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addressed, each of these instructional objectives requires
&n intensive effort over an extended period of time. Not all
concepts, of course, can be treated in an introductory phys-

ics course in the detail outlined in-this paper. However, the
kinematical conce of sufficient imiportance to war-
rant speci ention. In addition to providing a basis for

udy of dyriamics, the concepts of velocity and accel-
eration are often used to introduce various instantaneous
rates, not only in physics but in other disciplines.

reasonable to assume that m the better prepared stu-
i i our study would also have bene-
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Rigid-body dynamics of a football
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The motion of a spinning football provides interesting illustrations of some
rigid-body motion. The familiar “wobbly spiral” is an example of torque-
shown that the “wobble-to-spin” ratio depends only on the principal moments of inertia of the
football. The angular momentum of a spinning football is not always conserved in flight. The

response of a football to aerodynamic forces can best be understood by comparing its motion to
that of a spinning top or gyroscope.

of the principles of
free precession; it is

difficulties for students and teachers alike. The concepts of
rigid-body motion are often difficult to explain qualitative-
ly and are not easily related to familiar, every-day phenom-
ena. Consider, for example, the torque-free precession of a

The subject of rigid-body motion, as taught in the tradi-
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rotating body, which is typically presented as a solution of
Euler’s equations of motion. The standard illustration of
this effect is the Chandler wobble of the Earth'—yet in
the ensuing discussion, one learns that the predicted period
of the Earth’s free precession differs rather substantially
from the observed value!

One attractive way to illustrate torque-free precession
(as well as other concepts of rigid-body motion) is to ex-
amine the flight of a football—a motion that is very famil-
iar to most North American students. (I am referring, of
course, to the American football rather than the European
version, which, being spherical, does not have interesting
rigid-body dynamics.) A properly thrown forward pass
must be “spiraled”—that is, the football must be given a
substantial spin about its long axis. In fact, the familiar
*“wobbly spiral”—a poorly thrown pass in which the nose
of the football circles about a line passing through its center
of mass—is a fine example of torque-free precession.” As
we shall see, the application of the methods of rigid-body
dynamics to the motion of a football reveals the cause of the
wobbly spiral pass (a useful bit of information for the week-
end quarterback ) and also yields an unexpected but readily
verifiable prediction about the rate of precession. More-
over, an interesting analogy can be drawn between the mo-
tion of a spinning top and the response of a spiraling foot-
ball to aerodynamic drag.

II. THEORY OF TORQUE-FREE PRECESSION

The theory of torque-free precession may be found in
any of the standard classical mechanics texts. In the ab-
sence of external torques, Euler’s equations become

Lo, + . —1,)o,w, =0,
Lo, + U, - 1I,)o.w, =0,
Lo, + (I, —1,)w,0, =0,

(1)

where I, 1,, and I, are the principal moments of inertia

with respect to the axes of symmetry, and w,, @,, and w,
are the components of the angular velocity w of the body
with respect to its own axes.

Let us assume that the z axis coincides with the long axis
of the football (the xyz axes represent the “body” coordi-
nate system, whose origin is fixed to the center of mass of
the football). To a good aproximation, a football is a cylin-
drically symmetric rigid body. If we ignore the small per-
turbing effects of the laces and inflation valve, it is readily
apparent that /, = I, =1, and I, > I,. Under these con-
ditions, the most general solution of Euler’s equations may
be expressed as follows:

w, = Csin(t + 8),
o, = Ccos({l + 6),
W, = Wy = constant,

(2)

where
N= [, -1)/I],]e,

and C and § are constants of integration. They may be
evaluated from the initial conditions: if @, =@, and
w,=w, at t=0, then C= (0l +ok)"* and
d =tan™'(@,,/w,, ). It follows immediately that e must
have a constant magnitude. Given the time dependence of
@, and @, must precess about the x axis with an angular
frequency (). Moreover, the direction of precession is oppo-
site to the spin direction—that is, if w, is aligned with the
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SPCCC cone

Fig. 1. Precession of @ in an inertial reference frame. In this represents
tion, L is fixed in space and o precesses about L. As it does so, the body
cone (whose axis is fixed to the long axis of the football) rolls on the space
cone. Thus the body axis precesses about L in the same direction as it is
spinning.

positive z axis (corresponding to a counterclockwise spin),
« will be seen to be turning clockwise.

An attempt at this point to compare the motion de-
scribed above with the motion of a football may cause some
confusion. Careful observation of the precessional motion
of a real wobbly spiral reveals that the direction of the
precession is the same as the spin direction. As seen by the
receiver of the pass, the spin and precession are both coun-
terclockwise if the football has been thrown by a righthand-
er, or both clockwise if the passer is left-handed.

This apparent contradiction between theory and obser-
vation arises because Euler’s equations describe the phe-
nomena as seen in a coordinate system fixed to the body.
This is the precessional motion as it would be seen by, let us
say, a small bug who is firmly attached to the football (this
is, in fact, the point of view taken in the explanation of the
Chandler wobble of the Earth). To represent the wobbly
spiral as it is seen on the field, we must view the motion
from an inertial reference frame. It should be noted, there-
fore, that {2 does not correspond to the precession frequen-
cy of the waobble.

If there are no external torques acting on the football,
then its angular momentum L must be constant with a
fixed direction in inertial space, and w will precess about L
at a fixed angle. In the traditional representation, w traces
out the “space cone” as it precesses around L and the
“body cone"’ as it precesses around the body axis (L,w, and
the body axis always lie in the same plane). Thus the body
cone (whose axis coincides with the long axis of the foot-
ball) rolls without slipping on the outside of the space cone

(Fig. 1). It is easy to see that if @ is turning in a clockwise
sense with respect to the body axis, the body axis is turning
in a counterclockwise sense about L. Thus as seen in an
inertial reference frame, the spin and the precession of the
football are in the same direction, in agreement with obser-
vations.

The frequency of the precession can be obtained by usin;
the Eulerian angle transformations. We define the x'y’z
axes as the space axes, with the angular momentum vecto
aligned with the z’ axis. The xyz axes represent the bod
axes, with the z axis coinciding with the long axis of th
football. In terms of the standard Eulerian angles, 8 is th
angle betwean the long axis of the football and its angula
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momentum vector. The rate of precession of the z axis
about the 2’ axis is measured by @, the rate of change of the
first Eulerian angle. Thus ¢ represents the observed prece-
sion frequency @, of the wobbly spiral.

The evaluation of ¢ proceeds as follows: in terms of the
Eulerian angles, L has the following components relative to
the body (xyz) axes:

L, =1, o, =L sin&sin ¢,

L,=I,,,cuy=L sinfcos, (3)

L.=Lo,=Lcosé.

The components w, @y, relative to the body axes are

related to the rates of change of the Eulerian angles (the
angular velocities 8,4, and ¢) by the following equations®:

@, = ¢ sin @ sin ¥ + 6 cos ¢,
w, = @ sin @ cos ¢ — @ sin ¥, (4)
©, = cos @ + ¢

By combining these equations, we arrive at the following
simple equation for the precession frequency w,,:

wp=¢ =L/I,. (3)
From Egs. (2), (3), and (5) we obtain
2 2 2 172
@p=f0,o[(1') +M] . (6)
Ty 2

We can also obtain an expression for the angle & between
the long axis and the direction of L:

2 2 2 - 1/2 .
cos @ = i' - [1+(Ii) ia_’-“’_"'_“’ﬂ;)] i -AH)

2
z Wy i

III. THE DYNAMICS OF THE WOBBLY SPIRAL

We have identified the wobble of a poorly thrown for-
ward pass as a torque-frée precession of the football whose
frequency and amplitude are given by Egs. (6) and (7).
But is the flight of a football truly torque-free? The motion
ofa football in flight is affected by gravity and aerodynamic
forces. While gravity cannot produce a torque on an unsup-
ported football, aerodynamic forces can and do produce
torques. The magnitude and direction of these torques de-
pend upon how the aerodynamic forces are distributed
over the surfacc of the football. At the very least, we would
expect air resistance to slow the rate of spin of the ball.
However, if the ball is traveling a short distance at a rela-
tively slow speed and the long axis is not too steeply in-
clined to its trajectory, the torques due to aerodynamic
forces will have a negligible effect on the trajectory and spin
of the football. In these circumstances, the angular mo-
mentum vector maintains a constant magnitude and direc-
tion in space. The precessional motion is thereby torque-
free and independent of the trajectory of the football. In
Sec. V we shall consider what happens when the motion is
not torque-free.

What, then, causes the football to wobble in flight? Ex-
amining the equations of torque-free precession, we see
that there is no precession if w,, = @,o = 0. With these ini-
tial conditions, _ = 0 and ®, =0 for all +. From Eq. (7)
we find that cos 6 = 1; consequently both L and e are
aligned with the long axis of the football. This corresponds
to the so-called “bullet pass” that is the hallmark of a good
quarterback. A precession will arise if the ball is given even
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a small rotational motion about a second axis. Thus the
wobble is a consequence of the rotational motion imparted
when the ball is launched.

To throw a perfect (nonwobbling) spiral, the ball must
be launched with a spin about its long axis only. In terms of
throwing technique, the wrist must remain locked as the
ball spins off the fingers; any slight rotation of the wrist at
the moment of release will give the football some angular
velocity about a transverse axis. A typical wobbly spiral is
released with a substantial spin about its long axis and a
very small spin about one or both of its transverse axes.
That is, w4 >, and @,. To a good approximation, Eq.
(6) reduces to

@,/ =1/1,. (8)

That is, the “wobble-to-spin ratio”—the ratio of the rate
of precession to the rate of spin about the long axis—is a
fixed quantity that depends only on the principal moments
of inertia.

A. Principal moments of inertia of a football

MNumerical values for 7, and I, for a football can be
obtained by calculation or by direct measurement, and it is
of interest to see how closely the results compare. The prin-
cipal moments of inertia can be calculated if we make the
reasonable approximation that a football is an ellipsoid of
revolution about its long axis (i.e., a prolate spheroid). For
a solid, homogeneous ellipsoid of mass density p, the prin-
cipal moments are

I, =87 pab*/15,
I, =4mpab?(a®+ b?)/15, (9)

where @ and b are the radii measured along the major and
minor axes, respectively. For a hollow ellipsoid of shell
thickness ¢, the principal moments may be computed by
evaluating I =1I(a +t, b +t) — I(a, b). If the ellipsoid is
thin-walled (i.e., a,b>¢) then the principal moments of
inertia are, to first order in ¢,

I, =87 pbt(4a + b)/15,
I, =4mpbt [(a+b) +a(a® +b?)]/15. (10)

Consequently the ratio of the two principal moments of a
thin-shelled, hollow ellipsoid is

< 21 4R) , R=2.  (n

I, (14+R)’+R(1+R?) b

An offiical American football is 11-11 1 in. long and
6.73--6.85 in. in diameter. These dimensions vield average
values of a = 14.1 cm, b= 8.6 cm. Thus R = 1.64 and
I./I,, =0.618.

To obtain absolute values of I, and 1,,, we must estimate
the density p of the football shell. Since the shell thickness
is relatively small, p = m/St, where m and S are the mass
and surface area of the football. An official football weighs
14.5 ounces, equivalent to 0.411 kg. The surface area of an
ellipsoid of revolution is given by the equation

S=2mb(be+asin~'e)/le, e=(a®—b?)"/q. (12)

Thus the substitution pf = m/S can be made in Eqgs.
(10), and values for /, and 1., can be calculated. The re-
sults are

I, = 0.00212 kg m?,
I, =0.00343 kg m>
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The principal moments can be measured directly by su-
spending the football on a torsional pendulum and measur-
ing its period of oscillation. With an apparatus that he pre-
viously used to determine the moments of inertia of tennis
rackets,® Brody has measured /I, and I, for a standard
professional football. He obtained the following values’:

I, =0.00194 kgm?
I,, =0.00321 kgm?,
I/1,, = 0.604.

The calculated values are high, but within 10% of the mea-
sured values. This difference may be attributed in part to
the fact that a football has a more tapered shape (and
pointier ends) than an ellipsoid. Nevertheless, the calculat-
ed and measured ratios differ by only 2%. Considering the
assumptions made in the calculations, the agreement is sur-
prisingly good.

B. The *“wobble-to-spin” ratio

According to Eq. (8), the wobble-to-spin ratio of a foot-
ball is determined only by the size and shape of the football,
provided that the amplitude of the wobble is not too large.
Substituting numerical values for J, and I,,, we obtain
w,/w,=0.6. That is, to a good approximation, rhere
should be three wobbles to every five spins, independent of
the rate of spin, linear speed, or trajectory of the football.
[According to Eqgs. (6) and (7), if v, exceeds w, or @0
by a factor of five or more, then 0.6 <w,/w, <0.63, and
0" < @ < 18°.] The demonstration of this phenomenon does
not require a passer, receiver, and a football field; it can be
done in a classroom simply by tossing a football lightly in a
vertical direction. With a little ingenuity, it is not too diffi-
cult to set up a procedure to measure the wobble-to-spin
ratio. (I have been able to verify the 3:5 ratio for a few
forward passes that were videotaped in slow motion re-
plays.) However one chooses to demonstrate this effect,
the example of the wobbly spiral provides a very instructive
and off-beat illustration of the phenomenon of torque-free
precession.

|
1IV. THE “END-OVER-END” KICK

As a corollary to the discussion of torque-free motion, it
should be noted that precession can occur only if the foot-
ball is given an initial spin about its long axis. Because of
the cylindrical symmetry (I, = I, ), the solution of Euler’s
equations when @_, = 0 is simply

W =Wy, @, =0, o, =0

Thus both @ and L are constant; i.e., the football will not
precess. This solution is illustrated by making the football
spin “end-over-end” about a transverse axis. During a
game this motion is normally seen on a kickoff. Here the
football is kicked off a tee, and the kicker deliberately aims
his foot at a point below the center of mass so as to set the
football spinning about a transverse axis. Unless the foot-
ball is affected by strong torques, its flight will be especially
stable; its spin axis will maintain a constant direction in
space without any precessional motion.
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V. THE FOOTBALL AS GYROSCOPE: RESPONSE
TO AERODYNAMIC FORCES

If there are no torques acting on a football during its
flight, then its angular momentum vector should maintain
a constant direction with respect to the ground. However,
careful observation of football passes and kicks reveals that
L does not always maintain a constant direction over the
entire trajectory. In general, the motion of a spinning foot-
ball will fall into one of three categories (see Fig. 2):

Type I: The angular momentum vector of the football
maintains a fixed orientation over the entire trajectory.

Type II: The angular momentum vector maintains a
fixed orientation until shortly after passing the peak of the
trajectory; then the ball suddenly turns over and descends
nose down, often wobbling strongly.

Type I1I: The angular momentum vector pivots continu-
ously, remaining tangent to the trajectory throughout the
flight.

For all three types, the football may also be wobbling as
it travels. Thus a football sometimes exhibits both torque-
free precession and gyroscopic precession (i.e., a preces-
sion caused by external torques) in flight. Since these two
effects have different causes and occur independently, let
us assume for simplicity that the ball is launched without a
wobble, so that the angular momentum vector coincides
with the long axis.

In general, the type of trajectory followed by the football
depends upon such factors as the launching speed and an-
gle, the rate of spin, and the orientation of the long axis of
the football with respect to its trajectory. The aerodynamic
force that acts on the football arises from the uneven distri-
bution of air pressure over the surface of the ball. This
pressure distribution can be resolved into a single resultant
force that acts at a point known as the center of pressure.
The magnitude of this force will depend on the air speed of
the football (more specifically, on the square of the speed)
as well as on the orientation of the long axis of the football
to the airflow. In fact, for the same speed, the aerodynamic

Fig. 2. Classification of football trajectories. The angular momentum vec
tor maintains a constant direction on a type I trajectory, but not on type Ii
or type I1L.
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Fig. 3. Comparison of torques on a spinning top and a football. The line of
action of the aerodynamic torque £, intersects the long axis of the football
adistance D from the center of the football, producing a torque £, D sin #
about the center.

traveling broadside (long axis perpendicular to its trajec-
tory) than when it is traveling “nose first”"—i.e., with its
long axis parallel to its trajectory.?

In the most general case, the line of action of the aerody-
namic force will intersect the long axis at a distance D from
the center of mass. Thus the aerodynamic force produces a
torque N = F, D sin § about the center of mass, where @ is
the angle between the line of action of F 4+ and the long axis
(see Fig. 3). However, the magnitude and direction of F,
and the location of the center of pressure (and hence the
value of D) both vary over the course of flight in response
to changes in the air speed and orientation of the football.
For certain orientations the line of action of F, will pass
through the center of mass, resulting in no aerodynamic
torque. This will oceur, for example, when the football is
traveling in the nose-first orientation.

When a football is launched without spin, it tends to
tumble slowly in flight, indicating that a small aerodynam-
ic torque is acting. A spinning football, on the other hand,
becomes a gyroscope and tends to undergo precession rath-
erthan tumbling. Indeed, as Fig. 3 shows, the aerodynamic
torque on a football about its center takes the same math-
ematical form as the torque due to gravity ona spinning top
about its point of support. Consequently, the classical anal-
ysie of the spinning top can be used to give some insight into
the motion of the spiraling football.

The theory of the symmetrical top is too lengthy to re-
produce here; it can be found in any classical mechanics
textbook. Accordingly, we will simply summarize the re-
sults that are relevant to this discussion:

(1) The motion of a top depends upon the stability factor

kr=1I2w?/4MgLI,, (13)

where /. and I, are the moments of inertia about the long
axis and transverse axis, respectively, and w, is the spin
rate.

(2) If a spinning top is set at an angle 6, to the vertical
nd then released, it will undergo stable preczssion, pro-
vided that k,.>1. In general, the axis of the top will also
exhibit nutation; that is, the angle @ will oscillate between
two values €, and 6, as the top precesses. During nutation
the precession is not steady, but the average precession fre-
quency is

é=MgL /Lo, (14)
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force will be about 10 times greater when the football is

(3) If a top is launched with its axis vertical and with
k1> 1, the top will not precess and its axis will remain verti-
cal (this is referred to asa “sleeping” top). Moreover, if the
axis of the top is disturbed slightly, it will move back to-
ward the vertical.

The spiraling football is analogous, but not identical, toa
spinning top. From the football's point of view, the “verti-
cal” is the direction of the aerodynamic force F +»as shown
in Fig. 3. The analogous stability factor for a spiraling foot-
ball is

ke =1Iw;/4F,DI,, (15)
and the average precession rate is
b=F,D/lLo,. (16)

These equations predict that if the football is spinning
rapidly and the aerodynamic torque is relatively small,
then k. will be large and @ small, indicating that the preces-
sion of the football should be stable but slow. Here, how-
ever, the identity with the simple top ends, because F, and
D are not constant. Thus the gyroscopic motion of the foot-
ball is considerably more complicated than that of a spin-
ning top, and an analytic solution is beyond reach. Never-
theless, we can still draw upon the analogy between the two
to arrive at some qualitative conclusions.

On a type I trajectory, the axis of the football maintains a
constant direction in space. Typically, these trajectories are
characterized by fairly low launching speeds and relatively
short times of flight. In this case the aerodynamic torque is
rather small, so the period of precession will be long com-
pared to the flight time. Thus there is no perceptible preces-
sion of the spin axis; this is essentially torque-free flight.

The type II trajectory is typical of punts. They are gener-
ally launched at fairly steep angles (50° to 60° to the hori-
zontal) with the nose of the ball tipped upwards relative to
its trajectory. The flight times are typically about 4 to 5 s.
The football appears to maintain a constant inclination
past the peak of its trajectory, whereupon it suddenly
“turns over” and undergoes precession. We can under-
stand this behavior in the following way: as the ball rises on
its steep trajectory it loses speed rapidly, so the aerodynam-
ic torque is relatively small on the ascent. By the descend-
ing part of the trajectory, the angle & has grown rather
large; the football is now almost broadside to the air flow
and is gaining speed as it falls. This creates a sudden in-
crease in the aerodynamic torque and initiates a precession
of the football about its trajectory.

The type III trajectory represents the “perfect spiral” in
which the long axis is always aligned with its trajectory.
The football exhibits a remarkable self-correcting motion:
there is a continuous change in the direction of the angular
momentum vector so as to maintain a nose-first orientation
over the entire trajectory. Whether the football is thrown
or kicked for long or short distances, on a flat or a steep
trajectory, the key feature is that the football is launched
with its long axis parallel to its trajectory. Thus the line of
action of F, passes through the center of the ball and there
is no aerodynamic torque.

In this configuration, the football is similar to a sleeping
top. The curvature of the trajectory shifts the line of action
away from the center to create a small torque. This is equiv-
alent to a small disturbance in which the top is tipped
slightly from the vertical. Just as the top responds by re-
turning to the vertical, the football responds by turning its
spin axis into the direction of its trajectory, thereby reduc-
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ing the aerodynamic torque to zero. The only requirement
is that k. > 1; since the football experiences its minimum
aerodynamic force in this orientation, k. should be rather
large if the ball is thrown with a lot of spin.

VI. EPILOGUE

A substantial fraction of physicists and physics students
are football fans. The presentation of the subject of rigid
body dynamics can be enlivened considerably by using the
motion of a football to illustrate key principles and applica-
tions of the theory. Students can be encouraged to test these
out first-hand by throwing a football around or while
watching football games on television. Last but not least,
the identification of a football as a sometime gyroscope
definitely adds a new dimension to one’s enjoyment of the
game. The enlightened observer will come to look at for-
ward passes, kickoffs, and punts with a whole new perspec-
tive.
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