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An alternative approach to the teaching of rotational dynamics
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An alternative approach to the stability of torque-free rotations and to top nutation that
emphasizes conservation laws and physical reasoning is examined. It is felt that such an approach,
which is largely free of sophisticated mathematics, would be useful in teaching these topics in

rotational motion at the introductory physics level.

L INTRODUCTION

At the noncalculus physics and freshman engineering
physics levels, the subject of the dynamics of tops either is
not treated at all, or only a derivation of the steady-state
slow precessional frequency is given.' It is not until the
Jjunior-senior physics major course or mechanical engi-
neering major course in advanced mechanics that topics
such as rotational stability and the nutation of tops are
analyzed. Since children observe the motion of toy tops and
watch the rotation of blocks thrown in the air, at a relative-
ly early age they can develop an amazement and curiosity
as to why spinning objects behave in the strange ways that
they do. In light of this, it is regrettable that the discussion
of these curious rotational motions is delayed so long in the
scientific education of the college student.

When such topics are eventually treated in advanced me-
chanics textbooks, they are usually examined in terms of
the solutions of the Euler equations, the set of nonlinear
coupled differential equations that describe rotational mo-
tion. The mathematical analysis of these equations explains
in great detail how the unusual motion of tops comes about.
But at the end of going through the mathematics, I remain
secretly uncomfortable, feeling that I still have not come
any closer to understanding physically why the top moves
as it does.

This article is an attempt to answer the question physi-
cally of why rotating objects behave as they do in two easily
observable situations. These are the stability of torque-free
rotations and top nutation. The analyses require no differ-
ential equations or calculus, Rather, physical reasoning is
emphasized and the only mathematics used is algebra and
trigonometry. It is hoped that this approach can put the
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analysis of advanced but interesting rotational problems
within the scope of a noncalculus-based physics course.

II. THE STABILITY OF TORQUE-FREE
ROTATIONS

We consider a parallelepiped block whose symmetry
axes passing through the center of mass are labeled 1, 2,
and 3 as in Fig. 1. The moments of inertia about these axes
are I, I, and I,, respectively, and are assumed to be un-
equal. When the block is spun about one of these axes and is

" thrown in the air, it is observed that rotations about the

largest and smallest moment of inertia symmetry axis are
stable but that rotations about the intermediate moment of
inertia symmetry axis are unstable.> We wish to under-
stand why this stability or instability occurs.

When the block is spinning in the air, gravity acts
through its center of mass and produces zero torque as
measured by observers whose origins are at the center of
mass. As a result, such observers see the angular momen-
tum vector as being conserved. Since there are no dissipa-
tive forces, rotational kinetic energy is conserved as well.
We consider two observers who describe the rotational mo-
tion of the block. The first observer A is an inertial observer
who keeps track of the block’s spatial orientation. The x, y,
and z axes of a coordinate system parallel to A’s coordinate”
axes and passing through the center of mass of the block are
shown in Fig. 1. The 3-symmetry axis of the block has the
direction indicated by the spherical coordinate system an-
gles @ and ¢. Once the 3-symmetry axis points in this direc-
tion, the orientation of the cross-sectional plane of the
block containing the 1- and 2-symmetry axes is given by the
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Fig. 1. A block with the symmetry axes, 1, 2, and 3 and the x, , and z axes
of an inertial observer. The 3-axis makes an angle # with the zaxis and its
projection in the xp plane makes an angle ¢ with the x axis.

angle ¢ . The second observer P keeps track of the block’s
spinning. P rides along on the block with his rectangular
coordinate system axes nailed on top of the block’s symme-
try axes. He describes the spinning of the block in terms of
the rotational velocities @, , w,, and @, about the symmetry
axes.

The initial conditions of the block’s motion consist of
specifying both its initial orientation and its initial spin.
The block is taken to be initially spinning with the angular
velocity @, (0) about the 3-symmetry axis, which is orient-
ed along the z direction of observer A as in Fig. 2. There-
fore, observer A sees the angular momentum vector as be-
ing ' ;

L = Lw,(0) 1, (n
and the rotational kinetic energy as being -
KE = {5, (0). - (2)

We call this the [ = 0°, @,(0) ] configuration of the block.
There is another configuration of the block, which pos-
sesses exactly the same angular momentum vector and the

|/ w,(0)

il P
|~

/
X

Fig. 2. The initial conditions of the block. It spins with the angular veloc-
ity @, (0) about the 3-axis, which is in the z direction.
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Fig. 3. An equivalent configuration of the block that has the same angular
momentum vector and rotational kinetic energy. Its orientation and its
spinning about the 3-axis have been reversed.

same rotational kinetic energy. This is when the block's
orientation is reversed and its spinning with respect to the
3-symmetry axis is reversed as in Fig. 3. We call this the
[6 = 180", — w,(0)] configuration. Since both configura-
tions are totally equivalent, when the block is spun and
thrown in the air, are the initial conditions enough to speci-
fy which one of them will be dominant in the resulting
motion?

This question is answered in terms of the orientation
paths available to the block. A path is analogous to the
frames of a movie that starts with the block in the [ = 0°,
@,(0) ] configuration and shows it turning until it is finally
in the [@ = 180°, — @,(0)] configuration. If a path be-
tween these two configurations can be found that conserves
the angular momentum vector and the rotational kinetic
energy at every step along the way, then the initial condi-
tions are not enough to specify which of the equivalent
configurations dominates the motion. Rather, the block
traverses the path of orientations back and forth, oscillat-
ing between the two. This represents an unstable rotation.
On the other hand, if there is no path between the two that
conserves the angular momentum vector and the rotational
kinetic energy at every step along the way, the initial condi-
tions are compatible with only one of the configurations.
The turning of the block to the other configuration is for-
bidden. This represents a stable rotation.

There are many paths between the two configurations
for which the angular momentum vector is conserved. If
the block is at some moment in the (6, 4, ¢) orientation
and its spinning is given by

w, = — (I;/I,)w,(0)sin 8 cos ¢,

w, = (I;/I;)w,(0)sin @ sin 1, (3)

@y = @;(0)cos 8,

then the angular momentum vector seen by observer A is
given by Eq. (1). However, it is difficult to make any of
these paths conserve the rotational kinetic energy

KE = 1,0} + Wso} + Mo} 4

at every step along the way as well. At the point on the path
specified by Eq. (3), conservation of the rotational kinetic
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Fig. 4. The initial spinning of the block approximately about the zaxis. F,
is the centrifugal force acting on the usymmetric mass concentrations.

energy requires that Eq. (3) substituted into Eq. (4) must
be equal to the initial kinetic energy of Eq. (2). When this is
done, the & dependence cancels out and one is left with

sin® ¢ = L1, — ) /(1 - I). (5)

The condition that O<sin® <1 further requires that either
1> 1> I,0orly> I, > I Thus only when 7, is the interme-
diate moment of inertia can one find a path of orientations
between the two equivalent configurations that conserves
both energy and angular momentum. When 7, is the inter-
mediate moment of inertia, what gives the block the initial
push to start it along the path between the two equivalent
configurations? The answer is found in the fact that when
one throws the block in the air, it is difficult to release it so
that it spins exactly about the 3-axis.” It is more likely that
the released block will end up spinning approximately
about the 3-axis as shown in Fig. 4. Since the block is slight-
ly asymmetric in its initial spinning, the extra concentra-
tions of mass with respect to the spin axis in the upper right
and lower left of Fig. 4 will be pulled perpendicular to the
spin axis by centrifugal force. This force is denoted by F., in
Fig. 4 and it causes an additional rotation of the block
about the 1-axis. The combination of the rotation of the
block about the spin axis and the rotation about the 1-axis
produced by centrifugal force starts the block moving
along the path of allowed orientations oscillating between
the two equivalent configurations.

III. TOP NUTATION

We consider a symmetric top with the base point fixed
and whose center of mass is a distance 4 from the base
point. The moments of inertia with respect to the 1-, 2-, and
3-axes of Fig. Sare /, =1, = 1,, and /,. The top is spun
with the speed @, (0) about the 3-symmetry axis. If the top
is given a small tangential push as it is released, it is ob-
served that it does not fall due to gravity. Instead, it pre-
cesses uniformly, If the top is released without the small
tangential push, it is observed that for a short time its cen-
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Fig. 5. The initial conditions of the tap. It spins with the angular velocity
@, (0) about the 3-axis, which is in the xp plane of an inertial observer.
The base support §'is fixed und the tangential direction Tis the direction
of precession.

ter of mass does fall due to gravity. But then the center of
mass reaches a low point and the top bounces back up-
wards as if it were bouncing off of something that we can-
not see. This vertical bouncing of the center of mass is
called nutation. We wish to understand why the nutation
bouncing occurs and what the top seems to be bouncing off.

Initially the top is oriented with its 3-symmetry axis in
the xy plane of observer A whose origin is now at the base of

the top as in Fig. 5. Gravity again acts through the top’s

center of mass and produces a torque in the xy plane per-
pendicular to the 3-axis. This perpendicular or tangential
direction T is shown in Fig. 5. Since the gravitational
torque points in the T direction, the angular momentum in
that direction changes and gives rise to the precession of the
top.' The reaction forces at S produce no torque on the top
with respect to the coordinate system whose origin is at S.
Thus the gravitational torque is the only torque in the prob-
lem and the portion of the angular momentum vector per-
pendicular to T'is conserved. In this example, this perpen-
dicular portion is the plane containing the z axis and the

3-symmetry axis. These conserved components of the an-

Fig. 6. The fullen configuration of the tap. The 3-axis is an angle & below
the xy plane und the top precesses in the tangential direction T with the
angular velocity wy.
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Fig. 7. The angular momenta of spinning and precession when the topisin

the fallen configuration. Conservation of angular momentum requires
that L, =0.

13w, (0)

gular momentum are then
LJ = I_),w_‘ (0) ’
L, =0,

as seen by observer A. Since gravity initially causes the
top’s center of mass to fall, a path of orientations between
the initial configuration of Fig. 5 and the fallen configura-
tion of Fig. 6 must exist, which conserves L,, L,, and ener-
gy at every step along the way. It should be noted in Fig. 6
that as a matter of convenience the angle  is now taken to
be the angle of the 3-symmetry axis below the xy plane.

Again, it is easy to find a path that conserves L_. In Fig.
6, in order to balance the downward component of the an-
gular momentum due to spinning, /;@,(0)sin &, the top
must precess in the tangential direction with the angular
speed @, generating an upward angular momentum,
I,w,. This is shown in Fig. 7. Conservation of L. then
requires that

w, = (I,/1,;),(0)sin 6. (N

In order to conserve L, as well, the top must increase
slightly its spinning speed. However, this increase is pro-
portional to sin’ @, which is small and can be ignored since
we assume that @ remains near 0°. If w,, is the angular veloc-
ity of the falling of the top in the direction of increasing &,
then the initial energy is

E =i (0) (8)
and the energy in the fallen configuration is
E = L} (0) + U, 0} + U,,0; — mgh sin 6. 9

Simultaneous conservation of energy and L, for the path
requires that

.0} = mgh sin @ — }(I3/1;)@} (0)sin® 6. (10)

Equations (9) and (10) have two interesting physical
interpretations. The first one deals with why falling motion
of the top ceases. As the top falls, its potential energy is
converted into kinetic energy. The kinetic energy is of two
- types; the kinetic energy of falling, {/,,@}, and the kinetic
energy of precession, 1/,,@}. The decrease in potential en-
ergy goes as sin @ but the increase in precessional kinetic
energy goes as sin” € in order to conserve L,. For small 6,
sin® @ increases much slower than sin @ and so the differ-
ence between the potential energy loss and the precessional
kinetic energy gain goes into the kinetic energy of falling.
However, for somewhat larger 8, sin? @ increases faster

(6)
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than sin @, the precessional kinetic energy claims all the
gravitational potential energy that is released, and nothing
is left over for the kinetic energy of falling.™* As a result,
when

sin @ = 2mghl /w5 (0), (1

the lowest point in the falling is reached. Below this angle,
the kinetic energy of the falling motion cannot obtain any
of the potential energy loss in order that the falling contin-
ue.
The second interpretation of Egs. (9) and (10) deals
with why the top bounces upward when the low point of
Eq. (11) is reached. For small angles 6, the behavior of the
top in the @ direction is as if it were subject to the potential
energy’

U= --mghsin @ + (13w} (0)/1;)6° (12)

This potential energy may be interpreted as arising from
the torque due to gravity and the torque produced by an
effective torsional spring whose stiffness constant is

and which always tries to restore the orientation of the top
to its initial conditon of @ = 0°. In a number of situations in
mechanics, it is useful to speak of fictitious forces or pseu-
doforces such as centrifugal force or the Coriolis force. An
inertial observer does not consider these entities as true
forces. Rather, he considers them to be part of the accelera-
tion of the object. However, to a noninertial observer riding
along with the object, these entities feel like forces and are
compensated for by various passive forces such as tension
or reaction forces. The tendency of the top to try to main-
tain its initial conditions can be interpreted as another ficti-
tious force. To an inertial observer, 1K@ is really the
precessicnal kinetic energy. But, to a noninertial observer
riding along with the precession and watching only the fall-
ing motion of the top, it would appear that the top uses the
spring pseudotorque to attempt to recover its initial orien-
tation when gravity has pulled the 3-axis lower than & = 0°.
The faster the top is spinning, the larger K becomes, and the
larger the pseudotorque of initial conditions maintenance
becomes.® This explains the rebound of the top from its low
point. The effective spring torque is pulling the top up try-

Fig. 8. The force of gravity and the reaction forces R, and Ry provided by
the suppor: when the top is in the fallen configuration,
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ing to recover its initial orientation just as a mass hung
vertically from a spring and released is pulled back up from
its low point by the force of the extended spring.

As mentioned earlier, the effects of pseudoforces are ob-
served in the reaction forces necessary to balance them.
This compensation also occurs for the springlike pseudo-
torque of Eq. (12). Figure 8 shows the top in its fallen
orientation and indicates the reaction forces R, and Ry,
perpendicular and parallel to the 3-symmetry axis, pro-
vided by the base support. If @, is the angular acceleration
of the falling motion, then the motion of the center of mass
is given by

mha, =mgcos & — R, (14)

However, gravity and the effective torsional spring exert

the torques
T=1I,a, = mghcos 0 — [Iiw3;(0)/1,,]6. (15)

Combining Eqgs. (14) and (15), we obtain

L2 il cos & +m—h(—-1]w1(0) 8).
1 1
(16)

The first two terms of Eq. (16) correspond to the value that
the reaction force would have if the top were not spinning
and were merely falling over. R, would balance a compo-
nent of gravity except for the fact that the reaction is re-
duced by the downward acceleration of the falling top. The
last term in Eq. (16) describes the increase in R dueto the

R, =mgcos & —

12 12
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support having to balance also the pressure exerted on it by
the restoring pseudotorque when the top has been per-
turbed from its initial configuration. The effective lever
arm of the increased reaction force is /,,/mh.

IV. CONCLUSION

Again, it should be emphasized that in each of these two
situations no mathematics beyond trigonometry and the
definition of spherical coordinates was employed. The
analyses instead were based on physical intuition and the
requirements of conservation laws. It is hoped that with
such a point of view, many topics in advanced mechanics
that deal with easily observable phenomena may be intro-
duced to physics students before they reach the junior-
senior-level course in advanced mechanics. If this were the
case, the advanced course could then focus on supplying
the mathematical framework for phenomena that the stu-
dents were already familiar with from a physical point of
view.
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