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 Introduction
• Control co-design (CCD) refers to the integrated consideration of the physical and

control system design
• With the growing complexity of dynamic systems, the need for effective control

co-design strategies is ever present
• CCD is often studied in a deterministic manner1, i.e., no uncertainties are present
• However, often some of the elements of CCD problem are inherently uncertain or

not entirely known; we refer to these characteristics as uncertainties
• If we overlook the impact of such uncertainties in CCD, the solution may no longer be

effective in realistic scenarios
• Uncertainty in CCD may stem from sources such as plant optimization variables,

uncertain problem data, fidelity of dynamics, noise in the control channel, etc.
• These uncertainties transform CCD problem into an uncertain CCD or UCCD

problem

1 Herber and Allison 2019; Allison and Herber 2014
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 Motivations and Objectives
• Currently, interpretations associated with robust CCD, stochastic CCD, and other

potential formulations are not clearly stated
• Selection of UCCD formulation is not well-informed according to the literature
• Current UCCD literature generally focuses on specific uncertainties and is driven by

particular solution techniques1

• Different formulations, however, offer different risk measures and thus, their formal
representation may inform application-focused UCCD

• This study aims to identify the sources of uncertainties and formalize their
inclusion through a universal UCCD problem formulation

• From this universal UCCD formulation, 6 specialized UCCD formulations can be
derived

1 Azad and Alexander-Ramos 2020b; Azad and Alexander-Ramos 2020a; Nash, Pangborn, and Jain 2021; Cui,
Allison, and Wang 2020; Behtash and Alexander-Ramos 2021

3



Introduction Mathematical Foundations Specialized Formulations Discussion References

 Deterministic CCD
We begin by introducing the nominal continuous-time, deterministic, all-at-once (AAO),
simultaneous, CCD problem1:

• u(t) ∈ Rnu is open-loop control
• ξ(t) ∈ Rns is state
• p ∈ Rnp is time-independent

optimization variables:
- pp plant optimization variables
- pc is control gains

• d ∈ Rnd is problem data

Deterministic CCD

minimize:
u,ξ,p

o =

∫ tf

t0
ℓ(t,u, ξ, p, d) dt + m(p, ξ0, ξf , d)

subject to: g(t,u, ξ, p, ξ0, ξf , d) ≤ 0
h(t,u, ξ, p, ξ0, ξf , d) = 0

ξ̇ − f(t,u, ξ, p, ξ0, ξf , d) = 0
where: ξ(t0) = ξ0, ξ(tf ) = ξf , u(t) = u

ξ(t) = ξ, d(t) = d

1 Allison and Herber 2014; Herber and Allison 2019
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 Representation of Uncertainties

Each element in a UCCD problem
belongs to one of four sets:
• Time-independent deterministic

Vd := {x | x ∈ Vd}

• Time-dependent deterministic
Td(t) := {x(t) | t ∈ [t0, tf ], x(t) ∈ Vd}

• Time-independent uncertain
Vu := {x̃ | x̃ ∈ Vu}

• Time-dependent uncertain
Tu(t) := {x̃(t) | t ∈ [t0, tf ], x̃(t) ∈ Vu}

Deterministic and Uncertain Sets
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 Representation of Uncertainties (continued)
Any uncertain variable belonging to Vu or Tu(t) may be represented in three ways1:

• Stochastic • Deterministic • Possibilistic

Uncertainty Representations

1 Beyer and Sendhoff 2007
6



2

Mathematical Foundations



Introduction Mathematical Foundations Specialized Formulations Discussion References

 A Universal UCCD Formulation
Without any loss of generality, a universal UCCD formulation can be defined in probability
space because specialized forms of this formulation can be derived though the appropri-
ate selection of the objective function and constraints

• •̃ is a time-independent uncertain variable
• •̃(t) is a stochastic process
• •̄(·) is a function composition of •(·), e.g.,

- ō(·) is a function of the original objective
function o(·)

- ḡ(·) is a function of the original inequality
constraint vector g(·)

A Universal UCCD Formulation

minimize:
ũ,ξ̃,p̃

E
[
ō(t, ũ, ξ̃, p̃, d̃)

]
subject to: E

[
ḡ(t, ũ, ξ̃, p̃, d̃)

]
≤ 0

h(t, ũ, ξ̃, p̃, d̃) = 0
˙̃
ξ(t)− f(t, ũ, ξ̃, p̃, d̃) = 0

where: ũ(t) = ũ, ξ̃(t) = ξ̃, d̃(t) = d̃
•̃ ∈ Vu, •̃(t) ∈ Tu(t)
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 Considerations

• Risk1

- Risk neutral
- Risk averse

• Decision space
- UCCD formulations must be

balanced and non-biased
• Objective function2

- No conceptual distinction between
objective and inequality constraints

- Epigraph representation
• Equality constraints 3

- Type I (must be satisfied)
- Type II (Can’t always be satisfied)

• Inequality constraints4

- Worst-case

E [ḡi(·)] = maximize:
ũ,ξ̃,p̃,d̃

gi(t, ũ, ξ̃, p̃, d̃) ≤ 0

- Expected-value

E [ḡi(·)] = gµ,i(t, ũ, ξ̃, p̃, d̃) ≤ 0

- Higher-order moments

E [ḡi(·)] =
√

E[gi(·)2]− gµ,i(·)2 = gi,σ(·) ≤ σa,i

- Probabilistic chance-constrained

E [ḡi(·)] = E
[
IE(t, ũ, ξ̃, p̃, d̃)

]
= P[E]

- Possibilistic chance-constrained

POS[gi(·) ≥ 0] ≤ POSf ,i

1 Rockafellar and Uryasev 2002 2 Rockafellar 2007 3 Mattson and Messac 2003 4 Nash, Pangborn, and Jain
2021; Zhang et al. 2017; Powell 2019; Ruszczyński and Shapiro 2003; Nakka and Chung 2021
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 Considerations (Continued)
Illustrative representation of various objective and constraint descriptions:

Representation of Select Objectives & Constraints
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 Specialized Formulations

Six specialized formulations can
be derived from the universal
UCCD formulation on Slide 7

Specialized Formulations

UCCD

Probabilistic

Probabilistic Ro-
bust (PR-UCCD)

Stochastic Chance-
Constrained (SCC-UCCD)

Stochastic Expec-
tation (SE-UCCD)

Deterministic

Worst-Case (Minimax)
Robust (WCR-UCCD)

Possibilistic

Fuzzy Expectation
(FE-UCCD)

Possibilistic Chance-
Constrained (PCC-UCCD)

Key:

Uncertainty
Representation

Specialized
UCCD For-
mulations
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 Stochastic in Expectation and Stochastic Chance-Constrained
Stochastic in Expectation UCCD 1

minimize:
ũ,ξ̃,p̃

oµ(t, ũ, ξ̃, p̃, d̃)

subject to: gµ(t, ũ, ξ̃, p̃, d̃) ≤ 0

h(t, ũ, ξ̃, p̃, d̃) = 0 (a.s)
˙̃
ξ(t)− f(t, ũ, ξ̃, p̃, d̃) = 0 (a.s)

Stochastic Chance-Constrained UCCD 2

minimize:
ũ,ξ̃,p̃

oµ(t, ũ, ξ̃, p̃, d̃)

subject to: P[gi(t, ũ, ξ̃, p̃, d̃) > 0] ≤ Pf ,i

i = 1, . . . , ng

h(t, ũ, ξ̃, p̃, d̃) = 0 (a.s)
˙̃
ξ(t)− f(t, ũ, ξ̃, p̃, d̃) = 0 (a.s)

Uncertain Probabilistic Constraint

1 Andrieu, Cohen, and Vázquez-Abad 2007 2 Azad and Alexander-Ramos 2020b
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 Probabilistic Robust UCCD
Probabilistic Robust UCCD 1

minimize:
ũ,ξ̃,p̃

αwoµ(t, ũ, ξ̃, p̃, d̃) + (1 − αw)oσ(t, ũ, ξ̃, p̃, d̃)

subject to: gµ(t, ũ, ξ̃, p̃, d̃) + ksgσ(t, ũ, ξ̃, p̃, d̃) ≤ 0

h(t, ũ, ξ̃, p̃, d̃, w̃) = 0 (a.s)
˙̃
ξ(t)− f(t, ũ, ξ̃, p̃, d̃, w̃) = 0 (a.s)

minimize:
ũ,ξ̃,p̃

αwoµ(t, ũ, ξ̃, p̃, d̃) + (1 − αw)oσ(t, ũ, ξ̃, p̃, d̃)

subject to: gµ(t, ũ, ξ̃, p̃, d̃) ≤ 0

gσ(t, ũ, ξ̃, p̃, d̃)− σa ≤ 0

h(t, ũ, ξ̃, p̃, d̃, w̃) = 0 (a.s)
˙̃
ξ(t)− f(t, ũ, ξ̃, p̃, d̃, w̃) = 0 (a.s)

Illustration

1 Nagy and Braatz 2004; Azad and Alexander-Ramos 2021; X. Li et al. 2014 12
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 Worst-Case Robust UCCD

• A solution is robust if it remains feasible
for all realizations of uncertainties
within the uncertainty set

• This resembles a game between the
optimizer and nature (adversarial
opponent)1

• Results in a semi-infinite problem that
can be replaced with the constraint
maximization problem

• Uncertainties belong to their associated
sets 2

Worst-case Robust UCCD

minimize:
û,p̂

v

subject to: Φi(t, û, ξ̃, p̂, d̃) ≤ 0
for i = 1, . . . , ng

ψ(û, p̂) ≤ 0

maximize:
u,ξ,p,d

gi(t,u, ξ, p, d)

subject to: h(t,u, ξ, p, d) = 0

ξ̇(t)− f(t,u, ξ, p, d) = 0
u ∈ Ru(t), p ∈ Rp, d ∈ Rd(t)

1 Bryson and Ho 1975 2 Rahal and Z. Li 2021
13
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 Fuzzy Expected Value and Possibilistic Chance-Constrained

Fuzzy Expected Value UCCD1

minimize:
ũ,ξ̃,p̃

E[o(t, ũ, ξ̃, p̃, d̃)]

subject to: E
[
ḡ(t, ũ, ξ̃, p̃, d̃)

]
≤ 0

h(t, ũ, ξ̃, p̃, d̃) = 0
˙̃
ξ(t)− f(t, ũ, ξ̃, p̃, d̃) = 0

where: ũ(t) = ũ, ξ̃(t) = ξ̃, d̃(t) = d̃

Possibilistic Chance-Constrained2

minimize:
ũ,ξ̃,p̃

E[o(t, ũ, ξ̃, p̃, d̃)]

subject to: POS[gi(t, ũ, ξ̃, p̃, d̃) > 0] ≤ POSf ,i

h(t, ũ, ξ̃, p̃, d̃) = 0
˙̃
ξ(t)− f(t, ũ, ξ̃, p̃, d̃) = 0

where: ũ(t) = ũ, ξ̃(t) = ξ̃, d̃(t) = d̃

1 Zhu 2009; Liu 2002 2 Liu 2002
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 Discussion

• Linking stochastic and robust
- Assuming that the deterministic description of uncertainties is a just representation, the

solution of the WCR-UCCD is equivalent in limit to the solution of SCC-UCCD with an
infinitesimal probability of failure

• Formulations from stochastic control theory
- Classical stochastic control focuses on idealized processes such as wiener and Poisson 1

- Methods from It̂o calculus are often used
• Insights from robust control theory

- Various tools such as gain, phase, and disk margins, H2, H∞, and µ-synthesis have been
developed to address uncertainty-related issues 2

- Regardless of control architecture, uncertainties propagate in the dynamic system

1 Åström 1970; Yong 2020 2 Paraskevopoulos 2017; Seiler, Packard, and Gahinet 2020
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 Discussion (Continued)

A notional infinite-horizon linear quadratic regulator
(LQR) (which is an optimal controller for its
associated cost function) reduces uncertainty in the
system response over time to the reference value,
assuming stability under the uncertainties.

LQR Example
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