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� Introduction
• Wave energy is a promising source of renewable energy due to its temporal and

spatial availability, low variability, and high predictability1

• Its technology readiness level (TRL), however, is low compared to wind and solar2

• Thus, more research and investment is required to improve the techno-economic
performance of wave energy converters (WECs)

• Sizing (i.e. plant) and power take-off (PTO) (i.e. control) have been investigated in
the literature through optimization methods3

• WECs must be deployed in a farm to reduce installation, maintenance, & operation
costs 4

• The presence of multiple WECs in close proximity results in a hydrodynamic
interaction effect that can be constructive or destructive

• To ensure constructive effect (maximized power generation), methods from layout
optimization have been used5

1 Ning and Ding 2022 2 Straub 2015 3 McCabe, Murphy, and Haji 2022; Neshat, Sergiienko, et al. 2020; Her-
ber and Allison 2013 4 Abdulkadir and Abdelkhalik 2023 5 Abdulkadir and Abdelkhalik 2023; Neshat, Mirjalili,
et al. 2022; Mercadé Ruiz et al. 2017
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� Motivation

• In this research, we leverage a
system-level framework that
considers control co-design
(i.e. plant and control), and layout
concurrently in an optimization
problem

• This approach has the potential to
improve WEC farm performance since
it accounts for the coupling between
these domains1 WEC design, control, and layout considerations

1 Ringwood, Zhan, and Faedo 2023
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� Challenges

• One challenge is the high computational burden for the accurate estimation of
hydrodynamic coefficients ( which entails the calculation of the excitation force, added
mass and damping coefficient matrices)

• We address this challenge by constructing data-driven surrogate models using
artificial neural networks (ANNs), and hierarchical interaction decomposition using
many-body expansion (MBE)1 principles

1 Zhang, Taflanidis, and Scruggs 2020
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� Dynamics and Control of WECs
• Using linear potential flow theory, and considering regular waves with radial

frequency ω and unit amplitude, the equation of motion for nwec buoys is described as

−ω2Mξ̂(ω) = F̂FK(ω) + F̂s(ω) + F̂r(ω) + F̂hs(ω) + F̂pto(ω)

• Excitation force:
F̂e(ω) = F̂FK(ω) + F̂s(ω)

• Radiation force:
F̂r(ω) = −iωB(ω)ξ̂(ω) + ω2A(ω)ξ̂(ω)

where A is added mass and B is damping coefficient (obtained from Nemoh)
• Linear PTO force:

F̂pto(ω) = −iωBptoξ̂(ω)− Kptoξ̂(ω)

• F̂e, A, and B are dependent on plant and layout
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� Dynamics and Control of WECs (continued)

• Time-averaged absorbed mechanical power for a sea state with significant wave
height of Hs and peak period of Tp

pm(Hs,Tp, ω) =
1
2
ω2ξ̂TBptoξ̂

• The mechanical power matrix is estimated by integrating the product of the wave
spectrum with the time-averaged power over all frequencies1

pi(Hs,Tp, y) =
nw∑

k=0

2∆ωkSJS(Hs,Tp, ωk)pm(Hs,Tp, ωk)

1 Neshat, Mirjalili, et al. 2022; Borgarino, Babarit, and Ferrant 2012
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� Dynamics and Control of WECs (continued)
• Considering the number of years in the study ny, and the associated probability

matrices, the average power is calculated as

pa = ηpccηoaηt

nyr∑
y=1

pi(Hs,Tp, y)pr(Hs,Tp, y)

where ηpcc is power conversion chain efficiency, ηoa is operational availability, and ηt is
transmission efficiency

• The objective function can then be formulated as the average power per unit volume
of the device:

pv =
pa

πR2
wecDwec

where Rwec and Dwec are the radius and draft of the heaving cylinder WEC device,
respectively.
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� Array Considerations

• A total of nwec WEC devices, fully characterized by the 2−by-nwec dimensional layout
matrix

w = [w1,w2, · · · ,wnwec ]

• Each element of w is a vector, composed of wp = [xp, yp]
T

• The relative distance and angle between pth and qth bodies is characterized as lpq

and θpq, respectively
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� Surrogate Models for Hydrodynamic Interactions

• The goal is to efficiently estimate the hydrodynamic interaction effect
• Direct surrogate modeilng of these coefficients is computationally prohibitve
• Many-body expansion (MBE) principles, along with artificial neural networks

(ANN) can be used to ease the computational cost
• In MBE, the total interaction effect among nwec bodies is estimated as the summation

of effects corresponding to a finite number of clusters1

• MBE systematically captures the effects of a single-, two-, three-, and m-body
clusters2

• We use MBE up to second order, i.e. accounting for single- and two-body clusters

1 E. Suarez, Diaz, and D. Suarez 2009 2 E. Suarez, Diaz, and D. Suarez 2009
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� Data Processing
• Extreme and unreasonable design combinations are avoided by only considering

cases where the radius and draft ratio are within an acceptable range
• A safety distance, proportional to the radius of the WEC, is necessary for the reliable

maintenance of WEC devices. This safety distance is also considered when
generating data for the training of ANNs.

• All inputs and outputs (shown below) are appropriately normalized.

F̃e = F̂e/(ρgπR2
wecDwec)

Ã = A/(ρπR2
wecDwec)

B̃ = B/(ωρπR2
wecDwec)

• To reduce the range of QoI, we transformed each solution set to the range of [−1, 1]
through a linear transformation.

• However, this requires additional ANNs need to be developed in order to estimate the
range and offset of these linear transformations.
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� Developing Surrogate Models

• We used Latin hypercube sampling
• The first-order term in MBE only

needs QoI for a single WEC at the
origin, but with a sufficient number
of samples for different WEC radius
and draft

• The second-order term in MBE
needs QoI calculated for two WECs
with various (Rwec), draft (Dwec),
relative distance (lpq), and relative
angle (θpq)

Sampling for 2-WEC layouts
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� First-Order Surrogate Models
• The input to the first-order surrogate model is ṽ1 = [R̃wec, D̃wec, ω̃]

T

• The output is ỹ1 = [ã, b̃,Re{f̃e}, Im{f̃e}]T

(a) Added mass (b) Damping coefficient (c) Excitation force (r) (d) Excitation force (I)

1-WEC surrogate models with Rwec = 8 m and Dwec = 4 m
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� Second-Order Surrogate Models
• The input to the second-order surrogate model is ṽ2 = [R̃wec, D̃wec, l̃pq, θ̃pq, ω̃]

T

• The output is ỹ2 = [ã11, ã12, b̃11, b̃12,Re{f̃e11}, Im{f̃e11}]T

(a) Added mass (b) Damping coefficient (c) Excitation force (r) (d) Excitation force (i)

2-WEC surrogate models Rwec = 8 m, Dwec = 4 m, lpq = 200 m, and θpq = 0.078
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� MBE using Surrogate Models
• Defining the 1WEC surrogate models as [f a

1 , f b
1 , f fr

1 , f fim
1 ]T and the 2-WEC surrogate

model functions as [f a11
2 , f a12

2 , f b11
2 , f b12

2 , f fr
2 , f fim

2 ]T , the interaction effect is estimated as:

∆ã11 = ã11 − ã = f a11
2 (ṽ2)− f a

1 (ṽ1)

∆ã12 = f a12
2 (ṽ2)

∆b̃11 = b̃11 − b̃ = f b11
2 (ṽ2)− f b

1 (ṽ1)

∆b̃12 = f b12
2 (ṽ2)

• For excitation force, the additive effect is captured as:

∆f̃e11 = (f̃e − f̃e11) exp (ikL)

=
(
[f 1

fr(ṽ1) + if 1
fim(ṽ1)]− [f 2

fr(ṽ2) + if 2
fim(ṽ2)]

)
exp (ikL)
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� Wave Climate and Modeling
• Data collected off the coast of the

Hawaiian Islands for 30 years (1976-2005)
was used in this study

• Gaussian quadrature with npq points in
each dimension was used to approximate
the probability for various significant wave
heights Hs and wave periods Tp

• The Gauss quadrature nodes/weights
were used in MATLAB’s ksdensity (kernel
distribution characterized by a smoothing
function and a bandwidth value) to
represent the (non-parametric) joint
probability distribution function

• JONSWAP spectrum was used with the
superposition of nr regular waves

Wave climate and modeling
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� Problem Formulation

• Rwec and Dwec are optimized for the
farm

• w, along with [Kpto,Bpto] are
optimized for each individual device

• sd = (Rwec/5)× 50 m is safe
distance (to allow maintenance
ships to pass)1

• The farm area is restricted to a box
with dimensions of
±0.5 ×

√
20000nwec m in x and y

axes2

minimize:
p,u,w

− pv(p,u,w)

subject to:
2Rwec + sd − Lpq ≤ 0

∀ p, q = 1, 2, . . . , nwec p ̸= q

¯
p ≤ p ≤ p̄

¯
u ≤ u ≤ ū

¯
w ≤ w ≤ w̄

where: p = [Rwec,Dwec]
T ∈ R2

u = [Kpto,Bpto]
T ∈ R2nwec

w = [x, y] ∈ R2(nwec−1)

1 Neshat, Mirjalili, et al. 2022 2 Neshat, Mirjalili, et al. 2022
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� Results

Using MATLAB’s surrogateopt with
300 function evaluations:

+ Practical framework for
system-level WEC farm
investigations

+ Computational tractability
+ Unique Control design
- Accuracy is affected by

• Order of MBE
• Approximation error from

surrogate models
• Limit on function evaluations

in global optimization

Case Study Rwec [m] Dwec [m] Bpto [Ns/m] Kpto [N/m] w [m] pv [MW/m3] Time [s]

3-WEC 8.83 0.54
1.7 × 108 −2.97 × 108 [0, 0]

175.58 971.65 × 108 2.53 × 108 [109,−89.52]
1.1 × 108 −4.21 × 106 [114.07, 115.89]

5-WEC 7.12 0.5

2.64 × 108 1.44 × 108 [0, 0]

566.02 143
1.67 × 108 5.26 × 106 [−138.76,−119.09]
1.67 × 108 2.56 × 108 [−24.07,−154.43]
2.94 × 108 −2.95 × 108 [−41.54, 129.69]
2.72 × 108 2.73 × 108 [−49.97,−70.61]

7-WEC 6.71 0.62

8.86 × 107 −2.95 × 108 [0, 0]

2.21 × 103 219

1.94 × 108 −3.24 × 107 [154,−181.38]
1.16 × 108 1.32 × 108 [−169.51, 73.9]
6.66 × 107 −8.66 × 106 [−171.96, 178.79]
2.84 × 108 2.32 × 108 [185.47, 142.23]
2.67 × 108 1.69 × 108 [187.08,−86.12]
2.67 × 108 4.4 × 107 [−156.86,−124.98]

10-WEC 7.32 0.5

2.24 × 108 −1.73 × 108 [0, 0]

4.12 × 103 379

2.99 × 108 −2.56 × 107 [−100.66, 98.45]
1.29 × 108 −2.83 × 108 [−127.97,−223.61]
6.9 × 107 1.82 × 108 [−145.75, 8.36]

2.41 × 108 −2.08 × 107 [219.94, 18.84]
2.23 × 108 −6.74 × 107 [−198.02, 112.55]
1.89 × 108 2.14 × 107 [206.39, 214.89]
2.68 × 107 1.45 × 108 [204.82,−102.91]
1.81 × 108 −2.27 × 108 [174.45,−218.4]
1.66 × 108 1.49 × 107 [135.33, 109.09]
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� Results (continued)

Optimized array layout with farm area and distant constraints.

18
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� Conclusions and Future Works
• Due to nonlinear and complex dynamics, the sizing, control, and array layout

optimization of wave energy converters (WECs) are coupled disciplines and must be
approached concurrently from the early stages of the design process.

• Using surrogate modeling and MBE principles (up to second order), the wave energy
converter farm problem was solved in a computationally tractable manner.

• Optimized solutions points out to the importance of individual control of each WEC
device.

• Results may improve by using a higher number of terms in MBE, and running the
optimization algorithm for a higher number of function evaluation, and improving
performance of surrogate models.

• Techniques from machine learning, including selective sampling and active learning
can improve the performance of the resulting surrogate models.

• Variations in depth and geographical locations are important to consider in future
work.
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� Wave-Structure Interactions
• In linear potential flow theory, the fluid velocity potential ϕ is divided into potentials

corresponding to incident ϕi, scattered ϕs, and radiated ϕr, such that ϕ = ϕi + ϕs + ϕr
1

• Incident waves represent the propagation of the wave in the absence of any structure
• Scattered waves appear as a result of the interaction of the waves and motionless

structures
• Radiated waves result from the motion of the structure

• The real part of the radiation force is added mass, and the imaginary part is
damping coefficient

• Scattered and radiated waves are very important in WEC farm design because they
propagate in all directions (affecting all nearby devices)

• This leads to strong coupling between plant, PTO control, and farm layout2

• Boundary element method (BEM) software NEMOH is used to generate hydrodynamic
coefficients for the data-driven surrogate model development3

1 Ning and Ding 2022 2 Babarit 2013 3 Babarit and Delhommeau 2015; Kurnia, Ducrozet, and Gilloteaux 2022

25



Introduction Methods Constructing Surrogate Models Formulation & Results Conclusions References Appendix

� Settings

• Array investigations with 3, 5, 7, and
10 WECs are carried out

• MATLAB’s surrogateopt solver with
300 function evaluations is used for
global optimization

Option Value Option Value

¯
Rwec 0.5 m R̄wec 10 m

¯
Dwec 0.5 m D̄wec 10 m

¯
kpto −3 × 108 N/m k̄pto 3 × 108 N/m

¯
Bpto 0 Ns/m B̄pto 3 × 108 Ns/m

¯
x −0.5

√
2nwec × 104 m x̄ 0.5

√
2nwec × 104 m

¯
y −0.5

√
2nwec × 104 m ȳ 0.5

√
2nwec × 104 m

ρ 1025 kg/m3 g 9.81 m/s2

sd 50 × Rwec/5 m nwec [3, 5, 7, 10]
nyr 30 years nr 200
ngq 20 ηpcc 0.8
ηoa 0.95 ηt 0.98
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