PROBLEMS

- B.1. Using the defining integral of the Laplace transform, (B-1), derive the Laplace tansform of
 - (a) f(t) = u(t 25)
 - **(b)** $f(t) = e^{-4t}$
 - (c) f(t) = t
 - (d) Verify the results in (b) and (c) with MATLAB.
- **B.2.** Use the Laplace transform tables to find the transforms of each function.
 - (a) $f(t) = -3te^{-t}$
 - **(b)** $f(t) = -5 \cos t$
 - (c) $f(t) = t \sin 3t$
 - (d) $f(t) = 7e^{-0.5t} \cos 3t$
 - (e) $f(t) = 5 \cos(4t + 30^{\circ})$
 - **(f)** $f(t) = 6e^{-2t} \sin(t 45^{\circ})$
 - (g) Verify all the results with MATLAB.
- **B.3.** Find the inverse Laplace transform of each.
 - (a) $F(s) = \frac{5}{s(s+1)(s+2)}$
 - **(b)** $F(s) = \frac{1}{s^2(s+1)}$
 - (c) $F(s) = \frac{2s+1}{s^2+2s+10}$
 - (d) $F(s) = \frac{s 30}{s(s^2 + 4s + 29)}$
 - (e) Verify all the results with MATLAB.
- B.4. Given the Laplace transform

$$F(s) = \frac{s+5}{s^2+4s+13}$$

- (a) Express the inverse transform as the sum of two complex exponentials.
- **(b)** Using Euler's identity, manipulate the result of (a) into the form $f(t) = Be^{-at}\sin(bt + \Phi)$.
- (c) Use the procedure of Section B.1 to express the inverse transform $as f(t) = Ae^{-at}\cos(bt + \Phi)$.
- (d) Verify all the results with MATLAB.

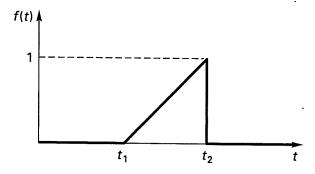


FIGURE PB.5

B.5. (a) Find and plot f(t) if its Laplace transform is given by

$$F(s) = \frac{e^{-t_1 s} - e^{-t_2 s}}{s} \qquad t_2 > t_1$$

- (b) The time function in part (a) is a rectangular pulse. Find the Laplace transform of the triangular pulse shown in Figure PB.5.
- **B.6.** Given that $f(t) = 4e^{-2(t-3)}$
 - (a) Find $\mathfrak{L}[df(t)/dt]$ by differentiating f(t) and then using the Laplace transform tables.
 - **(b)** Find $\mathcal{L}[df(t)/dt]$ using the theorem for differentiation.
 - (c) Repeat (a) and (b), for the case that $f(t) = 4e^{-2(t-3)}u(t-3)$.
- B.7. Find the Laplace transforms of
 - (a) $f_1(t) = 5e^{-2(t-1)}$
 - **(b)** $f_2(t) = 5e^{-2(t-1)}u(t-1)$
 - (c) Sketch the two time functions.
 - (d) Why are the two transforms different?
- **B.8.** For the functions of Problem B.3,
 - (a) Which inverse Laplace transforms do not have final values; that is, for which of the inverse transforms do the $\lim_{t\to\infty} f(t)$ exist?
 - (b) Find the final values for those functions that have final values.
- **B.9.** Given the differential equation

$$\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + 4x = 10u(t)$$

- (a) Find x(t) for the case that the initial conditions are zero.
- **(b)** Find x(t) for the case that x(0) = 1 and $\dot{x}(0) = 1$. Show that your solution yields the correct initial conditions, that is, solve for x(0) and $\dot{x}(0)$ using your solution.
- (c) Verify all the results with MATLAB.
- **B.10.** Given the differential equation

$$\frac{d^2x}{dt^2} + 2\frac{dx}{dt} + x = 5 \qquad t \ge 0$$

- (a) Find x(t) for the case that the initial conditions are zero.
- **(b)** Find x(t) for the case that x(0) = 0 and $\dot{x}(0) = 2$. Show that your solution yields the correct initial conditions; that is, solve for x(0) and $\dot{x}(0)$ using your solution.
- (c) Verify all the results with MATLAB.
- **B.11.** For each of the systems, find the system differential equation if G(s) = C(s)/R(s) is given by

(a)
$$G(s) = \frac{60}{s^2 + 10s + 60}$$

(b)
$$G(s) = \frac{3s + 20}{s^2 + 4s^2 + 8s + 20}$$

(c)
$$G(s) = \frac{s+1}{s^2}$$

(c)
$$G(s) = \frac{s+1}{s^2}$$

(d) $G(s) = \frac{7e^{-0.2s}}{s^2 + 5s + 32}$

B.12. Give the characteristic equations for the systems of Problem B.11.