Dr. Amy Pruden - Home | Resumé | Classes | Students | Projects

CE 540 Treatment of Contaminants I (Biological) - Course Outline

Meeting Time: MWF, 8-8:50 AM
Place: B3 ENG

Instructor: Amy Pruden
  Office phone: 491-6670 (campus), 491-8814 (ERC, voice)
  Office: A207D ENG, 307B ERC

Text: (required) Environmental Biotechnology (2001), authors: Bruce Rittmann and Perry McCarty
  (recommended) Wastewater Engineering Metcalf & Eddy 4th ed., (will be required in CE 541)

Summary of Topics to be covered
I.   Basics of Microbiology (Chapter 1) - 2 weeks
    a. Physiology of the cell
    b. Taxonomy and Phylogeny
    i.   Eukaryotes and Prokaryotes (Bacteria and Archaea), viruses
    ii.   Morphology: cocci, bacillus, spirillum, filamentous
    iii.   Trophic classifications: hetero/auto/chemo/litho/organotrophs
    c. Biochemistry and Enzymes
    i.   Michaelis-Menten kinetics
    ii.   Enzyme regulation
    d. Metabolism - energy balance
    i.   Anabolism/catabolism
    ii.   Krebs Cycle/ ATP production
    e. Molecular Biology - DNA/RNA
    i.   Enzyme production and regulation
    ii.   Plasmids
    iii.   Molecular tools for identifying and enumerating bacteria
    f. Microbial ecology
    i.   Selection
    ii.   Exchange of genetic info.
    iii.   Adaptation
    iv.   Enrichment cultures
II.   Stoichiometry and Bacterial Energetics (Chapter 2) - 2 weeks
    a. Mass balances
    b. Redox reactions: electron donor/electron acceptor
    i.   Redox half-reactions
    c. Energy balances (delta G)
    d. Biological Growth
    i.   Substrate Partitioning and Theoretical Yield
    ii.   Electron acceptors, fermentation
    iii.   Nitrogen source
    e. BOD/COD
III.   Microbial Kinetics (Chapter 3) - 2 weeks
    a. Monod Kinetics
    i.   Determination of rate constants
    ii.   No growth
    iii.   With growth
    b. Basic Mass balance (dX/dt; dS/dt)
    c. Enzyme inhibition - Haldane Kinetics
    d. Autocatalytic reactions
    e. Alternate Rate Expressions
    i.   Logistic growth
    ii.   Logarithmic growth
IV.   Reactors (Chapter 5) - 2 weeks
    a. Basic Reactors
    i.   Batch
    ii.   CSTR
    iii.   Plug-Flow
    b. Biofilm Reactors
    i.   Packed Bed
    ii.   Fluidized Bed
    iii.   Rotating Biological Contactor
    c. Reactor Arrangements
    i.   Recycle
    ii.   Series
    iii.   Parallel
    iv.   Hybrid
    v.   Sequencing Batch
    d. Basic mass balances and design considerations of each reactor type
V.   The Activated Sludge Process (Chapter 6) - 2 weeks
    a. Characteristics of Process Design
    b. Process Configurations
    i.   Oxygen supply
    ii.   Loading modifications
    c. Design and Operating Criteria
    i.   F/M ratio
    ii.   SRT
    iii.   MLSS and recycle ratio
    d. Aeration
    i.   Oxygen transfer rates
    ii.   Diffuse/ mechanical aeration systems
    e. Sludge-settling problems (bulking, foaming, etc.)
    f. Analysis and design of settling
    i.   Type I, II, III "zone settling" (M&E chapter 6)
    ii.   Loading criteria
    iii.   Basics of flux theory
VI.   Aerobic Biofilm Processes (Chapter 8, also Chapter 4 "Biofilm Kinetics") - 2 weeks
    a. Properties of microbial aggregation
    b. Idealized biofilm
    c. Estimating kinetic parameters in a biofilm
    d. SRT in a biofilm
    e. Biofilm process considerations
    f. Trickling filters/ biological towers
    g. RBCs
    h. Fluidized-bed reactors
VII.   Nutrient Removal (Chapters 9 "Nitrification," 10 "Denitrification," and 11 "Phosphorus Removal") - 2 weeks
    a. Nitrification
    i.   Biochem and physiology of nitrifying bacteria
    ii.   Activated Sludge versus Biofilm nitrification
    iii.   Role of BODL : TKN ratio
    b. Denitrification
    i.   Physiology of denitrifying bacteria
    ii.   Tertiary denitrification
    iii.   One-Sludge Denitrification
    c. Phosphorous Removal
    i.   Phosphate uptake (normal and luxury uptake)
    ii.   Precipitation by metal-salts addition
    iii.   Enhanced biological P removal, and Barden-Pho process
VIII.   Anaerobic Treatment (Chapter 13) - 1 week
    a. Applications of anaerobic (methanogenic) treatment
    b. Reactor configurations
    c. Chemistry and microbiology
    d. Kinetics of methanogenesis
    i.   Temperature
    ii.   CSTR
    iii.   Complex substrates
    iv.   Optimization of anaerobic digestion
    e. Special factors for design consideration
    i.   Loading criteria
    ii.   Mixing
    iii.   Heating
    iv.   Gas collection
    v.   Performance
IX.   Detoxification of Hazardous Chemicals (Chapter 14) - 1 weeks
    a. Factors causing molecular recalcitrance
    b. Classes of synthetic organics
    c. Energy metabolism vs. cometabolism
    d. Electron donor/acceptor
    e. Smin
    f. Examples of biodegradation of common contaminants

  Percent Total Grade:
Exams: Two midterm exams and one final exam. 15%, 15%, 20%
Problem Sets: 25%
Review Paper: 20%
Class Participation: 5%

Field Trip: A field trip has been scheduled to visit the New Belgium Brewery water treatment facility, Wednesday September 24th, 8:15 A.M (Meet between 8:00 and 8:10). The tour should last about an hour. If this tour does not fit with your schedule, then you should make alternative arrangements with the instructor. The field trip will count towards your participation grade.