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ABSTRACT
This article explores various uncertain control co-design
(UCCD) problem formulations. While previous work offers for-
mulations that are method-dependent and limited to only a hand-
ful of uncertainties (often from one discipline), effective applica-
tion of UCCD to real-world dynamic systems requires a thor-
ough understanding of uncertainties and how their impact can
be captured. Since the first step is defining the UCCD problem
of interest, this article aims at addressing some of the limita-
tions of the current literature by identifying possible sources of
uncertainties in a general UCCD context and then formalizing
ways in which their impact is captured through problem formu-
lation alone (without having to immediately resort to specific so-
lution strategies). We first develop and then discuss a generalized
UCCD formulation that can capture uncertainty representations
presented in this article. Issues such as the treatment of the ob-
jective function, the challenge of the analysis-type equality con-
straints, and various formulations for inequality constraints are
discussed. Then, more specialized problem formulations such as
stochastic in expectation, stochastic chance-constrained, proba-
bilistic robust, worst-case robust, fuzzy expected value, and pos-
sibilistic chance-constrained UCCD formulations are presented.
Key concepts from these formulations, along with insights from
closely-related fields, such as robust and stochastic control the-
ory, are discussed, and future research directions are identified.

Keywords: control co-design; dynamics; uncertainty; stochastic
programming; fuzzy programming; robust optimization

1 INTRODUCTION
With the ever-growing complexity and integrated nature of dy-
namic engineering systems, the need for effective control co-
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design (CCD) strategies, i.e., integrated consideration of the
physical and control system design, is ever present [1, 2]. When
investigating a CCD problem, it is often the case that some of its
elements (e.g., inputs, model parameters, and/or some aspects of
system dynamics) are inherently uncertain or not entirely known.
In this paper, we refer to both of these characteristics as uncer-
tainty. Overlooking the impact of uncertainties in CCD may re-
sult in solutions that are no longer effective in realistic scenarios.

These uncertainties may stem from multiple sources and af-
fect various elements of the CCD activity. For example:
• The noise acting through the control channel transforms the

deterministic control trajectories into stochastic ones
• Plant optimization variables may be uncertain due to imper-

fect manufacturing processes, measurement errors, and mass
production of components
• Uncertain problem data (such as wind speeds, wave energy

densities, earthquake loads, and material properties) may
also affect various elements of the problem
• Fidelity of the dynamic model (i.e., unmodeled or neglected

dynamics) may be another source of uncertainty that often
arises as a trade-off between model simplicity and accuracy

All of these uncertainties may propagate through the dynamic
system and transform the states into uncertain trajectories. Con-
sequently, such uncertainties transform the CCD problem into an
uncertain control co-design (UCCD) problem. Even before at-
tempting to solve such problems, a necessary step is to identify
ways in which the impact of such uncertainties can be mathemat-
ically captured in an optimization formulation context. There-
fore, it is critical to establish and understand various possible
UCCD problem formulations.

This paper aims to identify the sources of uncertainties and
formalize their inclusion in various UCCD formulations. This
contribution is motivated by the fact that, currently, uncertainty
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quantification is reasonably well understood in specific control
and plant design optimization communities [3–7]. However, cur-
rent UCCD studies in the literature generally suffer from the
lack of a holistic view towards uncertainties, focusing on spe-
cific uncertainties, often motivated by a particular solution tech-
nique [8–12]. Therefore, the distinction between various UCCD
problem formulations is rarely discussed.

In this article, we present an initial effort at a generalized
UCCD problem formulation. Various problem elements, includ-
ing the optimization variables, objective function, equality and
inequality constraints, and relevant concepts such as risk, are dis-
cussed. Next, we transition towards specialized formulations that
are motivated by concepts from stochastic programming [13,14],
robust optimization [15–17], and fuzzy programming [18–20].
These formulations provide the necessary framework for the de-
velopment and widespread adoption of UCCD formulations in
order to meet the ever-increasing demands on performance, ro-
bustness, and reliability of real-world dynamic systems. For
more information on the implementations and specific engineer-
ing applications, readers are encouraged to consult the references
provided within the article. Detailed reviews on uncertainty-
based approaches for various engineering applications, such as
aerospace vehicles, distributed energy systems, motion planning,
process scheduling, power systems, building energy assessment,
and wind power forecasting, can be found in Refs. [21–27], re-
spectively.

The remainder of this article is organized as follows: Sec. 2
describes the deterministic CCD problem formulation and var-
ious representations of uncertainty; Sec. 3 provides a mathe-
matical foundation for a general UCCD problem formulation;
Sec. 4 describes some of the specialized UCCD formulations
that are inspired by stochastic, worst-cast robust, and fuzzy
programming frameworks, including stochastic in expectation
UCCD, stochastic chance-constrained UCCD, probabilistic ro-
bust UCCD, worst-case robust UCCD, fuzzy expected value
UCCD, and possibilistic chance-constrained UCCD; and Sec. 5
discusses several more specific topics in the context of UCCD.
Finally, Sec. 6 presents the conclusions.

2 Uncertainty Representations in UCCD

In this section, the deterministic CCD, which is a special case
of UCCD formulation, is introduced. For mathematical clarity,
we define sets associated with both time-dependent and time-
independent deterministic and uncertain variables. This section
also introduces three distinct ways to represent uncertainties in
UCCD context: stochastic, crisp, and possibilistic.

2.1 Deterministic CCD
We begin by introducing the nominal continuous-time, determin-
istic, all-at-once (AAO), simultaneous, CCD problem:

minimize:
u,ξ,p

o =
∫ t f

t0
ℓ(t,u,ξ,p,d)dt+m(p,ξ0,ξ f ,d) (1a)

subject to: g(t,u,ξ,p,ξ0,ξ f ,d) ≤ 0 (1b)
h(t,u,ξ,p,ξ0,ξ f ,d) = 0 (1c)

ξ̇−f (t,u,ξ,p,ξ0,ξ f ,d) = 0 (1d)
where: ξ(t0) = ξ0, ξ(t f ) = ξ f , u(t) = u, ξ(t) = ξ (1e)

d(t) = d
where t ∈ [t0, t f ] is the time horizon, {u,ξ,p} are the collection
of optimization variables including the open-loop control tra-
jectories u(t) ∈ Rnu , state trajectories ξ(t) ∈ Rns , and the vec-
tor of time-independent optimization variables p ∈ Rnp , respec-
tively. Note that p may entail plant optimization variables pp,
and/or time-independent control optimization variables [28, 29]
(i.e., gains pc, such that p = [pp,pc]). The objective function o(·)
is composed of the Lagrange term ℓ(·) and the Mayer term m(·).
The vectors of inequality and equality constraints are described
by g(·) and h(·), respectively. The transition or state deriva-
tive function f (·) describes the evolution of the system through
time in terms of a set of ordinary differential equations (ODEs).
All of the data associated with the problem formulation is repre-
sented through d ∈Rnd . This data, which may be time-dependent
or time-independent, includes information such as problem con-
stants, environmental signals, initial/final times, etc.

In the remainder of this article, we assume that constraints
associated with the initial and final conditions {ξ0,ξ f } are already
included in h(·) or g(·). In addition, we will often drop the ex-
plicit dependence on t from time-dependent quantities such as
control and state trajectories, as well as the problem data. For
more details on deterministic CCD, the readers are referred to
Refs. [2, 30].

2.2 Representation of Uncertainties
The first step in accounting for uncertainties in a UCCD problem
is the representation of input and model uncertainties. In the risk
assessment context, these uncertainties are either aleatory (irre-
ducible) or epistemic (reducible) [31]. Aleatory uncertainty is as-
sociated with the inherent irregularity of the phenomenon, while
epistemic uncertainty is associated with the lack of knowledge.
Accordingly, acquiring more knowledge cannot reduce aleatory
uncertainties, but it can reduce epistemic uncertainties. In fact,
epistemic uncertainty captures the analyst’s confidence in the
model by quantifying their degree of belief in how well the model
represents the reality [32]. As an example, consider the uncer-
tainty in plant optimization variables due to imperfect manufac-
turing processes. Noting that manufacturing processes remain
imperfect even when improved, this uncertainty is intrinsically
aleatory or irreducible. This is because acquiring more knowl-
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edge cannot reduce this uncertainty (no two plants are identical).
However, the uncertainty in the true probability distribution of
plant optimization variables can be reduced by acquiring more
knowledge (observations). Therefore, this is an epistemic-type
uncertainty. Another example of aleatory uncertainty is random-
ness in material properties or flipping a biased coin. However,
our belief in the probabilistic and distributional information of
such a phenomenon is epistemic.

Conventionally, these two types of uncertainty are segre-
gated in a nested algorithm, with aleatory analysis in the inner
loop and epistemic analysis on the outer loop [33]. While this
allows for the simple separation and tracking of each type of un-
certainty, a uniform treatment of aleatory and epistemic uncer-
tainties has been implemented in the literature [34] and assumed
in this article. It is important to note that information scarcity on
epistemic uncertainties may render the output probabilistic in-
formation impractical. Therefore, when complete distributional
information is available, it should be integrated into the UCCD
problem. However, in the case of incomplete and limited infor-
mation, methods associated with epistemic uncertainties, such as
fuzzy programming, are generally preferred.

Elements in a UCCD problem formulation may be deter-
ministic or uncertain. In this article, the notation •̃ is used to dis-
tinguish uncertain quantities from deterministic ones. Stochas-
tic processes are distinguished with a time argument •̃(t). We
note that while a common assumption is the discretization of the
time dimension, nearly all aspects of the continuous definitions
of the uncertainties could be considered for discrete realizations
at particular time instances only (as is often done for realizability
through information availability updates and solution strategies
implementations). For the sake of consistency, all of the formu-
lations in the article are presented in continuous time. In addi-
tion, properties such time-dependence between the various time-
dependent signals, such as cross-correlation, are not assumed.
Such properties might be used to define uncertain quantities and
their relations to aspects of a UCCD problem.

To better distinguish between these quantities in the future
sections, we first define four general types of variables along with
their associated sets. Any arbitrary, time-independent determin-
istic variable x is defined in the setD. As an example,D may be
the set of real numbers R, or natural numbers N, or integers Z,
etc. Figure 1a shows an arbitrary value belonging toD.

The set associated with a time-dependent deterministic vari-
able (i.e., a trajectory) is defined as:

Dt B {x(t) | t ∈ [t0, t f ], x(t) ∈ D} (2)
In other words, at every point in time, the trajectory is defined
within a deterministic set. Figure 1b shows an arbitrary value
belonging toDt.

For an arbitrary uncertain variable x̃, the sampling space
is defined as U. As an example, U may be a set of time-
independent uncertain variables with a Gaussian distribution, as

(a) Time-independent deterministic. (b) Time-dependent deterministic.

(c) Time-independent uncertain. (d) Time-dependent uncertain.

FIGURE 1: Illustration of sets associated with time-independent
and time-dependent deterministic and uncertain variables.

shown in Fig. 1c. Note that while the term sampling space im-
plies uncertainty, it does not have any implications on probabil-
ity. Therefore, U may be an uncertainty set with or without a
probability measure.

Finally, for an arbitrary uncertain trajectory, the sampling
space is defined as:

Ut B {x̃(t) | t ∈ [t0, t f ], x̃(t) ∈ U} (3)
Similarly, Ut makes no assumptions regarding the probability
measure. Figure 1d shows an arbitrary time-dependent uncertain
trajectory along with its associated sampling space. Any uncer-
tain variable belonging toU andUt may be represented in three
ways: (i) probabilistic, (ii) crisp, and (iii) possibilistic [15]. In
this article, we use these uncertainty representations to develop
specialized UCCD formulations outlined in Fig. 2.

Stochastic (Probabilistic). In the stochastic representation of
uncertainties (also known as probabilistic), it is assumed that the
associated probability distribution is known or can be estimated.
Therefore, if U and/or Ut is endowed with a probability mea-
sure, uncertainties can be described probabilistically. For an ar-
bitrary, time-independent, continuous uncertain variable x̃, the
stochastic set is defined as:

Xstc B {(x̃,F x̃(x)) | x̃ ∈ U, F x̃(x) = P[x̃ ≤ x] ∈ [0,1]} (4)
where the subscript stc stands for stochastic, Xstc is the proba-
bilistic set characterized by F x̃(x), which is the distribution func-
tion of x̃, and x is a realization. The probabilistic set for a time-
dependent uncertain variable x̃(t) is described as:

Xstc(t)B {x̃(t) | t ∈ [t0, t f ], x̃(t) ∈ Xstc} (5)
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UCCD

Probabilistic

Stochastic Expectation
(SE-UCCD) in Eq. (25)

Stochastic Chance-Constrained
(SCC-UCCD) in Eq. (26)

Probabilistic Robust
(PR-UCCD) in Eqs. (27)–(28)

Crisp

Worst-Case (Minimax) Robust
(WCR-UCCD) in Eqs. (32)–(33)

Possibilistic

Fuzzy Expectation
(FE-UCCD) in Eq. (34)

Possibilistic Chance-Constrained
(PCC-UCCD) in Eq. (35)

Key:

Uncertainty
Representation

Specialized UCCD
Formulations

FIGURE 2: Specialized UCCD formulations based on the uncer-
tainty representation.

(a) (b)

FIGURE 3: Various representations of uncertainties: (a) compar-
ison of samples of Gaussian multivariate distribution for random
variables x̃1 and x̃2 to the box, ellipsoidal, and hexagonal un-
certainty sets and, (b) several examples of fuzzy set membership
functions.

An example of the probabilistic representation of uncertainties
is the assumption of a Gaussian distribution for uncertainties in
a plant optimization variable’s value. Samples of a multivariate
Gaussian distribution are shown in Fig. 3a. This description of
uncertainties motivates stochastic UCCD formulations.

Crisp. In the crisp representation of uncertainties, no prob-
ability measure is available, and uncertainties are assumed to
belong to a crisp, deterministic set that can be finite, infinite,
bounded, unbounded, discrete, or continuous. For an arbitrary,

time-independent uncertain variable x̃, the crisp representation
of uncertainties entails a membership function that assigns one
to all members and zero to all non-members:

Xcrisp B {(x̃,Mcrisp(x)) | x̃ ∈ U, Mcrisp(x) ∈ {0,1}} (6)
where Xcrisp is the crisp set characterized by its associated mem-
bership function Mcrisp(x). For a time-dependent uncertain vari-
able x̃(t), the crisp representation is described as:

Xcrisp(t)B {x̃(t) | t ∈ [t0, t f ], x̃(t) ∈ Xcrisp} (7)
Figure 3a compares samples from an arbitrary multivariate Gaus-
sian distribution to the bounded, crisp representation of uncer-
tainties associated with box, ellipsoidal, and hexagonal sets.
Among these uncertainty sets, the box and hexagonal uncertainty
sets are convex polytopes. For linear programs, when uncertain-
ties are restricted to a polytope, the number of function evalu-
ations for uncertainty propagation may be reduced to function
evaluations at the vertices of the polytope [35].

Possibilistic. Uncertainty representations discussed so far are
based on some available information, i.e., the known (or esti-
mated) probability distribution function or geometry and size of
the uncertainty set. However, when too little is known about the
uncertainty, one might utilize descriptive (and often vague) lan-
guage (also known as linguistic variables) to express the desired
or expected events. This information is interpreted by an expert
in the field and is best represented through a fuzzy set, which is
a class with a continuum of grades of membership.

For an arbitrary, time-independent uncertain variable x̃, the
fuzzy set is defined as:

Xfuzzy B {(x̃,Mfuzzy(x) | x̃ ∈ U, Mfuzzy(x) ∈ [0,1]} (8)
whereXfuzzy is the fuzzy set characterized by its associated mem-
bership function Mfuzzy(x). This membership function practi-
cally quantifies the degree of membership of an element, or the
possibility that an element belongs to the set—leading to con-
cepts from possibility theory [18,19]. For a time-dependent vari-
able x̃(t), the fuzzy set is defined as:

Xfuzzy(t)B {x̃ | t ∈ [t0, t f ], x̃(t) ∈ Xfuzzy} (9)
Figure 3b compares the membership function of a crisp uncer-
tainty set to that of a triangular, sigmoid, and Gaussian fuzzy
membership functions.

2.3 Other Considerations
In general, it is natural to assume that in an arbitrary UCCD prob-
lem, uncertainties are represented based on the availability of in-
formation. The choice of uncertainty representation, to some de-
gree, informs the associated class of formulation. Despite that,
the decision-making process may entail other factors that ulti-
mately demand an alternative choice of uncertainty representa-
tion. For instance, the risk associated with specific performance
criteria may be so critical that no constraint violation can be toler-
ated. In this case, even if the distributional information is avail-
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able, a worst-case robust formulation (see Secs. 3.5.8 and 4.4)
may be more practical.

A general UCCD problem may entail known uncertainties
requiring one or more of the aforementioned representations.
Therefore, comprehensive treatment of uncertainties in UCCD
problems requires the development of hybrid methods that are
adept at integrating, combining, and interpreting all of such
known uncertainties. These methods are generally referred to
as hybrid programming [20] and have not yet been investigated
for UCCD problems. It is also important to note that many real-
world systems may also entail some unknown unknowns. These
are uncertainties that we don’t know we don’t know. Unknown
unknowns will most likely be present in UCCD formulations and
require additional protective measures [32]. In this article, we
only focus on known unknowns.

3 MATHEMATICAL FOUNDATIONS FOR UCCD FOR-
MULATIONS

In this section, we start by introducing a generalized UCCD
problem formulation using concepts from probability theory.
Defining this formulation in the probability space is without any
loss of generality because specialized forms of this formulation
can be derived through the appropriate selection of the objective
function and constraints. This is specifically evident for crisp un-
certainty sets as the associated expectation of the objective func-
tion and constraints reduce to deterministic quantities. For fuzzy
uncertainties, several formulations become viable, such as deter-
ministic (crisp) formulation [36], expected value [37, 38], opti-
mistic/pessimistic, and credibility measures [20]. Due to the gen-
eral correlation between operators in the probability and fuzzy
space, specialized problem formulations in the fuzzy space can
also be derived from the proposed formulation. The generalized
UCCD formulation is capable of capturing uncertainty descrip-
tions that are introduced in this article. Such descriptions are
commonly used in areas such as control co-design, optimal con-
trol, operations research, robust design, and reliability-based de-
sign optimization and encompass a large portion of uncertainty-
based considerations in the literature.

Preliminaries. The stochastic modeling of any arbitrary vec-
tor x ∈ Rnx consists in introducing a sampling space Θ (such
that any element of Θ is a combination of causes that affect the
state of x), and then endowing it with an event space F , and
a probability measure P, which results in the probability space
(Θ,F ,P) [39]. A stochastic variable x̃ = (x̃1, . . . , x̃nx ) defined on
(Θ,F ,P) and endowed with a measurable space is then a map-
ping from Θ to Rnx such that x̃ ∈ Xstc. A stochastic process
x̃(t) ∈ Xstc(t), is defined on the probability space and has val-
ues in Rnx . x̃(t) is indexed by any finite or infinite subset T
and is a mapping t 7→ x̃(t) from T × (Θ,F ,P) into L0(Θ,Rnx ).
Here, L0(Θ,Rnx ) is the vector space of all Rnx -valued random

variables defined on (Θ,F ,P). For any fixed θ ∈ Θ, the map-
ping t 7→ x̃(t, θ) is a trajectory or a sample path. For an ar-
bitrary stochastic variable x̃, xµ is the mean value and xσ is
the standard deviation. In addition, P[·] is the probability mea-
sure, and E[·] is the expected value operator. For an arbitrary
function of random variables, o(x̃), its expected value is defined
as E[o(x̃)] =

∫ ∞
−∞
· · ·
∫ ∞
−∞

o(x) fx̃(x)dx1 · · ·dxnx for a continuous
random vector and E[o(x̃)] =

∑
x1 · · ·
∑

xnx
o(x)px̃(x) for a dis-

crete random vector. In these definitions, fx̃(x) and px̃(x) are
the probability distribution functions and mass functions, respec-
tively. We use •̄(·) to indicate a specified function composition
of •(·). Specifically, ō(·) describes a function of the original ob-
jective function o(·) such that ō = y ◦ o(·) = y(o(·)), where y(·) is
an explicit or implicit function such that, when uncertainties are
not present, ō(·) is reduced to its original deterministic form o(·).
With these definitions, the generalized UCCD problem formula-
tion can be introduced.

3.1 A Generalized UCCD Formulation

A generalized, AAO, continuous-time, simultaneous UCCD
problem can be formulated as:

minimize:
ũ,ξ̃,p̃

E
[
ō(t, ũ, ξ̃, p̃, d̃)

]
(10a)

subject to: E
[
ḡ(t, ũ, ξ̃, p̃, d̃)

]
≤ 0 (10b)

h(t, ũ, ξ̃, p̃, d̃) = 0 (10c)
˙̃ξ(t)−f (t, ũ, ξ̃, p̃, d̃) = 0 (10d)

where: ũ = ũ(t) ∈ Ut, ξ̃ = ξ̃(t) ∈ Ut (10e)

p̃ ∈ U, d̃ = d̃(t) ∈ Ut

In this equation, the expectation of the composite function ō(·)
(i.e., a function of the original objective o(·)) is optimized over
the set of optimization variables (ũ, ξ̃, p̃), and is subject to the
expectation of the composite functions ḡ(·) (i.e., functions of the
original inequality constraint vector g(·)), analysis-type equal-
ity constraints h(·), and uncertain dynamic system equality con-
straints in Eq. (10d). Note that E[ō(·)] and E[ḡ(·)] refer to any
of the variations that will be discussed in Sec. 3.5 (such as the
nominal, worst-case, expected value, etc.).

This formulation includes the vector of uncertain control
processes ũ(t) ∈ Ut, uncertain state processes ξ̃(t) ∈ Ut, time-
independent uncertain optimization variables p̃ ∈ U, and time-
dependent d̃(t) ∈ Ut and/or time-independent uncertain problem
data d̃ ∈ U. Note that d̃(t) may entail some noise or distur-
bances that affect system dynamics. Such uncertainties generally
enter through the dynamic system model and captured through
Eq. (10d) (see Refs. [5, 10]).

The proposed UCCD formulation is infinite-dimensional in
time and uncertainty dimensions. We can draw an analogy
between the infinite-dimensional time vector and the infinite-
dimensional uncertainty vector. To transcribe Eq. (10) in time,
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numerical methods such as direct transcription have been im-
plemented [2, 40–43]. Similarly, different uncertainty propaga-
tion techniques, such as Monte Carlo simulation (MCS), gener-
alized polynomial chaos, as well as special interpretations, such
as worst-case, have been proposed to parameterize the uncertain
dimensions [35]. In this article, we discuss some of these for-
mulations and special considerations but generally leave the dis-
cussion on specialized solution methods to future work. By em-
phasizing various uncertainty interpretations through generalized
and then specialized formulations, this article aims to provide an
improved understanding of some of the design challenges and
insights in the presence of uncertainties.

We emphasize that describing optimization variables
(ũ, ξ̃, p̃) in the uncertain space is to avoid introducing any un-
necessary assumptions/structure at this point. Furthermore, this
description should not imply that the designer has complete con-
trol over all uncertainties; instead, it suggests that the decision
space may entail elements associated with uncertainties. In other
words, these uncertain quantities may entail some determinis-
tic part the designer/optimizer has decision-making power over.
This deterministic part may be associated with the mean values,
parameters of an entire distribution, shape or geometry of the
deterministic uncertainty set, or parameters of the fuzzy mem-
bership function.

3.2 Uncertainties in Optimization Variables
CCD is an enticing approach because it simultaneously explores
the plant and control design spaces to improve the dynamic sys-
tem’s performance [2]. When uncertainties are present, it is
imperative to maintain this advantage by introducing balanced
UCCD formulations in which the whole space of optimization
variables is leveraged in response to uncertainties. Therefore, in
a balanced formulation, uncertain control and state trajectories,
as well as the vector of time-independent optimization variables,
must be utilized to achieve a system-level, integrated solution.
To accomplish this vision, it is critical to understand where un-
certainties in optimization variables (ũ, ξ̃, p̃) originate from and
how they affect various elements of the problem.

3.2.1 Control Trajectories. In Eq. (10), control trajectories
are modeled as stochastic processes because d̃ may entail noise
elements (induced by factors such as electrical noise, actuator
imprecision, etc.) that directly affect control signals. This, in the
control community, is referred to as matching (or lumped) uncer-
tainties because uncertainties act on the system through the same
channels as the control input. If uncertainties do not act through
the control channel, they are called mismatched uncertainties
[5]. Therefore, the above formulation entails both matched and
mismatched uncertainties. However, it is possible to model the
control input deterministically since possible disturbances on the
control can be modeled in the dynamics as multiplicative noise
[44]. Note that “closing the control loop” with feedback con-

troller architectures in a UCCD problem may also transform the
control trajectories into stochastic quantities. Reference [45] de-
scribes the development and application of a reference adaptive
control design scheme with matched uncertainties for an F-16
aircraft case study.

3.2.2 State Trajectories. In Eq. (10), state trajectories are
uncertain due to a variety of reasons. The uncertainties from
(ũ, p̃, d̃) may propagate through the dynamic system and trans-
form them into stochastic processes. Note that the resulting
stochastic systems are not necessarily the same as the classical
stochastic differential equations where the inputs are some ide-
alized processes, such as Wiener or Poisson [46]. The vector
of problem data, d̃, may entail some information about uncer-
tain initial/final conditions. In addition, d̃ entails some noise el-
ements that may enter the state equation in a linear or nonlinear
manner. This noise may be stationary or non-stationary, exoge-
nous (independent of decisions), or dependent on states and con-
trols. As an example of the dependence of noise on states and
controls, consider a system that starts to witness more chaotic
changes after it is steered through the control command to a spe-
cific state. However, note that this dependency is already cap-
tured through the dynamic model in Eq. (10d). Note that ξ̃ may
also entail variables that are being controlled, or parameters of
a distribution (such as mean and variance) describing the time-
evolution of uncertainties in the system. However, the distribu-
tional (or set) information of these parameters is specified and
already included in the vector of uncertain problem data d̃. Also,
note that the effects of unmodeled, mismodeled, and neglected
dynamics can be captured in Eq. (10) [5]. The implementation of
a robust adaptive fuzzy tracking controller for a hypersonic flight
vehicle subject to uncertainties from unmodeled and neglected
dynamics is discussed in Ref. [47].

3.2.3 Time-independent Optimization Variables. The
vector of time-independent optimization variables may also be
uncertain due to factors such as imperfect manufacturing pro-
cesses, plant measurement errors, or mass production of plants.
In addition, over time, the dynamics of the plant may change
(e.g., due to aging), which causes deviations compared to the
original model. This deviation is known as model plant mismatch
[48]. Therefore, p̃ is modeled as a random variable whose distri-
butional (or set) information is known. This uncertainty will be
propagated through state equations, transforming all of its associ-
ated parameter-dependent functions and variables into uncertain
quantities. In addition, for free-final-time UCCD problems, un-
certainties may transform t f into an uncertain variable, requiring
a transformation similar to the one described in Ref. [29]. Refer-
ence [49] investigates the impact of time-independent uncertain-
ties on the CCD solution of a hybrid-electric vehicle powertrain.
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3.3 Risk in UCCD Formulations
In a UCCD formulation, uncertainties must be represented in a
way that their impact on decision-making is completely captured.
This brings us to the notion of risk, which is a fundamental ele-
ment of any uncertain problem. In general, risk measures can be
qualitative or quantitative [50]. In a qualitative risk measure, the
amount by which a threshold is surpassed does not matter. An
example of qualitative risk measures are failures that result in the
loss of life. In quantitative risk measures, on the other hand, it is
important to know the extent to which the threshold is violated.
For example, a quantitative risk measure may be associated with
the energy consumption of a vehicle following a reference trajec-
tory. When the energy consumption exceeds the threshold, it is
important to know by how much. This type of risk measure can
be dealt with by introducing a penalty term or constraining the
amount of extra energy. In general, due to mathematical difficul-
ties associated with probabilistic constraints, it is recommended
to use probabilistic descriptions only for qualitative failure prob-
lems. Other risk measures, such as conditional value-at-risk that
offer mathematical properties (such as convexity), may be more
suitable for quantitative constraint problems [50, 51].

The notion of risk is so central in decision-making under un-
certainty that it is used to classify various problem classes based
on the designer’s attitude toward risk. These include risk-neutral,
risk-averse, risk-aware, and risk-sensitive problem formulations.
It is the designer’s understanding of the risk associated with un-
certainties in an arbitrary problem that determines the associ-
ated risk attitude in that formulation. The focus of this article
is mainly on risk-neutral and risk-averse UCCD formulations.
References [52] and [53] present a risk-neutral and risk-averse
approach for optimal scheduling of a virtual power plant and mo-
tion planning of a robotic system, respectively.

3.4 Objective Function in Epigraph Form
While some of the elements of a UCCD problem require specific
treatment in the presence of uncertainties, an important point to
emphasize is that there’s no conceptual distinction between the
treatment of an objective function and inequality constraints [54].
This statement is without any loss of generality because, for any
uncertain UCCD problem, the uncertain objective function may
be transferred to the vector of inequality constraints through the
addition of a new decision variable. This form is referred to as
the epigraph representation of the objective function and allows
us to deal with all of the complications resulting from uncer-
tainties separately within inequality constraints. Depending on
the problem structure and the extent to which uncertainties af-
fect various elements of the formulation, one may decide to keep
or transfer the objective function. The computational efficiency
and resulting implications of such decisions on various classes
of UCCD problems remain to be investigated. The treatment of
an uncertain objective function as an inequality constraint using
epigraph representation for a simple strain-actuated solar array

system is demonstrated in Ref. [35].

3.5 Inequality Constraints
The formulation presented in Eq. (10) allows us to select ō(·) and
ḡ(·) in order to formulate various desired forms of the objective
function and constraints. In this section, these formulations are
described only for the uncertain vector of inequality constraints
g(·). However, the same principles can be applied to formulate
the objective function per the discussion in Sec. 3.4.

3.5.1 Nominal. In this formulation, uncertain quantities are
prescribed and evaluated at their nominal (deterministic) values.
This concept, which is referred to as guessing the future [54], at-
tempts to estimate the unknown information for uncertain quanti-
ties. As an example, instead of creating a probabilistic model for
wind velocity at a given altitude, one may use a fixed, nominal
input to evaluate and solve the problem. This estimate, however,
does not capture the impacts of uncertainties and makes no prac-
tical provisions for the risk associated with such uncertainties.
Recalling that the expected value of a deterministic term is a de-
terministic quantity, Eq. (10b) can be formulated by selecting a
nominal value for uncertain factors:

E
[
ḡi(t, ũ, ξ̃, p̃, d̃)

]
= gi(t,uN ,ξN ,pN ,dN) ≤ 0 (11)

where •N refers to the nominal values of uncertain quantities in
the ith inequality constraint. As as example, Ref. [40] employs
a nominal rough road profile for CCD of an active suspension
system.

3.5.2 Expected Value. One of the most common probabilis-
tic descriptions of uncertain inequality constraints is to utilize
their corresponding average values [14,44,53,55]. In the stochas-
tic programming community, this formulation is known as the
expected value model. This description, however, does not hedge
against the risks associated with constraint violation. Therefore,
the expected value model is more suitable for objective function
descriptions or risk-neutral formulations. As an example, the ex-
pected value model may be used to maximize the average energy
production of a wind farm. The expected value model for the ith
constraint is described as:

E
[
ḡi(t, ũ, ξ̃, p̃, d̃)

]
= gµ,i(t, ũ, ξ̃, p̃, d̃) ≤ 0 (12)

A risk neutral bidding model for wind power producers is pre-
sented in Ref. [56].

3.5.3 Long-Run Expected Value. The long-run expected
average [57, 58], which is also known as the infinite-horizon ex-
pected average, is important in applications where the horizon is
considered infinite, and it is desired to minimize the cost per unit
time or satisfy some constraints over this infinite horizon. Sim-
ilar to the expected value model, the long-run expected value is
most suitable for the description of the objective function or risk-
neutral formulations. As an example, this model may be used to
describe the objective of minimizing the long-run average cost in
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a stochastic manufacturing system [59]. While infinite-horizon
problems may take different forms, here, we introduce the for-
mulation with a discounted cost:
E
[
ḡi(t, ũ, ξ̃, p̃, d̃)

]
= limsup

t→∞
E
[
gi(t, ũ, ξ̃, p̃, d̃,γ)

]
≤ 0 (13)

where γ ≥ 0 is a discount parameter and limsup is used to high-
light that it is not known whether the limit exists. The discount
rate is included to emphasize short-term rewards versus rewards
that might be obtained in the distant future. A long-run ex-
pected value implementation for online stochastic control of hy-
brid electric vehicles is discussed in Ref. [60].

3.5.4 Higher-Order Moments. Sometimes, the higher-
order moments of an uncertain quantity, particularly its variance,
are used as a measure to hedge against uncertainties. This is mo-
tivated by the fact that expected value alone does not consider
the distribution or worst-case characteristics of the outcome. As
an example, a risk measure might be defined to limit the standard
deviation (or variance) of one of the performance criteria, such
as ride comfort, in an automotive active suspension design. This
can be accomplished by defining:

E
[
ḡi(t, ũ, ξ̃, p̃, d̃)

]
=

√
E[gi(·)2]−gµ,i(·)2 = gi,σ(·) ≤ σa,i (14)

where gi,σ refers to the standard deviation of the constraint and
σa,i is the allowable standard deviation associated with the ith
constraint. This description, which is generally accompanied by
the expectation or the nominal value of the constraint (or objec-
tive function) is studied in Refs. [9, 13, 49, 61, 62], and is further
discussed in Sec. 5.3. An implementation of this type for aircraft
robust trajectory optimization is presented in Ref. [62].

3.5.5 Conditional Value-at-Risk. In addition to higher-
order moments described in Sec. 3.5.4, an alternative risk mea-
sure, known as conditional value-at-risk (CVaR), may be uti-
lized [50, 51]. CVaR is the expected value of the worst scenarios
(i.e., realizations). This risk measure leverages the distributional
information of the quantity of interest to identify undesirable out-
comes, thereby providing insights into decisions that reduce the
risks involved with the perceived worst scenarios. For the ith
inequality constraint, CVaR is defined as:

E
[
ḡi(t, ũ, ξ̃, p̃, d̃)

]
= E[gi(·) | gi(·) ≥ αq(Γ)] = gi,CVaR(·) (15)

where αq(Γ) is the quantile function of the distribution of gi with
Γ being the confidence level, also known as value-at-risk CVaR.
Reference [63] develops a fault tolerant control strategy using
CVaR for wind energy conversion systems.

3.5.6 Expected Utility Theory. Normative decision theory,
which is mainly concerned with how agents ought to make de-
cisions, typically utilizes some axioms to formalize the require-
ments associated with rational and logical decision-making. The
decision-maker’s preferences and risk attitude are often captured
by selecting an appropriate utility function U(·) that assigns a

subjective value to each outcome. In the presence of uncertain-
ties, expected utility theory is a normative theory that attempts to
find the action that results in maximum expected utility [64]. The
choice of the utility function is strongly dependent on decision-
maker’s preferences and risk attitude. While a utility function is
commonly used to represent an objective, here we use this rep-
resentation for the ith constraint. This is because, as mentioned
in Sec. 3.4, the objective function may be transferred to the vec-
tor of inequality constraints through the epigraph representation.
Utilizing the expected utility as a normative decision theory, the
ith constraint is described as:
E
[
ḡi(t, ũ, ξ̃, p̃, d̃)

]
= E[Ui(t, ũ, ξ̃, p̃, d̃)] = Uµ,i(·) ≤ 0 (16)

where, Uµ,i(·) is the expected utility associated with the ith con-
straint. An example of a utility function is discussed in Sec. 5.3,
and an application of expected utility theory for strategic route
choice is presented in Ref. [65].

3.5.7 Probabilistic Chance-Constrained. Sometimes, it
is desirable to express and satisfy constraints in terms of the prob-
ability of an event. For example, the probability that a constraint
associated with stress or deflection on a part is satisfied within a
given threshold. This can be done by defining the ith constraint
in terms of an indicator function of an arbitrary event E:

IE(t,u,ξ,p,d) =

1 if {u,ξ,p,d} ∈ E
0 if {u,ξ,p,d} < E

(17)

Then, the probability can be defined through the expectation of
the indicator function:

E
[
ḡi(t, ũ, ξ̃, p̃, d̃)

]
= E [IE(t,u,ξ,p,d)] = P[E] (18)

This formulation is the basis for the well-known chance-
constraint programs and has resulted in wide range of methods
that attempt to handle uncertain constraints reliably by prescrib-
ing a target failure probability P f ,i for the ith constraint [8,11,53],
such that:

P[gi(t, ũ, ξ̃, p̃, d̃) ≥ 0] ≤ P f ,i (19)
An application of the probabilistic chance-constrained formula-
tion to the trajectory optimization of robotic spacecraft simulator
is presented in Ref. [53].

Alternative chance-constrained formulations can also be de-
veloped in which the emphasis is on the system performance.
For example, in a series configuration, the probabilistic system
chance-constrained formulation is described as [4]:

Psys = P

 ng⋃
i=i

gi(t, ũ, ξ̃, p̃, d̃) ≥ 0

 ≤ P f ,sys (20)

where P f ,sys is the system failure probability. The system-level
reliability for the design of an internal combustion engine case
study is investigated in Ref. [66].

3.5.8 Worst-Case. When uncertainties are represented as
crisp sets, it is generally desired to solve the UCCD problem
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such that the resulting solution is feasible for all realizations of
randomness within the specified uncertainty set. This interpreta-
tion is equivalent to a worst-case design philosophy, in which ev-
ery constraint is satisfied for its associated worst-case uncertainty
realization within the uncertainty set. As an example, consider
the design of an automotive brake system subject to uncertain-
ties from the road surface, velocity, temperature, etc. For such a
design problem, it is imperative that the brake system is capable
of bringing the vehicle to a halt within a reasonable amount of
time under any circumstances. If the bounds on uncertainties are
known, one can minimize the worst combination of uncertainties
in order to make sure that the brake system performs well for all
other cases.

The parameters of the uncertainty set, which determine its
characteristics such as shape, size, and geometry, are in fact
a modeling choice. In addition, these uncertainty sets are of-
ten defined using some nominal parameters. For decision vari-
ables, the optimizer often has control over such parameters and
uses them to navigate the design space. For uncertain prob-
lem data, these nominal parameters are prescribed within the
vector d̃. These nominal parameters are formally described as
q̂T = [p̂, d̂] and q̂T

t (t) = [û(t), ξ̂(t), d̂(t)], for time-independent
and time-dependent problem elements, respectively. From here,
we can define the time-independent uncertainty set as R(q̂) =
{R(p̂)×R(d̂)} ⊆ Xcrisp, and the time-dependent uncertainty set
as Rt(q̂t) = {R(û)×R(ξ̂)×R(d̂)} ⊆ Xcrisp(t).

In the worst-case description, the ith inequality constraint
can then be represented as:

E
[
ḡi(t, ũ, ξ̃, p̃, d̃)

]
= maximize

(u,ξ,d) ∈ Rt(q̂t)
p ∈ R(q̂)

{gi(t,u,ξ,p,d)} ≤ 0
(21)

When this treatment is applied for the complete optimization
problem, it results in a bi-level formulation known as the
min−max or minimax[10, 67]. We note that for UCCD prob-
lems, this maximization problem must be solved subject to
analysis-type system equality constraints, which will be dis-
cussed in more detail in Sec. 4.4. This description is used to
find a robust UCCD solution of an aircraft thermal management
system using model predictive control in Ref. [10].

3.5.9 Possibilistic Chance-Constrained. When uncer-
tainties are defined through fuzzy variables/processes, equivalent
chance-constrained formulations may be developed in the possi-
bility space. As an example, when little information is known
about uncertainties in the vehicle side-impact performance prob-
lem, one may formulate a chance constraint such that the pos-
sibility of failure is below a given threshold. The associated
possibility-based constraint can be written as:

POS[gi(t, ũ, ξ̃, p̃, d̃) ≥ 0] ≤ POS f ,i (22)
where POS[·] is the possibility measure defined on a proper pos-
sibility space, and POS f ,i is the failure possibility for ith con-

straint. For the sake of brevity, in this article, we avoid a detailed
mathematical description of the possibility space and refer the
readers to Refs. [37,38,68] for further discussion. A possibilistic
framework for the design of unmanned electric vehicles is dis-
cussed in Ref. [69].

3.5.10 Dempster-Shafer (Evidence) Theory. Evidence
theory, also known as the theory of belief measures, deals with
situations where limited information on uncertainties is avail-
able. As opposed to probability theory which offers only a single
measure (i.e., probability), evidence theory provides two uncer-
tainty measures, known as belief and plausibility, both of which
are determined from the known evidence for a proposition [70].
This evidence, also referred to as a body of evidence, is charac-
terized by the basic probability assignment (BPA) function. Be-
lief and plausibility give the lower and upper bounds of the event,
respectively.

E
[
ḡi(t, ũ, ξ̃, p̃, d̃)

]
= UM

i,r −UM
i (t, ũ, ξ̃, p̃, d̃) ≤ 0 (23)

where UM
i is either belief or plausibility and UM

i,r is the required
uncertainty measure for ith constraint. Interested readers may
refer to Refs. [70, 71] for further details.

The formulations introduced above are among the common
descriptions of uncertain inequality constraints (and objective
functions). Other variations exist that generally attempt to ad-
dress some of the shortcomings of these formulations. For ex-
ample, multiple formulations, such as min-max regret models,
have been developed to address the issue of the conservativeness
of the minimax approach [72].

3.6 Equality Constraints
In the presence of uncertainties, equality constraints are divided
into two categories [73,74]: (i) those that must be strictly satisfied
regardless of uncertainties (Type I), and (ii) those that cannot be
strictly satisfied due to uncertainties (Type II).

Type I equality constraints, which are also referred to as
analysis-type constraints, generally describe the laws of nature or
dynamics of the system, such as Eqs. (10c) and (10d). Therefore,
for the problem to be physically meaningful, these constraints
must be strictly satisfied at all parameterized points along the un-
certain dimension. These constitute all points at which the prob-
lem will be evaluated, such as samples generated through MCS,
expected values of optimization variables, most-probable-points
in reliability-based design optimization approaches, or colloca-
tion grids in generalized polynomial chaos expansion.

For an example of a Type II equality constraint, assume that
the sum of two length dimensions is required to be a constant
value. If both of these quantities are uncertain, this condition
cannot be strictly satisfied. Rather, the constraint may be relaxed
or satisfied at its expected value while its standard deviation is
minimized. In this article, we assume that all Type II equality
constraints are already relaxed and included in the vector of in-
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equality constraints in Eq. (10b).
For the simplicity of notation when deriving the specialized

formulations in Sec. 4, we define the feasible set of Type I equal-
ity constraints as E:

E = {(t,u,ξ,p,d) | h(·) = 0, ξ̇(t) = f (·)} (24)
When the inputs to this set are defined probabilistically
((ũ, ξ̃, d̃) ∈ Xstc(t), and p̃ ∈ Xstc), then E represent a set in which
the analysis-type equality constraints are satisfied almost surely
(a.s.) or with the probability of one.

A fundamental step in formulating the general UCCD prob-
lem is identifying the sources of uncertainties that affect ordi-
nary differential equations (ODEs). When the source of uncer-
tainty is some white-noise, idealized process, such as Wiener and
Poisson processes, the resulting differential equations are termed
stochastic differential equations (SDEs) [75]. As an example, the
motion of electrons in a conductor can be modeled through the
Wiener process. SDEs have been studied extensively and gener-
ally require methods based on Itô and Stratonovich calculus [76].
However, for general engineering applications, modeling distur-
bances as an idealized process is not always sufficient. Therefore,
in this article, we focus on the case where the disturbance vector
is a generalized process. For fuzzy uncertainties, a natural way to
model uncertainty propagation in the dynamic system is through
fuzzy differential equations (FDEs) [77–79].

4 SPECIALIZED FORMULATIONS
Based on the previous discussion, it is evident that both uncer-
tainties and problem elements can be represented in different
ways—resulting in multiple interpretations of uncertainties with
distinct implications on the integrated UCCD solution. There-
fore, it is necessary to formalize some of these interpretations
through existing UCCD formulations.

4.1 Stochastic in Expectation (SE-UCCD)
Stochastic programming assumes that the probability distribu-
tions of the uncertain factors are known. In these situations, con-
straints can be modeled in different ways, such as almost surely,
in expectation, or in probability [50]. Constraints that are de-
scribed as “almost surely” (or “a.s.”) must be satisfied with the
probability of one. All Type I equality constraints described in
Sec. 3.6 are a.s. constraints. According to Sec. 3.5.2, a risk-
neutral UCCD problem can be formulated by using the expec-
tation of the objective function and inequality constraints:

minimize:
ũ,ξ̃,p̃

oµ(t, ũ, ξ̃, p̃, d̃) (25a)

subject to: gµ(t, ũ, ξ̃, p̃, d̃) ≤ 0 (25b)

(t, ũ, ξ̃, p̃, d̃) ∈ E (25c)

Note that in this formulation (ũ, ξ̃, d̃) ∈ Xstc(t) and p̃ ∈ Xstc, and
E, which was described in Eq. (24), represents a set in which
analysis-type equality constraints are satisfied almost surely.

Also, the satisfaction of inequality constraints in expectation
points to the risk-neutral nature of this formulation. A lot of real-
world CCD problems, however, require explicit risk measures
for safety and functionality. Note that this formulation overlooks
some important aspects regarding uncertainty distributions. For
example, the formulation may result in an acceptable mean value
but unacceptably low (worst-case) performance. Reference [35]
implements a risk-neutral stochastic in expectation UCCD for-
mulation for a simplified strain-actuated solar array system.

4.2 Stochastic Chance-Constrained (SCC-UCCD)
Problems with probabilistic inequality constraints are generally
referred to as chance-constrained programming. They are ubiq-
uitous in various research fields, such as reliability-based de-
sign optimization (RBDO) and trajectory optimization. Re-
cently, novel UCCD formulations based on RBDO have been
developed in Refs. [8, 11]. Here we introduce a more general
chance-constrained formulation referred to as stochastic chance-
constrained UCCD. The problem formulation is described as:

minimize:
ũ,ξ̃,p̃

oµ(t, ũ, ξ̃, p̃, d̃) (26a)

subject to: P[gi(t, ũ, ξ̃, p̃, d̃) > 0] ≤ P f ,i i = 1, . . . ,ng (26b)

(t, ũ, ξ̃, p̃, d̃) ∈ E (26c)

Again, in this formulation we have (ũ, ξ̃, d̃) ∈Xstc(t) and p̃ ∈Xstc.
Analysis-type equality constraints are satisfied almost surely, and
the probabilistic representation of inequality constraints ensures
that they are satisfied with a given target reliability of 1− P f ,i.
The stochastic interpretation of path constraints is further illus-
trated in Fig. 4a. In this figure, blue areas have failure proba-
bilities that do not exceed P f , while red regions violate the con-
straint with probabilities higher than P f . When used only with
open-loop control, the above formulation may lead to conserva-
tive trajectories. This is because, in practice, feedback controllers
are often implemented for such systems and have the capacity
to compensate for some of these uncertainties. However, when
only open-loop control is considered, Eq. (26) often neglects the
possible role of feedback controller at the time of implementa-
tion [80]. Therefore, closing the control loop in such UCCD
problems may entail improvements in performance and cost. A
chance-constrained stochastic, nonlinear control strategy for mo-
tion planning of robotic systems is introduced in Ref. [53]. Fur-
thermore, a stochastic chance-constrained implementation for
UCCD case studies, using concepts from reliability-based design
optimization, are presented in Refs. [8, 11].

4.3 Probabilistic Robust (PR-UCCD)
If we assume that the decision-maker has some knowledge about
the probabilistic behavior of uncertainties, a robust interpreta-
tion, which is often credited to Genichi Taguchi [81], may be uti-
lized. In this interpretation, robustness is defined as the reduced
sensitivity of the objective function and constraints to variations
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(a) Stochastic Chance-Constraint. (b) Probabilistic Robust.

FIGURE 4: Illustration of uncertain probabilistic constraints
(a) stochastic path constraint with prescribed failure probability
of P f and, (b) probabilistic robust constraint interpretation with
constraint shift index ks = 3.

in uncertain quantities. Robustness measures commonly used
with this interpretation are the expectancy and dispersion, which
were described in Secs. 3.5.2 and 3.5.4, respectively, and are
commonly used together in a multiobjective optimization prob-
lem to find a compromise solution. Thus, methods from robust
multiobjective optimization are generally used with such formu-
lations [82]. The PR-UCCD problem can be written as:

minimize:
ũ,ξ̃,p̃

αwoµ(t, ũ, ξ̃, p̃, d̃)+ (1−αw)oσ(t, ũ, ξ̃, p̃, d̃) (27a)

subject to: gµ(t, ũ, ξ̃, p̃, d̃)+ ksgσ(t, ũ, ξ̃, p̃, d̃) ≤ 0 (27b)

(t, ũ, ξ̃, p̃, d̃) ∈ E (27c)

where (ũ, ξ̃, d̃) ∈Xstc(t) and p̃ ∈Xstc. In addition, αw and (1−αw)
are weights associated with the multiobjective optimization prob-
lem. In the above formulation, a constraint shift index ks, se-
lected by the designer, is used to reduce the feasibility region of
constraints. This approach practically moves the optimal solu-
tion away from constraint boundaries but does not always offer
a probabilistic interpretation. Alternatively, the problem can be
formulated as:

minimize:
ũ,ξ̃,p̃

αwoµ(t, ũ, ξ̃, p̃, d̃)+ (1−αw)oσ(t, ũ, ξ̃, p̃, d̃) (28a)

subject to: gµ(t, ũ, ξ̃, p̃, d̃) ≤ 0 (28b)

gσ(t, ũ, ξ̃, p̃, d̃)−σa ≤ 0 (28c)

(t, ũ, ξ̃, p̃, d̃) ∈ E (28d)
where σa is the allowable standard deviation for g(·). In this for-
mulation, the uncertain inequality constraints are satisfied at their
expected value, and their corresponding standard deviation (or
variance) is below the allowable limit. Probabilistic robust path
constraints are further illustrated in Fig. 4b, under the assump-
tion of a Gaussian distribution with zero skew. In the top part

FIGURE 5: Illustration of the worst-case solution in context of
the constraint feasible space and uncertainty sets.

of the illustration, the reduced feasible space for constraints with
simple bounds is demonstrated, while the bottom shows the 3gσ
bound for an arbitrary path constraint. One of the limitations of
the PR-UCCD formulation is that all of the scenarios that differ
from the expectation are penalized, regardless of performance.
In other words, the formulation penalizes the superior (i.e., better
than the mean value) and the poor performance (i.e., worse than
the mean value) simultaneously. A more detailed discussion on
the implications of using dispersion as a robustness measure is
provided in Sec. 5.3. References [49, 83] use the probabilistic
UCCD formulation for the UCCD problem of a hybrid electric
vehicle powertrain and a fuel cell hybrid electric truck, respec-
tively.

A major challenge associated with the probabilistic formula-
tions presented so far is that obtaining distributional information
about the uncertain factors is not always viable. In addition, even
if this information can be estimated, the resulting formulation is
generally computationally intractable [84]. The first challenge is
generally addressed by using concepts from robust optimization,
which is discussed next.

4.4 Worst-Case Robust (WCR-UCCD)
Robustness in UCCD is motivated by the fact that when a solu-
tion to a deterministic CCD problem exhibits large sensitivities
to perturbations in problem parameters, it becomes highly infea-
sible and impractical. This issue has been traditionally addressed
by robust control, as well as robust design optimization commu-
nities in disparate efforts. However, to utilize the full synergistic
performance potential of UCCD, both plant design and control
system domains must be explored simultaneously in a balanced
way. While robust UCCD has only been investigated in a hand-
ful of studies [9,10,49], there’s a need for practical formulations
and interpretations of robustness in UCCD problems. In this sec-
tion, we first describe robustness and its associated worst-case
realization and then introduce the WCR-UCCD formulation.

4.4.1 Robust Interpretation. In its most common interpre-
tation, a solution is robust if it remains feasible for all of the
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realizations of uncertainty within the uncertainty set. This no-
tion naturally leads to the definition of an equivalent determinis-
tic formulation that is referred to as the robust counterpart (RC).
Utilizing the epigraph representation of the objective function in-
troduced in Sec. 3.4, the RC of the general UCCD problem can
then be formulated as:

minimize:
û,ξ̂,p̂,v

v

subject to:

g(t,u,ξ,p,d) ≤ 0
o(t,u,ξ,p,d)− v ≤ 0
(t,u,ξ,p,d) ∈ E

∀ (u,ξ,d) ∈ Rt(q̂t)
∀ p ∈ R(q̂)

(29)

where (û, ξ̂, d̂) ∈ Rt(q̂t) and p̂ ∈ R(q̂) are nominal set parame-
ters that result in the smallest value of the objective function v
that can simultaneously satisfy all of the constraints for all uncer-
tainty realizations within the set. Note that the entirety of uncer-
tainty sets are imposed on the constraint feasible space. Depend-
ing on the properties of our uncertainty sets, this may result in a
finite or infinite number of hard constraints. In the remainder of
this section, we assume that the new deterministic optimization
variable v is included in the vector of time-independent optimiza-
tion variables p, and the new inequality constraint is included in
g(·).

If Eq. (29) is to be satisfied for every realization of uncertain-
ties, then Rt(q̂t)×R(q̂) must be contained within the constraint
feasibility set. Mathematically, the constraint feasible space can
be defined as:

ID B
{
(u,ξ,p,d) |

{
{g(·) ≤ 0}∩E(·)

}}
(30)

and the feasible space of the RC problem can be described as:

IRC B
{
(u,ξ,p,d) ∈

{
{Rt(q̂t)×R(q̂)}∩ID

}}
(31)

where IRC ⊆ ID. This definition, which is required for the solu-
tion of Eq. (29), sheds some light on some of the considerations
in constructing uncertainty sets for practical robust implementa-
tions. For some bounded uncertainty set, this notion is conceptu-
ally illustrated for IRC and ID in Fig. 5.

4.4.2 Worst-Case Robust Interpretation. When the un-
certainty set is infinite, Eq. (29) is a semi-infinite problem where
there’s a finite number of decision variables and an infinite num-
ber of constraints. Generally, this RC problem is large, in-
tractable, and difficult to solve. For instance, the RC of a linear
optimization problem is typically a nonlinear optimization prob-
lem. Despite such difficulties, the robust interpretation offers a
certain relative simplicity and computational viability compared
to other interpretations, making it a valuable tool for understand-
ing and addressing uncertainties in many engineering problems,
including UCCD.

One approach to deal with this semi-infinite problem is to
replace the infinite uncertainty set with a finite subset or a se-
quence of successively refined grids [85]. A more constructive
approach, however, is to replace semi-infinite constraints with

the solution of the constraint maximization problem. To under-
stand this idea, we draw an analogy from the game theory liter-
ature. Assume that the optimizer has a natural adversarial oppo-
nent [86,87]. Therefore, for every decision the optimizer makes,
the adversarial opponent makes a decision (over uncertainties)
to disturb constraints as strongly as possible. This notion leads
to the realization of worst-case uncertainties and, consequently,
the concept of min−max, or minimax robust formulation, which
was briefly introduced in Eq. (21).

4.4.3 WCR-UCCD Formulation. To adopt the WCR inter-
pretation for UCCD, we need to differentiate between the deci-
sion space of the optimizer and the decision space of the adverse
player. In addition to the analysis-type feasibility space, which
affects both players, the adverse player is restricted in its deci-
sions to uncertainties contained within Rt(q̂t)×R(q̂). The WCR-
UCCD problem is now formulated such that the deterministic
objective function v is minimized over the set of optimizations
variables [û, ξ̂, p̂], subject to constraint maximization problems,
Type I feasibility set, and (potentially) additional feasibility con-
straints:

minimize:
û,ξ̂,p̂

v (32a)

subject to: Φi(t, û, ξ̂, p̂, d̂) ≤ 0 for i = 1, . . . ,ng (32b)

(t, û, ξ̂, p̂, d̂) ∈ E (32c)

ψ(û, ξ̂, p̂, d̂) ≤ 0 (32d)

where (û, ξ̂, d̂) ∈ Rt(q̂t) ⊆ Xcrisp(t) and p̂ ∈ R(q̂) are inputs to the
inner-loop optimization problem for all ng inequality constraints.
Equation (32c) ensures that the nominal set parameters satisfy
the analysis-type equality constraints. ψ(·) are optional addi-
tional feasibility constraints, similar to the ones used in Ref. [30].
The inner-loop maximization problem Φi(·) is:

maximize:
u,ξ,p,d

gi(t,u,ξ,p,d) (33a)

subject to: (t,u,ξ,p,d) ∈ E (33b)
(u,ξ,d) ∈ Rt(q̂t), p ∈ R(q̂) (33c)

where (u,ξ,d) ∈ Rt(q̂t) ⊆ Xcrisp(t) and p ∈ R(q̂) ⊆ Xcrisp are the
worst-case combination of uncertainties belonging to their asso-
ciated sets for constraint i. This inner-loop optimization problem
attempts to maximize gi by selecting the worst-case combination
of uncertainties, subject to all of the Type I equality constraints
and the definition of the uncertainty sets. The feasibility sets
associated with the inner-loop and outer-loop problem structure
require special considerations similar to the ones described in
Ref. [30]. This WCR-UCCD formulation, which presents the
broad case of independent uncertainties within all problem ele-
ments, is decomposed such that the optimization problem of the
decision-maker is formulated in the outer loop, and the optimiza-
tion of the adversarial player is formulated in the inner loop. De-
pending on the problem at hand, other coordination strategies
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may also be used. This interpretation of robustness has been
used along with a model predictive control strategy to find a ro-
bust UCCD solution of an aircraft thermal management system
in Ref. [10]. In addition, Ref. [35] compares the worst-case ro-
bust UCCD solution of a simplified strain-actuated solar array to
that of the stochastic in expectation UCCD.

4.5 Fuzzy Expected Value (FE-UCCD)
When uncertainties in UCCD are represented as fuzzy vari-
ables and processes, the UCCD problem can be formulated us-
ing a fuzzy expected-value model. The challenge is to choose
optimization variables such that the objective function, which
is related to some fuzzy processes (through fuzzy differential
equations), is optimized. Here, we use the expected-value
model [38, 68]:

minimize:
ũ,ξ̃,p̃

E[o(t, ũ, ξ̃, p̃, d̃)] (34a)

subject to: E[g(t, ũ, ξ̃, p̃, d̃,w̃)] ≤ 0 (34b)

(t, ũ, ξ̃, p̃, d̃) ∈ E (34c)

where we note that in this formulation (ũ, ξ̃, d̃) ∈ Xfuzzy(t) and
p̃ ∈ Xfuzzy. In this formulation, E refers to the feasibility set of
analysis-type equality constraints that now contain fuzzy differ-
ential equations. Reference [88] uses the fuzzy expected value
model for optimal pricing and inventory policies.

4.6 Possibilistic Chance-Constrained (PCC-UCCD)
As opposed to FE-UCCD, which is a risk-neutral formulation,
PCC-UCCD utilizes a possibility measure to hedge against un-
certainties. This measure ensures that fuzzy constraints hold
within a given confidence threshold [68]. The possibility-based
chance-constrained UCCD formulation can be written as:

minimize:
ũ,ξ̃,p̃

E[o(t, ũ, ξ̃, p̃, d̃)] (35a)

subject to: POS[gi(t, ũ, ξ̃, p̃, d̃) > 0] ≤ POS f ,i (35b)

(t, ũ, ξ̃, p̃, d̃) ∈ E (35c)
where POS f ,i is the target possibility of failure of constraint i,
and (ũ, ξ̃, d̃) ∈ Xfuzzy(t) and p̃ ∈ Xfuzzy and ˙̃ξ−f (·) = 0 contained
in E are now fuzzy differential equations. A possibilistic chance-
constrained formulation for a unit commitment problem involv-
ing demand response, electric vehicles, and wind power is pre-
sented in Ref. [89].

5 DISCUSSION
With various formulations now defined, we discuss several as-
pects of them in more detail, focusing on their connections and
existing research.

5.1 Norm-Induced Uncertainty Sets
The worst-case robust formulation, introduced in Sec. 4.4.3, is
directly related to the choice of Rt(q̂t) and R(q̂). In robust op-

timization, these uncertainty sets are generally defined accord-
ing to some norm. Using only the notation for time-independent
variables, these norm-induced uncertainty sets are mathemati-
cally defined as:

N B
{
q | z (q̂−q) ≤ ηq

}
(36)

where z(·) is a specified function chosen to represent the geom-
etry of the uncertainty set, often through an applied norm such
as ℓ1, ℓ2, ℓp, D, CVaR, etc. [90]. The resulting uncertainty sets
may have different shapes and geometries, such as box, ellip-
soidal, polyhedron, etc. The size of the uncertainty sets, which
is also a modeling choice, is prescribed through ηq, which is in-
cluded in the vector of problem data. Through these parameters,
the decision-maker has the advantage of leveraging the size and
structure of the uncertainty set to benefit from different properties
of the resulting sets [16,17,91,92]. As an example, a simple box
uncertainty set for plant optimization variables can be defined as
z(p̂) = |p̂−p| and ηp =∆p.

Note that if the size of the selected set compared to the re-
ality of the uncertain phenomenon is too large or too small, it
might result in a solution that is too conservative or high-risk,
respectively. To address this issue, one may attempt to optimally
leverage the uncertainty set’s size, shape, and structure to obtain
a meaningful solution for a given metric. This requires that the
uncertainty sets are treated as additional optimization variables,
leading to the concept of adjustable uncertainty sets as described
in Refs. [67,93]. Robust unit commitment with adjustable uncer-
tainty sets for uncertain wind generation is discussed in Ref. [94].

5.2 Linking Stochastic and Worst-Case Robust For-
mulations

Different forms of uncertainty representation lead to different in-
terpretations and, therefore, problem formulations. Specifically,
in SCC-UCCD, it is assumed that the probability distribution
of uncertainties is known or can be estimated. In contrast, the
WCR-UCCD assumes that uncertainties belong to a crisp set and
no probabilistic information is available. Therefore, while the
SCC-UCCD gives a probabilistic measure to quantify the risks
associated with constraint violation, the robust UCCD cannot of-
fer such a measure. Nevertheless, strict satisfaction of (infinitely
many) hard constraints in WCR-UCCD in Eq. (29) (when an
appropriately sized/shaped uncertainty set is selected) is equiv-
alent (in the limit) to the satisfaction of probabilistic constraints
in SCC-UCCD with an infinitesimally small failure probability.

In addition, in modern robust approaches, the size and geom-
etry of the uncertainty sets may be leveraged to adjust the associ-
ated risk. For instance, increasing the size of the uncertainty set
in the WCR-UCCD increases the number of constraints that need
to be satisfied in Eq. (29), which is equivalent to reducing the
probability of failure P f in SCC-UCCD formulations. Finally,
Refs. [15, 17] offer probabilistic interpretations of robust formu-
lations, which practically bridge the gap between the minimax
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interpretation of robust formulations and the probabilistic inter-
pretation of stochastic chance-constrained problems. This inter-
pretation leads to the notion of probabilistic guarantees for ro-
bust optimization problems and seeks to connect robust feasibil-
ity to the probability of feasibility. Consequently, even when the
underlying distribution is known, benefits from the tractability
of robust formulations may compel one to use such probabilis-
tic guarantees in robust formulations instead of using stochastic
ones. Such probabilistic guarantees may be computed a priori as
a function of the structure and size of the uncertainty set and lead
to the notion of a budget of uncertainty [17].

5.3 Robustness in the PR-UCCD Formulation
For an arbitrary objective function, the probabilistic robust in-
terpretation, along with the Pareto optimal front between the ex-
pectancy and dispersion terms for notional small, medium, and
large uncertainties are presented in Fig. 6. From Fig. 6b, it is
clear that PR-UCCD is not always a risk-averse formulation be-
cause the optimal, multiobjective solution is invariant with re-
spect to variance for the majority of weighting factors. However,
as uncertainties increase in size, the objective function exhibits
more deviations compared to the deterministic case. While, in
Fig. 6b, this behavior is attributed to the magnitude of uncertain-
ties, studies have shown that the usage of variance as a measure
to quantify robustness has some limitations and requires restric-
tive assumptions [95–98]. For instance, Malak et al. argue that
using variance to quantify robustness can bias decision-makers
toward demonstrably riskier alternatives, for example, when the
underlying distributions have nonzero skew [95].

To address such limitations, one approach is to use concepts
from normative decision theory, such as representation theorems
[99], that often result in a mathematical description of decision-
maker’s preferences through a utility function. The shape of this
utility function conveys information about decision-maker’s risk
attitude. For example, a locally concave utility function corre-
sponds to a risk-averse attitude; a linear utility function corre-
sponds to a risk-neutral attitude; and a convex utility function
corresponds to a risk-taking attitude [95].

The usage of expected utility theory for the arbitrary objec-
tive function of Fig. 6, is presented in Fig. 7. In this illustra-
tion, we define a constant relative risk-averse utility function as
U(x̃) = o(x̃)(1−ρ)−1

1−ρ . The relative degree of risk aversion in this util-
ity function is the constant ρ; therefore, the changes in o(x̃) do not
affect the decision-maker’s attitude towards risk. From Fig. 7a, it
is notable that when ρ is close to zero, the utility function tends to
linearity (i.e. risk neutral), while for larger values of ρ the utility
function becomes concave (i.e. risk averse). Here, the increas-
ingly risk-averse behavior of the decision-maker (as ρ goes from
0 to 1) is modeled through utility functions with increasingly less
extreme changes over the function domain. In other words, as we
become more risk averse, the loss incurred from possibly losing
the lottery (i.e. not being able to realize the best objective func-

tion) decreases. Figures 7b-7d present these utility functions for
notional small, medium, and large uncertainties.

5.4 Insights From Robust Control Theory
Robust control theory is involved with the analysis and synthe-
sis of controllers that can mitigate the impact of uncertainties
on performance specifications and stability. In classical control
theory, these performance specifications are described through
frequency or time domain measures. Various tools such as gain
and phase margins [100], disk margins [101], H2, H∞, and µ-
synthesis [6] have been developed to address uncertainty-related
challenges.

The development of robust control theory has been largely
dependent upon the benefits of feedback control. First, it should
be emphasized that the generalized formulation introduced in
Eq. (10) may entail control gains pc that are used to establish
a feedback control. In addition, while closed-loop control plays
an essential role in mitigating the impact of some uncertainties
in UCCD problems, these uncertainties still affect the dynamic
system behavior and the overall system performance. As shown
in Fig. 8, a notional infinite-horizon linear quadratic regulator
(LQR) (which is an optimal controller for its associated cost
function) reduces uncertainty in the system response over time
to the reference value, assuming stability under the uncertainties.

5.5 Insights From Stochastic Control Theory
In stochastic control theory, idealized processes such as station-
ary, normal, Markov, second-order, and Wiener are used to char-
acterize the distribution of stochastic processes. Many of the dis-
turbances affecting the control system can be modeled by pro-
cesses generated from Wiener processes [7]. While we previ-
ously assumed that the noise vector is included in the vector of
problem data d̃, to keep the notation consistent with stochastic
control theory, here, we use w̃ to describe an nw-dimensional
standard Brownian motion defined on a complete probability
space. The nonlinear stochastic system model can be described
as:

dξ̃(t) = f (t, ũ, ξ̃, p̃, d̃)dt+b(t, ũ, ξ̃, p̃, d̃)dw̃(t) (37)
where the f (·) and b(·) are maps that are commonly referred to
as the drift and diffusion terms, respectively [102]. Because stan-
dard Brownian motion is not differentiable, its associated integral
form is commonly used instead and requires It̂o, Stratonovich, or
backward integral approaches.

A special case of Eq. (37) is when the dynamics are linear
and the objective function is quadratic in (ξ̃(t), ũ(t)). This prob-
lem, referred to as a stochastic linear-quadratic problem (SLQ-
UCCD), is significant because the optimal control law can be
synthesized into a feedback form of the optimal state, and the
corresponding proportional coefficients may be specified through
the associated Ricatti equation. This unique control law is a com-
bination of the Kalman filter and LQR. Additionally, we note that
for linear systems with additive white noise, several tools become
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(a) Deterministic o(x). (b) Small uncertainty. (c) Medium uncertainty. (d) Large uncertainty.

FIGURE 6: Illustration of a Pareto trade-offs in the probabilistic robust objective function for several different levels of uncertainty (xσ)
of a single uncertain variable x̃ =N(xµ, x2

σ).

(a) Utility functions. (b) Small uncertainty. (c) Medium uncertainty. (d) Large uncertainty.

FIGURE 7: Illustration of a constant relative risk averse utility function, Uµ(x̃) = −E[ o(x̃)(1−ρ)−1

1−ρ ] with various relative risk aversion levels
ρ for three levels of uncertainty (xσ) of a single uncertain variable x̃ =N(xµ, x2

σ).

FIGURE 8: Reference tracking of a stable control system with
several uncertainties using an infinite-horizon linear quadratic
regulator (LQR).

available. For example, using linear filters such as the Wiener fil-
ter in the frequency domain and Kalman filters in the state-space
domain, one can separate the noise from the signal of interest by
minimizing the mean-square error [103]. Finally, there are other
cases studied when the state equation is linear [102, 104, 105].

5.6 Open-loop Control Structure Under Uncertainties
There is an essential question on the role of optimal control
trajectories in the open-loop formulation of UCCD problems.

In response to uncertainties, one may use an open-loop single-
control (OLSC) or an open-loop multiple-control (OLMC) struc-
ture. OLSC is structured to find a single control command, which
is often used for reference tracking applications, while OLMC
elicits a range of optimal control responses based on the realiza-
tion of uncertainties. Distinctions between the two structures are
best manifested when solving boundary-value UCCD problems.
This is because, unlike OLMC, the single control command in
OLSC cannot satisfy all of the prescribed initial and terminal
boundary conditions in the presence of uncertainties.

This issue has been dealt with in two different ways in the
literature: (i) relaxing the prescribed terminal boundary con-
ditions [8, 49], or (ii) minimizing the variance of the terminal
state in a multi-objective optimization problem [106,107]. These
remedies enable a solution to the OLSC-UCCD problem, but
they have limitations because they do not enforce the terminal
boundary conditions. This caveat is problematic because relax-
ing the boundary conditions is not practically viable for many
real-world applications. Therefore, OLSC should be used selec-
tively in the appropriate context.

On the other hand, OLMC is based on the idea that un-
certainty realizations should elicit a distinct optimal control re-
sponse from the UCCD problem (which has conceptual similari-
ties to how closed-loop systems respond). Because each distinct
optimal control response is only associated with a specific uncer-
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tainty realization, all the initial and terminal boundary conditions
may be satisfied in this control structure. Through this, OLMC
provides additional insights into the uncertainty-informed limits
of the system performance. Therefore, OLMC is suitable dur-
ing early-stage design, where plant and control spaces are being
explored, not only for optimal performance but also for reliabil-
ity, robustness, or any other risk measures. OLSC and OLMC
structures are compared in Ref. [35].

5.7 Stochastic and Robust Model Predictive Control
While all formulations introduced in this article consider a
single-horizon UCCD problem, model predictive control (MPC)
solves a sequence of such problems to find a cost-minimizing
control action for a relatively short horizon in the future. For
online implementations, this controller has the advantage of the
current state information to predict state trajectories that emanate
from the current state. The issue of uncertainties considered with
robust and stochastic MPC [10, 108, 109].

5.8 Moving Forward
Addressing uncertainty-related challenges in various engineering
domains requires identifying ways to characterize that domain’s
uncertainties. A critical aspect of this task is understanding the
availability of information at different stages of the design pro-
cess. This, along with the risks involved in the specific appli-
cation of interest, to some degree inform the designer’s decision
to employ any of the formulations presented in this article. Ad-
ditionally, the choice of solution strategies is of great theoreti-
cal and practical importance. It requires consideration of several
factors, including the suitability of the approach for specific de-
signer preferences, domains, computational cost, accuracy, con-
vergence, etc. The impact of solution strategies on the integrated
UCCD solution and their inclusion in various coordination strate-
gies must be further investigated in order to provide answers to
issues such as scalability. An initial effort is Ref. [35], which
offers some preliminary insights into comparisons between an
SE-UCCD and WCR-UCCD using MCS and generalized poly-
nomial chaos expansion.

6 CONCLUSION

With all the recent advances and applications of (deterministic)
control co-design, significant work is still needed to handle un-
certainty when developing effective combined plant and control
solutions. Investigating the current state-of-the-art for uncertain
control co-design (UCCD), we have identified several significant
assumptions. Generally, the scope of uncertainties is limited to a
single discipline (often either with a plant or control or even so-
lution method emphasis). Additionally, different interpretations
and representations of uncertainty affect different problem ele-
ments, including the objective function, equality/inequality con-
straints, and optimization variables.

To start to address these shortcomings, this article discussed
a broad range of relevant uncertainties and the multitude of ways
to characterize UCCD problem elements. The discussion nat-
urally led to six specialized UCCD problem formulations, in-
cluding stochastic in expectation, stochastic chance-constrained,
probabilistic robust, worst-case (minimax) robust, fuzzy expec-
tation, and possibilistic chance-constrained. These formulations
are not disconnected; the link between minimax robust and
stochastic chance-constrained UCCD was also discussed.

Overall, this article aims at providing a concrete frame-
work to discuss and represent uncertainties in UCCD, providing
a foundation for additional advances, both in theory and appli-
cations of UCCD. Understanding how to represent and interpret
a domain’s uncertainties is one of the first challenges. A nat-
ural next step is to investigate methods and solution strategies
corresponding to these formulations, seeking to balance various
design goals and computational expense.
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Acronyms

AAO all-at-once
a.s. almost surely
CCD control co-design
CVaR conditional value at risk
FDE fuzzy differential equations
FE fuzzy expected value
LQR linear quadratic regulator
MCS Monte Carlo simulation
MPC model predictive control
OLMC open-loop multiple control
OLSC open-loop single control
ODE ordinary differential equations
PCC possibilistic chance-constrained
PR probabilistic robust
RBDO reliability-based design optimization
RC robust counterpart
SCC stochastic chance-constrained
SDE stochastic differential equations
SE stochastic in expectation
UCCD uncertain control co-design
WCR worst-case robust
Subscripts

0 initial
N nominal values
f final
i counter
t time-dependent
µ mean-value
σ standard deviation
Key Variables
D set of deterministic variables
d vector of problem data
d̃ vector of uncertain problem data
E expected value
E feasible set of Type I equality constraints
f (·) state derivative function
g(·) inequality constraint vector
h(·) equality constraint vector
I indicator function

ID constraint feasible set
IRC feasible space of the RC problem
ks constraint shift index
ℓ(·) Lagrange term
M(·) set membership function
m(·) Mayer term
n number of elements in a set
o(·) objective function
P probability measure
p vector of time-independent optimization variables
p̃ time-independent uncertain optimization variables
POS f ,i failure possibility for the ith constraint
P f ,i target failure probability of ith constraint
P f ,sys system target failure level
pc time-independent control optimization variables
pp time-independent plant optimization variables
q̂ vector of nominal variables
R uncertainty set used in WCR
t time
U set of uncertain variables
u control vector
ũ uncertain control vector
v objective function variable in epigraph form
w̃ uncertain noise vector
Xcrisp crisp description of uncertainty set
Xfuzzy fuzzy description of uncertainty set
Xstc stochastic description of uncertainty set
x an arbitrary deterministic variable
αw weighting factor
βt target reliability level
ξ state vector
ξ̃ uncertain state vector
σa allowable standard deviation vector associated with g
Φ(·) constraint maximization problem in Eq. (32)
ψ(·) feasibility constraint in Eq. (32)
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