“These are fascinating stories of insight and discovery, told with a keen
sense of drama and fxcitement. . . . Almost every paragraph

contains a jolt.”—The New York Times
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"Feigenbaum was working on a problem that was deep: chaos"
"Where chaos begins, classical science stops"

"The new science has spawned its own language, «n elegant shop talk of fractals and
bifurcations, intermittencies and periodicities, folded-towel diffeomorphisms and smooth noodle
maps."

"Believers in chaos...feel that they are turning back a trend in science toward reductionism, the
analysis of systems in terms of their constituent parts...they are looking for the whole."

"Relativity eliminated the Newtonian illusion of absolute space and time; quantum theory
eliminated the Newtonian dream of a controllable measurement process; and chaos eliminates the
Laplacian fantasy of deterministic predictability."

"in a universe ruled by entropy, drawing inexorably toward greater and greater disorder, how
does order arise? At the same time, objects of everyday experience like fluids and mechanical
systems...seem so basic and ordinary that physicists had i natural tendency to assume they were
well understood. It was not so."

"The modern study of chaos began with the’creeping reulization in the 1960s that quite simple
mathematical equations could model systems every bit as violent as a waterfall. Tiny differences
in input could quickly become overwhelming differences in output — a phenomenon given the
name "sensitive dependence of initial conditions. In weather [this is known as]...the Butterfly
Effect — the notion that a butterfly stirring the air today :n Peking can transform storm systems
next month in New York."

quote from Richard P. Feynman: "Physicists like to think that all you have to do is say, these are
the conditions, now what happens next?"

"Laplace...caught the Newtonian fever like no one else: ...'Such an intelligence would embrace in
the same formula the movements of the greatest bodies ¢ f the universe and those of the lightest
atom,; for it, nothing would be uncertain and the future, as the past, would be present to its eyes.'
In these days of Einstein's relativity and Heisenberg's uncertainty, Laplace seems almost
buffoon-like in his optimism, but much of modern science has pursued his dream."”

typical Laplace statement conjured by Alciatore: "Give me the present speed and velocity of
every particle in the universe and I will predict the future”

"Given an approximate knowledge of a system's initial conditions and an understanding of
natural law, one can calculate the approximate behavior of the system...'The basic idea of
Western science is that you don't have to take into account the falling of a leaf on some planet in
another galaxy when you're trying to account for the motion of a billiard ball on a pool table on
earth. Very small influences can be neglected."



Edward Lorenz (MIT, winter, 1961) "decided that long-range weather forecasting must be
doomed...."any physical system that behaved nonpericdically would be unpredictable.'...The
Butterfly Effect was the reason. For small pieces of weather — and to a global forecaster, small
can mean thunderstorms and blizzards — any predic:ion deteriorates rapidly. Errors and
uncertainties multiply, cascading upward through a chai1 of turbulent features, from dust devils
and squalls up to continent-size eddies that only satellites can see."”
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HOw TWO WEATHER PATTERNS DIVERGE. From nearly the same starting
point, Edward Lorenz saw his computer weather pioduce patterns that
grew farther and farther apart until all resemblance disappeared. (From
Lorenz’s 1961 printouts.} .
"sensitive dependence on initial conditions[:]...a chain of events can have a point of crisis that
could magnify small changes. But chaos meant that such points were everywhere"
example in folklore:
'For want of a nail, the shoe was lost;
For want of a shoe, the horse was lost?
For want of a horse , the rider was lost;
For want of a rider , the battle was lost;
For want of a battle , the kingdom was lost!'
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“The world would be a different place — and science would not need chaos — if only the Navier-
Stokes equation did not contain the demon of nonlinearity.."

Adolph E. Brotman

A RoOLLING FLUID. When a liquid or gas is hected from below, the fluid
tends to organize itself into cylindrical rolls (l:ft). Hot fluid rises on one
side, loses heat, and descends on the other side—the process of convec-
tion. When the heat is turned up further (right) an instability sets in, and
the rolls develop a wobble that moves back ani forth along the length of
the cylinders. At even higher temperatures, the flow becomes wild and
turbulent.
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Adolph E. Brotman

THE LORENZIAN WATERWHEEL. The first, famous chaoti : system discovered
by Edward Lorenz corresponds exactly to a mechani :al device: a water-
wheel. This simple device proves capable of surprisingly complicated
behavior.

The rotation of the waterwheel shares some of the properties of the
rotating cylinders of fluid in the process of convecticn. The waterwheel
is like a slice through the cylinder. Both systems ar: driven steadily—
by water or by heat—and both dissipate energy. The luid loses heat; the
buckets lose water. In both systems, the long-term be havior depends on
how hard the driving energy is.

Water pours in from the top at a steady rate. If tie flow of water in
the waterwheel is slow, the top bucket fiever fills up e nough to overcome
friction, and the wheel never starts turning. (Similar y, in a fluid, if the
heat is too low to overcome viscosity, it will not set tlie fluid in motion.)

If the flow is faster, the weight of the top bucke! sets the wheel in
motion (left). The waterwheel can settle into a rotation that continues at
a steady rate (center).

But if the flow is faster still (right), the spin can become chaotic,
because of nonlinear effects built into the system. As huckets pass under
the flowing water, how much they fill depends on tte speed of spin. If
the wheel is spinning rapidly, the buckets have lit/le time to fill up.
(Similarly, fluid in a fast-turning convection roll has little time to absorb
heat.) Also, if the wheel is spinning rapidly, buckels can start up the
other side before they have time to empty. As a result, heavy buckets on
the side moving upward can cause the spin to slo~w down and then
reverse,

In fact, Lorenz discovered, over long periods, th2 spin can reverse
itself many times, never settling down to a steady rate and never repeating
itself in any predictable pattern.



"Student [learn]...that nonlinear systems were usually unsolvable, which was true, and that they
tended to be exceptions — which was not true" :

-

"Traditionally, a dynamicist would believe that to write down a system's equations is to
understand the system...But because of the little bits of nonlinearity in these equations, a
dynamicist would find himself helpless to answer the easiest practical questions about the future
of the system...simulation brings its own problem: the tiny imprecision built into each calculation
rapidly takes over, because this is a system with sensitive dependence on initial conditions.
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Irving R. Epstein

H
MAKING PORTRAITS IN PHASE SPACE. Traditional tiine series (above) and
trajectories in phase space (below) are two ways o’ displaying the same
data and gaining a picture of a system’s long-tern behavior. The first
system (left) converges on a steady state—a point in phase space. The
" second repeats itself periodically, forming a cyclical orbit. The third re-
peats itself in a more complex waltz rhythm, a cycli with “period three.”
The fourth is chaotic.



Example of bifurcation instability: x__, =rx(1-x)
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PERIOD TWO PERIORrFOUR CHAOS

PERIOD-DOUBLINGS AND CHAOS. Instead of using inc.ividual diagrams to
show the behavior of populations with different degre es of fertility, Robert
May and other scientists used a “bifurcation diagrim” to assemble all
the information into a single picture.

Richard F. Voss

THE KocH s1i0WFLAKE. “A rough but vigorous model of a coastline,” in
Mandelbrot". words. To construct a Koch curve, begin with a triangle
with sides aof length 1. At the middle of each side, add a new triangle
one-third the size; and so on. The length of the boundary is 3 x 4/3 x
4/3 x 4/3.. —infinity. Yet the area remains less than the area of a circle
drawn aroun the original triangle. Thus an infinitely long line surrounds

A FRACTAL SHORE. A computer-generated coastline: the details are ran- a finite area,
dom, but the fractal dimension is constant, so the degree of roughness or
irregularity looks the same no matter how much the image is magnified.
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