optimal solution for Case 4: FPTO ∈ R+, P ∈ R+ in an
irregular wave.
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5.3.2 Maximum Instantaneous Power Bound Study

A WEC PTO must handle the largest value of the instantaneous power that

may occur, adding to system expense, and potentially sacrificing its cost

to production ratio. A power constraint (i.e., |P | ≤ Cmax), Cmax is the

maximum allowed power) was added to Case 1 to investigate this practical

design issue. This bound was varied from 200 kW down to 10 kW. The

results are shown in Fig. 5.20 with Rpen increased to 10−5 to produce intuitive

solutions for all values of Cmax. As expected, energy extraction decreases

with Cmax. Increasing beyond 135 kW does not improve energy performance

noticeably. In fact, when the maximum power is limited to Cmax = 53 kW,

the energy production is still 80% of the maximum, potentially improving

the energy/cost ratio. To illustrate system behavior more clearly, the power

trajectory is plotted for a few select values of Cmax in Fig. 5.21. As the

maximum power is reduced, flat spots appear at the power bound. The

width of these flat spots increases with decreasing Cmax, allowing the WEC

to produce more energy than if the power trajectory for the unconstrained

case was simply “cut” at the bound. In addition to reducing PTO power

requirements, introducing the power bound results in a more consistent power

level, which is desirable for grid integration.

One way to visualize these constrained solutions is to once again observe

the phase space of the objective function. We can draw curves that represent

constant power with Cmax = żFPTO, which forms a rectangular hyperbola

when plotted. This is plotted for two different values of Cmax in Fig. 5.22.

Note the large portions that conform to the maximum power lines. This study

is an excellent example of the complex constraints that can be imposed when

using DT.

This completes the numeric studies on WEC design. Dynamic system

design optimization utilizing direct transcription identified both control and

plant design strategies to maximize energy production and produce realistic

WECs. Some of these strategies were already found in the literature but in

this work, a single approach was applied to identify them and is capable for

more detailed studies in the future.
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Chapter 6

Conclusion

6.1 Thesis Summary

This thesis focused on three primary topics: dynamic system design opti-

mization, direct transcription, and wave energy converter design. The WEC

design problem served as an excellent example of the applicability of the first

two topics on a challenging dynamic system design problem.

Dynamic System Design Optimization — An essential ingredient in an ODSD

problem is the natural inclusion of the dynamics. The dynamics of the sys-

tem commonly depend on both the physical and control design elements;

therefore, only a formulation that directly considers the interaction between

the two can produce the optimal system dynamics. An ODSD formula-

tion is a general methodology for properly formulating this type of problem.

Many different types of objectives and constraints can be included naturally.

However, this can be a challenging problem to solve in particular because

DAEs need to be solved efficiently. Indirect methods for optimal control

were denoted “undesirable” since their formulations contain multiple BVPs,

numerically sensitive costate calculations, and an inability to efficiently han-

dle inequality constraints. Additionally, sequential system design is always

undesirable since it does not account for the coupling between the plant and

control designs, resulting in suboptimal system designs. Simultaneous and

nested co-design utilizing DT was identified as the most promising solution

approaches.

Direct Transcription — This class of methods enables us to perform si-

multaneous analysis and design of the dynamics. This is accomplished by

parametrizing both the state and control trajectories and adding a large

number of equality constraints that ensure feasible dynamics. Two main ap-

proaches were identified: local collocation (or time-marching methods) and
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global collocation (or pseudospectral methods). In addition to favorable con-

vergence properties and the ability to handle unstable DAEs, DT can be used

on singular optimal control problems and for early-stage design.

Wave Energy Converter Design — The numerical studies on the WEC de-

sign problem provided a number of insights. First, disk-like cylinders were

preferred (i.e., a � b). This was attributed to the increase in excitation

force. Typically, WECs are designed to resonate with the incoming wave but

this assumes that the excitation force in independent of the plant design.

Second, a number of previous optimal WEC control strategies were identi-

fied in the results. In a regular wave without any constraints, the excitation

force and optimal velocity were exactly in phase, which is the reactive control

condition. However, the unconstrained solutions were highly dynamic and

required large amounts of reactive power. Other identified control strategies

included latching and declutching. It is important to note that these strate-

gies emerged naturally, not as part of the design formulations, but instead

because of DT’s flexibility.

A number of cases were examined to explore the design tradeoffs that com-

monly are experienced when designing a WEC PTO including asymmetric

force and power constraints. Case 1 always extracted the most energy, al-

though Case 2 extracted the same amount when only the force constraint was

imposed. Generally, the power constraint degraded performance more than

the force constraint in both regular and irregular ocean waves. However,

imposing a constraint on the heaving amplitude reversed this observation.

Imposing both force and power constraints produce extremely poor energy

results. Therefore, if we can create a PTO design that does not require both

of these constraints, a reasonable amount of energy production relative to

the maximum is still possible. The final study was on the sensitivity of max-

imum instantaneous power. As expected, energy extraction decreases as we

decrease this bound. However, we can still extract a substantial percentage of

the maximum energy while limiting actuator peak power (and hence system

expense). This study was an excellent example of the complex constraints

that can be imposed when using DT.
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6.2 Future Work

A number of future work items were identified that have the potential to

improve the design of WECs and more general dynamic engineering systems:

(1) Validation of the proposed effectiveness of problem formulations for

ODSD in Table 2.1 through the enumeration of all possible combina-

tions.

(2) Further investigation into the applicability of local and global colloca-

tion methods on co-design problems especially problems with highly

nonlinear plant constraints.

(3) Further investigation into the applicability of local and global colloca-

tion methods on singular optimal control problems and potential meth-

ods to improve their solutions.

(4) The development of a methodology to accurately transfer identified

open-loop control solutions to realistic control systems including the

physical components and closed-loop feedback laws.

(5) A fair comparison between the numerical results in this thesis to pre-

viously identified optimal solutions for WEC design.

(6) More detailed WEC design studies which could include accurate in-

the-loop calculations of the radiation impedance for other topologies

(i.e., not limited to a heaving cylinder), realistic PTO architectures still

utilizing open-loop control to identify the system performance limits,

and optimal design under a variety of sea states.
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Appendix A

Problem Structure and Sparsity
Pattern for the WEC Design

Problem

In this section, the general problem structure and sparsity pattern of the

WEC design problem using the trapezoidal rule with equidistant points for

both the defect constraints and numerical quadrature is the explained. In

addition, the plant design and time horizon will be held fixed so the defect

constraints are linear. This formulation lends itself to nested co-design since

the plant design is held fixed while solving the OCSD subproblem. The

position constraint in Eqn. (4.39) is not included in this formulation but

would also be a linear constraint.

If the above assumptions and numerical methods are used, the WEC design

problem can be represented as a quadratically constrained quadratic program

(QCQP) [137, pp. 152-153]:

min
x

1

2
xTHx + GTx (A.1a)

subject to:

Ax = b (A.1b)

xTPix + qTi x + ri ≤ 0 {i | i ∈ N, i ≤ nq} (A.1c)

where H, G, A, b, Pi, qi, and ri are constant and H is symmetric. If

Eqn. (A.1c) is not present, the problem is called a quadratic program (QP).

This leads to especially efficient solution [137, pp. 152-153]. Without the

power constraint (Cases 1 and 2), the resulting problem can be formulated

as a QP. With the additional power constraint (Cases 3 and 4), the WEC

design problem can be formulated as a QCQP.

107



A.1 Hessian Calculation

We will start by defining the quadratic objective function. Recall the compos-

ite trapezoidal rule on a uniform grid is given in Eqn. (3.24). Note that the

regularized objective function in Eqn. (4.38) contains only quadratic terms

(i.e., the second partial derivatives will be constant). Therefore, G does not

exist for this problem. The Hessian for the discrete ODSD problem was de-

fined in Eqn. (3.35), now modified to only include the optimization variables

present and no Mayer term:

H = ∇xxψ =

[
∂2ψ
∂ξ2

∂2ψ
∂ξ∂u

∂2ψ
∂ξ∂u

∂2ψ
∂u2

]
(A.2)

Now expanding with nξ = 2 and nu = 1 and replacing ξ and u with the

proper variable names:

H =


∂2ψ
∂z2

∂2ψ
∂z∂ż

∂2ψ
∂z∂FPTO

∂2ψ
∂z∂ż

∂2ψ
∂ż2

∂2ψ
∂ż∂FPTO

∂2ψ
∂z∂FPTO

∂2ψ
∂ż∂FPTO

∂2ψ
∂F 2

PTO

 (A.3)

We now find the entries of the Hessian that are obviously zero since they do

not appear in the continuous form of the objective:

H =


0 0 0

0 0 ∂2ψ
∂ż∂FPTO

0 ∂2ψ
∂ż∂FPTO

∂2ψ
∂F 2

PTO

 (A.4)

Finally, we can determine the entries. The composite trapezoidal will only

have block diagonal entries and will be symmetric:

∂2ψ

∂ż[tk]∂FPTO[tk]
= −Q[tk]h (A.5a)

∂2ψ

∂F 2
PTO[tk]

= Q[tk]Rpenh (A.5b)

where: Q[tk] =

1
2

if k = 0 or nt

1 otherwise
(A.5c)
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A.2 Linear Constraint Calculation

Recall the constraint Jacobian in Eqn. (3.36). The linear constraints in the

problem are the dynamic constraints in Eqn. (4.33) and the periodic con-

straint in Eqn. (4.42) (with an additional periodic control constraint) since

their calculation only depends linearly on the states and control. The mod-

ified constraint Jacobian only including the optimization variables present

and no path constraints is:

∇x

[
φ

ζ

]
=

[
∂φ
∂ξ

∂φ
∂u

∂ζ
∂ξ

∂ζ
∂u

]
(A.6)

Now expanding with nξ = 2 and nu = 1 and replacing ξ and u with the

proper variable names:

∇x

[
φ

ζ

]
=



∂φz
∂z

∂φz
∂ż

∂φz
∂FPTO

∂φż
∂z

∂φż
∂ż

∂φż
∂FPTO

∂φFPTO

∂z

∂φFPTO

∂ż

∂φFPTO

∂FPTO
∂ζz
∂z

∂ζz
∂ż

∂ζz
∂FPTO

∂ζż
∂z

∂ζż
∂ż

∂ζż
∂FPTO

 (A.7)

We now find the entries of this constraint Jacobian that are obviously zero

since they do not appear in the continuous form of the constraints:

∇x

[
φ

ζ

]
=



∂φz
∂z

0 0

0 ∂φż
∂ż

0

0 0
∂φFPTO

∂FPTO
∂ζz
∂z

∂ζz
∂ż

0
∂ζż
∂z

∂ζż
∂ż

∂ζż
∂FPTO

 (A.8)

Finally, we can determine the entries. The discretized boundary constraints
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only require a single linear constraint:

∂φz

∂z[tk]
= Q[tk] (A.9a)

∂φż

∂ż[tk]
= Q[tk] (A.9b)

∂φFPTO

∂FPTO[tk]
= Q[tk] (A.9c)

where: Q[tk] =


1 if k = 0

−1 if k = nt

0 otherwise

(A.9d)

We will need nt × nξ linear constraints to represent the defect constraints:

∂ζz[tk]

∂z[tk]
= 1 (A.10a)

∂ζz[tk]

∂z[tk−1]
= −1 (A.10b)

∂ζz[tk]

∂ż[tk]
=

∂ζz[tk]

∂ż[tk−1]
= −h

2
(A.10c)

∂ζż[tk]

∂z[tk]
=

∂ζż[tk]

∂z[tk−1]
=

hkb
2 (m+mr)

(A.10d)

∂ζż[tk]

∂ż[tk]
=
h
(
Rr +Rv

)
2 (m+mr)

+ 1 (A.10e)

∂ζż[tk]

∂ż[tk−1]
=
h
(
Rr +Rv

)
2 (m+mr)

− 1 (A.10f)

∂ζż[tk]

∂FPTO[tk]
=

∂ζż[tk]

∂FPTO[tk−1]
=

h

2 (m+mr)
(A.10g)

However, these equations do not fully define the original defect constraints.

One of the forces acting on the WEC is state independent: the excitation

force. Since this force is a constant at a specific value of tk, it can readily be

included in b:

b =

[
0(3+nt)×1

Q

]
(A.11a)

where: Qk =
h

2 (m+mr)
(Fe[tk−1] + Fe[tk]) (A.11b)
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Therefore, the linear constraints in the WEC design problem are defined by:

∇x

[
φ

ζ

]
x = b (A.12)

A.3 Quadratic Constraint Calculation

Once again recall the constraint Jacobian in Eqn. (3.36) but now consider the

second partial derivatives (similar to the Hessian calculation). The nonlinear

(but quadratic) constraint is the power constraint defined in Eqn. (4.40) since

the constraint function only depends quadratically on the states and control.

This also implies that q and r are zero for this constraint. The modified

first derivative of the constraint Jacobian only including the optimization

variables present and no dynamic and boundary constraints is:

∇xxC =

[
∂C
∂ξ2

∂C
∂ξ∂u

∂C
∂ξ∂u

∂C
∂u2

]
(A.13)

Now expanding with nξ = 2 and nu = 1 and replacing ξ and u with the

proper variable names:

∇xxC1 =


∂2C1

∂z2
∂2C1

∂z∂ż
∂2C1

∂z∂FPTO

∂2C1

∂z∂ż
∂2C1

∂ż2
∂2C1

∂ż∂FPTO

∂2C1

∂z∂FPTO

∂2C1

∂ż∂FPTO

∂2C1

∂F 2
PTO

 (A.14)

We now find the entries of this matrix that are obviously zero since they do

not appear in the continuous form of the constraints:

∇xxC1 =

0 0 0

0 0 ∂2C1

∂ż∂FPTO

0 ∂2C1

∂ż∂FPTO
0

 (A.15)

Finally, we can determine the entries. The second partial derivatives will be
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-1 on the block diagonal and 0 elsewhere. Therefore, we can write:

∇xxC1 =

0 0 0

0 0 −I

0 −I 0

 (A.16)

where I an identity matrix of size (nt + 1) × (nt + 1). In conclusion, the

quadratic power constraint can be expressed as:

1

2
xT∇xxC1x ≤ 0 (A.17)

which is consistent with the QCQP formulation. As stated in Sec. 3.3.2,

modern NLP algorithms typically only use the constraint Jacobian:

∇xC1 =
[
∂C1

∂z
∂C1

∂ż
∂C1

∂FPTO

]
(A.18a)

=
[
0 ∂C1

∂ż
∂C1

∂FPTO

]
(A.18b)

with the nonzero entries defined as:

∂C1[tk]

∂ż[tk]
= −FPTO[tk] (A.19a)

∂C1[tk]

∂FPTO[tk]
= −ż[tk] (A.19b)

A.4 Creating Sparse Matrices in Matlabr

There are a number of ways to construct the sparse matrices defined in the

previous sections. First, let us review some of the useful Matlabr functions:

sparse — S = sparse(i,j,s,m,n,nzmax) uses vectors i, j, and s to

generate an m×n sparse matrix such that S(i(k),j(k))= s(k), with space

allocated for nzmax nonzeros.1

spalloc — S = spalloc(m,n,nzmax) creates an all zero sparse matrix S

of size m×n with room to hold nzmax nonzeros. spalloc(m,n,nzmax) is

shorthand for sparse([],[],[],m,n,nzmax).2

1http://www.mathworks.com/help/matlab/ref/sparse.html
2http://www.mathworks.com/help/matlab/ref/spalloc.html
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spdiags — A = spdiags(B,d,m,n) creates an m×n sparse matrix by tak-

ing the columns of B and placing them along the diagonals specified by d.3

spy — spy(S) plots the sparsity pattern of any matrix S.4

Three different methods for constructing the sparse matrices will be dis-

cussed: index method, row method, and diagonal method. Each method is

ideal for the specific matrix the needs to be constructed.

Index method — This method is the most intuitive to implement. Indexing

loops are used to assign single elements in the matrix. This method is the

least efficient but is suitable for matrices that only need to be calculated

once. In Section A.1, the Hessian is constant. Also, Eqn. (A.5c) specifies

coefficients based on the index value. Therefore, the index method is well

suited to calculate this Hessian. Matlabr code for calculating the Hessian

described in Eqns. (A.4) and (A.5) is shown in Fig. A.1. The sparsity pattern

for H with nt = 7 is shown in Fig. A.2. Note the diagonal matrices created

by the composite trapezoidal rule.

Row method — This approach defines many entries (typically an entire row)

in the sparse matrix with a single index call. Sparse row vectors of variable

size are used to place the elements into their correct locations at each index

call. This is ideal for sparse matrices that contain similar rows. The linear

defect constraints created by the trapezoidal rule fit this description. Since

more elements are placed in a single index call, it is more efficient than the

index method but has increased complexity. Matlabr code for calculating

the linear constraints described in Eqns. (A.8), (A.9), and (A.10) is shown in

Fig. A.3. The sparsity pattern of A with nt = 7 is shown in Fig. A.4. Note

the zigzag diagonal pattern created by the trapezoidal rule.

Diagonal method — If the sparse matrix has only diagonal elements, then

the spdiags function can be efficiently used to create the matrix. Path

constraints and the Hessian are of this form. The Hessian however requires

some additional calculation to create the input vector that defines the diag-

onal entries of the matrix. Path constraints, on the other hand, depend on

the easily extracted discretized state and control vectors. Matlabr code for

calculating the constraint Jacobian for the power path constraint described

3http://www.mathworks.com/help/matlab/ref/spdiags.html
4http://www.mathworks.com/help/matlab/ref/spy.html
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1 function H = Hessian(p)

2 % parameters

3 R = p.Rpen; h = p.h; nt = p.nt;

4 % full length

5 N = nt+1;

6 % initialize Hessian

7 H = spalloc (3*N,3*N,3*N);

8

9 % dudu

10 H(2*N+1,2*N+1) = 1/2*R*h;

11 for i = 2:nt

12 H(2*N+i,2*N+i) = R*h;

13 end

14 H(3*N,3*N) = 1/2*R*h;

15

16 % dudv

17 H(N+1,2*N+1) = -1/2*h;

18 for i = 2:nt

19 H(N+i,i+2*N) = -h;

20 end

21 H(2*N,3*N) = -1/2*h;

22

23 % dvdu

24 H(2*N+1,N+1) = -1/2*h;

25 for i = 2:nt

26 H(i+2*N,N+i) = -h;

27 end

28 H(3*N,2*N) = -1/2*h;

29 end

Figure A.1 Matlabr code for Hessian calculation using the index
method.

in Eqns. (A.18) and (A.19) is shown in Fig. A.5. The sparsity pattern for H

with nt = 7 is shown in Fig. A.6. Note the block diagonal matrices created

by the discretized path constraint.
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Figure A.2 Hessian sparsity pattern for WEC design problem using
trapezoidal quadrature (red indicates nonzero element).
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1 function [A,B] = LinearConstraints(p)

2 % parameters

3 nt = p.nt; ns = p.ns;

4 % full length

5 N = nt+1;

6 % initialize equality constraint matrix A and vector B

7 A = spalloc (2*N+1,3*N,6*N*3);

8 B = spalloc (2*N+1,1,(ns -1)*N+1);

9

10 % periodic constraint: states

11 A(1:ns ,:) = [ [1;0] spalloc(ns ,N-2,0) [ -1;0] ...

12 [0;1] spalloc(ns,N-2,0) [0;-1] spalloc(ns ,N,0)];

13 B(1:ns ,1) = [0;0];

14

15 % periodic constraint: control

16 A(ns+1,:) = [spalloc (1,2*N,0) 1 spalloc(1,N-2,0) -1];

17 B(ns+1,1) = 0;

18

19 % defect constraints: state 1, position

20 for i = 1:(N-1)

21 A(i+ns+1,:) = [spalloc(1,i-1,0) -1 1 spalloc(1,N-2,0) ...

22 -p.h/2 -p.h/2 spalloc (1,2*N-i-1,0)];

23 end

24

25 % defect constraints: state 2, velocity

26 for i = 1:(N-1)

27 A(i+ns+N,:) = [...

28 spalloc(1,i-1,0)...

29 (p.h*p.k)/(2* p.m)... % z(k)

30 (p.h*p.k)/(2* p.m)... % z(k+1)

31 spalloc(1,N-2,0)...

32 ((p.h*p.b)/(2* p.m) -1)... % v(k)

33 ((p.h*p.b)/(2* p.m)+1)... % v(k+1)

34 spalloc(1,N-i-1,0)...

35 spalloc(1,i-1,0)...

36 p.h /(2* p.m)... % u(k)

37 p.h /(2* p.m)... % u(k+1)

38 spalloc(1,N-i-1,0)];

39 B(i+ns+N,:) = p.h /(2* p.m)*(p.Fe(i) + p.Fe(i+1));

40 end

41 end

Figure A.3 Matlabr code for linear constraint calculation using the row
method.
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Figure A.4 Linear constraint matrix A sparsity pattern for WEC design
problem using the trapezoidal rule (red indicates nonzero element).

1 function J = JacobianNonlinear(x,p)

2 % full length

3 N = p.nt + 1;

4 % nonlinear constraint: power

5 J = [spalloc(N,N,N)...

6 spdiags(-x(2*N+1:3*N),0,N,N)...

7 spdiags(-x(N+1:2*N),0,N,N)];

8 end

Figure A.5 Matlabr code for constraint Jacobian calculation using the
diagonal method.
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Figure A.6 Nonlinear constraint Jacobian sparsity pattern for WEC
design problem (red indicates nonzero element).
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Appendix B

Additional Figures
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Figure B.1 The effect of Rpen on the phase space of the objective function
for Case 2 (note that the Rpen values are in the northeast corners, grey
shading indicates infeasible regions).
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ż
(m

/s
)

FPTO (kN)
−300 −150 0 150 300

−5

0

5

FPTO (kN)
−300 −150 0 150 300

1.0e-03 4.3e-05

1.7e-06 6.6e-08

2.6e-09 1.0e-10

Figure B.2 The effect of Rpen on the phase space of the objective function
for Case 4 (note that the Rpen values are in the northeast corners, grey
shading indicates infeasible regions).
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Figure B.3 Position trajectories for various values of the regular wave
period with both unconstrained and constrained heave amplitude.
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errata

# Location Reads Correction

1 p. 15, Eqn. (2.6) eAtξ0 +
∫ tf
t0

eA(t−t0)ξ0 +
∫ t

t0

2 p. 18, Eqn. (2.7) ξn+1(t0) = 0 ξn+1(t0) = t0

3 p. 21, Eqn. (2.14) eA(xp)tξ0 +
∫ tf
t0

eA(xp)(t−t0)ξ0 +
∫ t

t0

4 p. 30, Figure 2.4 d) DT global collocation 1

5 p. 40, Eqn. (3.18) ξ[tk−1] + k3
2 ξ[tk−1] + hkk3

6 p. 41, Eqn. (3.20) ≈ 1

2

nt−1∑
k=0

≈
nt−1∑
k=0

7 p. 69, Eqn. (4.43) ξ(tf ) − ξ(0) ≤ 0 ξ(tf ) − ξ(0) = 0

8 p. 110, Eqn. (A.10) (A.10a) twice (A.10a)–(A.10g)

1 This illustration should have defect constraints for the derivative of the

polynomial approximation rather than the polynomial itself. This is one of

the main differences between time-marching (integration) direct transcription

methods and pseudospectral (differentiation) direct transcription methods.
2 Each stage of the formula has derivative functions with increments on

ξ[tk−1]. All of these increments should have hkk instead of k (if present).

The fourth-order Runge-Kutta equations have different but equivalent def-

initions in different texts. The previous set of equations was a misprint of

two common representations.

A number of minor typographical errors have also been corrected.
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