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� Motivations and Objective
• Control co-design (CCD) refers to the integrated consideration of the physical and

control system design through optimization
• Deterministic CCD has been studied in the literature1

• However, since some of the elements of CCD problem are uncertain,methods from
uncertain CCD (UCCD) are needed

• Implementation challenges, implicit assumptions, and in-depth discussion of the
structure of UCCD problems, method-dependent considerations, and practical
insights are currently missing from the literature

• This study fills some of these gaps by using a simple strained-actuated solar array
(SASA)2 to

• Introduce two optimal, open-loop control structures under uncertainties
• Implement and solve a stochastic in expectation UCCD (SE-UCCD) using Monte Carlo

simulation (MCS) and generalized Polynomial Chaos (gPC) expansion
• Implement and solve a worst-case robust UCCD (WCR-UCCD) using bounded

representation of uncertainties

1 Herber and Allison 2019; Allison and Herber 2014 2 Herber and Allison 2017; Chilan et al. 2017
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� A Universal UCCD Formulation
A universal UCCD formulation defined in probability space (specialized forms can be de-
rived though the appropriate selection of the objective function and constraints1):

• •̃ is a time-independent uncertain variable
• •̃(t) is a stochastic process
• •̄(·) is a function composition of •(·), e.g.,

- ō(·) is a function of the original objective
function o(·)

- ḡ(·) is a function of the original inequality
constraint vector g(·)

A Universal UCCD Formulation

minimize:
ũ,ξ̃,p̃

E
[
ō(t, ũ, ξ̃, p̃, d̃)

]
subject to: E

[
ḡ(t, ũ, ξ̃, p̃, d̃)

]
≤ 0

h(t, ũ, ξ̃, p̃, d̃) = 0
˙̃
ξ(t)− f(t, ũ, ξ̃, p̃, d̃) = 0

where: ũ(t) = ũ, ξ̃(t) = ξ̃, d̃(t) = d̃
•̃ ∈ Vu, •̃(t) ∈ Tu(t)

1 Azad and Herber 2022
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� Open-Loop Optimal Control Structures

• Open-loop single control
(OLSC) finds a single control
command that meets some
criteria and is closely related to
concepts from robust control
theory.

• Open-loop multiple control
(OLMC) elicits a range of
optimal control responses
based on the realization of
uncertainties

Open-loop optimal control structures
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� Uncertainty Propagation Methods

• A generalized Polynomial Chaos (gPC) expansion was used for uncertainty
propagation and benchmarked against Monte Carlo simulation results

• In gPC expansion, elements in an arbitrary random vector x̃ must have mutual
independence 1

• The univariate gPC basis functions of degree up to ri are denoted as {ϕk(x̃i)}ri
k=0, and

satisfy the orthogonality conditions
• The set of univariate orthogonal basis functions are obtained based on the probability

distribution of x̃ 2

• A tensor product of elements in {ϕk(x̃i)}ri
k=0 is used to construct the nx-variate gPC

basis functions Φm(x̃)

1 Loeve 1978; Rosenblatt 1952 2 Xiu 2010
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� Generalized Polynomial Chaos
• The resulting polynomials span the space of{

Φm(x̃)
}M−1

m=0
= ⊗

|k|≤PC

{ nx∏
i=1

ϕk(x̃i)

}
• PC is either the highest polynomial order in each direction, or alternatively, is the total

degree of a subset of basis elements
• Any second-order variable or process ỹ(t, x̃) can be expressed by polynomial chaos

of PC degree as:

ỹ(t, x̃) ≈ yPC(t, x̃) =
M−1∑
m=0

ŷm(t)Φm(x̃)

• The unknown coefficients ŷi(t) are estimated through a Galerkin projection 1 or a
collocation formulation 2

1 Xiu 2010; Wang et al. 2019 2 Cottrill 2012
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� Generalized Polynomial Chaos

The unknown coefficients are
obtained from through a
quadrature rule (and thus
collocation points) from

ŷm(t) = E [y(t, x)Φj(x̃)]

=

∫
Γ

y(t, x)Φj(x)dFx̃(x)

≈
Q∑

j=1

y(t, xj)Φm(xj)αwj

Steps involved in gPC

7



4

Simple SASA UCCD
Formulations



Introduction UCCD Implementation Uncertainty Propagation Methods Simple SASA UCCD Formulations Results and Discussion Conclusion References

� Deterministic Simple SASA CCD
• Simplified strain-actuated solar array

(SASA) system for spacecraft pointing
control and jitter reduction 1

minimize:
u,ξ,k

− ξ1(tf )

subject to: u − umax ≤ 0
umin − u ≤ 0[
ξ̇1

ξ̇2

]
=

[
0 1
− k

J 0

] [
ξ1
ξ2

]
+

[
0
1
J

]
u

ξ(t0) =
[

0
0

]
, ξ2(tf ) = 0

where: u(t) = u, ξ(t) = ξ

Original and Simplified SASA system

• Plant: stiffness of the solar array k
• Control: strain actuation u(t)
• State: relative displacement & velocity

ξ(t)
• Problem data: inertia ratio J

1 Herber and Allison 2017
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� Stochastic in Expectation UCCD (SE-UCCD)

• Uncertainties are

k̃ ∼ N (µk, σk)

J̃ ∼ N (µJ, σJ)

ξ̃2,t0 ∼ N (µξ2,t0
, σξ2,t0

)

• ks is the constraint shift index
• Dynamics are satisfied a.s. or

almost surely
• Terminal b.c. applied only when

using a OLMC structure
• Risk-neutral formulation

SE-UCCD

minimize:
u,ξ̃,µk

− E[ξ̃1(tf )]

subject to: u − umax ≤ 0
umin − u ≤ 0
ksσk − µk ≤ 0[
˙̃
ξ1
˙̃
ξ2

]
=

[
0 1
− k̃

J̃
0

] [
ξ̃1

ξ̃2

]
+

[
0
1
J̃

]
u (a.s.)

ξ̃(t0) =
[

0
N (µξ2,t0

, σξ2,t0
)

]
ξ̃2(tf ) = 0 (if OLMC)

where: k̃ = N (µk, σk), J̃ = N (µJ, σJ)

u(t) = u, ξ̃(t) = ξ̃
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� Worst-Case Robust UCCD (WCR-UCCD)
A risk-averse formulation described in epigraph form with bounded uncertainties

WCR-UCCD
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� Results

• A nested coordination strategy used for
OLMC-SE-UCCD

• Inner-loop optimal control subproblem
solved using direct transcription (DT)

• All DT implementations done in
MATLAB-based DTQP toolbox 1

• A direct single shooting (DSS) used for
the outer-loop WCR-UCCD

• Implementations available on Github 2

Table: Settings for UCCD implementations.
Category Option Value

General

defects trapezoidal (TR)
mesh equidistant

quadrature composite TR
outer-loop solver fmincon
solver tolerance 10−6

SE-UCCD

inner-loop solver quadprog
derivatives symbolic

nt 100
Nmcs 10, 000

Q 103

ri 8
M 93

WCR-UCCD
inner-loop solver fmincon

derivatives forward
nt 100

1 Herber 2017 2 Azad 2022
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� Results

Table: UCCD solutions.
Formulation Structure õ µk t(s) tswitch

CCD OLSC −0.301 3.441 3 0.727
Stc-MCS OLMC −0.308 3.311 5717 0.737
Stc-gPC OLMC −0.306 3.185 562 0.742
|∆| - 0.65% 3.81% 90% 0.68%
WcR OLSC 0.204 0.705 2592 0.838

WCR-UCCD Solution

SE-UCCD Solution
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� Results - Polytopic Uncertainties

• A polytope is a bounded, closed, and
convex polyhedron

• For a linear program, the feasible region
is the convex hull of the vertices of the
polytope

• Therefore, the optimal solution is
achieved at a polytope vertex

• The OLMC-WCR-UCCD of simple
SASA has polytopic uncertainties and is
linear with nested formulation

• The number of required evaluations
reduced to vertices of the polytope,
i.e. 23 vertices

OLMC-WCR-UCCD solution with poly-
topic uncertainties
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� Conclusions and Future Work

• Open-loop single control (OLSC) and open-loop multiple control (OLMC) structures
were introduced

• Results indicate that gPC offers promising improvements in the computational time
• Uncertainty considerations impact system and design judgment
• Extension to problems with probabilistic path constraints, especially stochastic

chance-constraints UCCD formulations
• Inclusion of time-dependent disturbances in the dynamic system model
• Various geometries (such as ellipsoidal, hexagonal, etc.) for WCR-UCCD
• Non-probabilistic propagation methods such as interval analysis and methods from

fuzzy programming
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Appendix

� Closed-loop Implementations

Closed-loop investigations

(a) SE-UCCD state (b) SE-UCCD performance (c) WCR-UCCD state. (d) WCR-UCCD objective
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