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monotonically-decrease with time and represent the importance and urgency of a task.
These functions define the utility earned by a task at the time of its completion. The
performance of a computing system is measured as the total utility earned by all com-
pleted tasks over some interval of time (e.g., 24 h). We have designed, analyzed, and com-
pared the performance of a set of heuristic techniques to maximize system performance
when scheduling dynamically arriving parallel tasks onto a high performance computing
(HPC) system that is oversubscribed and energy constrained. We consider six utility-aware
heuristics and four existing heuristics for comparison. A new concept of temporary place-
holders is compared with scheduling using permanent reservations. We also present a
novel energy filtering technique that constrains the maximum energy-per-resource used by
each task. We conducted a simulation study to evaluate the performance of these heuris-
tics and techniques in multiple energy-constrained oversubscribed HPC environments. We
conduct an experiment with a subset of the heuristics on a physical testbed system for
one scheduling scenario. We demonstrate that our proposed utility-aware resource man-
agement heuristics are able to significantly outperform existing techniques.
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1. Introduction

High performance computing (HPC) environments are commonly used to execute computationally intensive tasks. These
tasks are often parallel, meaning that they utilize multiple cores within an HPC environment to reduce the time required to
complete the computational work of the task. It is necessary to have resource managers that execute the workload arriving
into the system in a way that attempts to maximize the amount of useful work that the system accomplishes. This is
especially important when the system is oversubscribed, e.g., the system cannot begin executing each task as soon as the
task arrives in the system.

The heterogeneous HPC environments that we modeled in this study are based on those being investigated by the
Extreme Scale Systems Center (ESSC) at Oak Ridge National Laboratory (ORNL). The ESSC is part of a collaborative effort
between the Department Of Energy (DOE) and the Department of Defense (DoD) to perform research and deliver tools,
software, and technologies that can be integrated, deployed, and used in HPC environments in both DOE and DoD.

Many systems use metrics such as “utilization” of machines to measure the performance of the system’s resource man-
ager. Because we consider an oversubscribed heterogeneous environment, utilization is not an effective performance mea-
sure. This is because assigning a task to the node types that take longer to complete the task (i.e., node types that are not
as effective for that task) will still result in high system utilization, but provide delayed results for that task. Furthermore,
because the system is oversubscribed, we would expect to always have near 100% utilization.

To effectively model the performance of an oversubscribed heterogeneous system, for this study we employ the concept
of utility functions [1], which are appropriate for modeling the needs of DOE and DoD. Utility functions are monotonically-
decreasing with time and represent the importance and urgency of a task. They define the utility earned by a task at the
time of its completion. The performance of the overall computing system is measured by the total utility earned from
completing tasks in a given period of time. We refer to this as the system utility.

Energy is an expensive and potentially limited resource required to operate HPC systems (e.g., [2-5]). It has been found
that attempting to scale up current systems to achieve an exascale system would result in energy and power requirements
that are currently not feasible. For example, the power requirement would be greater than a gigawatt [5]. In some environ-
ments, there is a limit on the amount of energy that is available in some interval of time [4,6]. In this study, we constrained
the amount of energy available to the HPC system each day. The general problem of mapping tasks onto a set of resources
is known to be NP-hard [7]. It is not possible for an algorithm to find optimal solutions to NP-hard problems for a real-
istic system in a reasonable amount of time. To effectively maximize system utility while satisfying this energy constraint,
heuristics are needed. We also created a new energy filtering technique to improve the energy efficiency of our heuristics.

We designed four utility-aware resource allocation heuristics: Max Utility, Max Utility-per-Time, Max Utility-per-Resource,
and Max Utility-per-Energy. We compared these to four approaches from the literature: Conservative Backfilling, EASY Back-
filling, FCFS (first-come, first-served) with Multiple Queues, and Random [8,9]. In addition, we designed two metaheuristics
that switch between the Max Utility-per-Resource and Max Utility-per-Energy heuristics depending on how energy con-
strained the system is at the time of the task’'s mapping.

Many heuristics for the resource allocation of parallel tasks in HPC environments schedule using permanent reservations
to allow for allocations of nodes to tasks in the future (e.g., [8,9]). Because permanent reservations can be restrictive, we
developed the concept of using temporary place-holders when scheduling. This provides additional flexibility by allowing
newly arriving tasks of high utility to replace tasks that have reserved resources with place-holders.

The novel contributions of this work include:

e the design of utility-aware heuristics and an energy-per-resource filtering technique with the goal of maximizing utility
earned by parallel tasks while obeying an energy constraint in heterogeneous oversubscribed HPC environments;

» the design of new metaheuristics that make use of the strengths of different utility-based heuristics;

« the validation of the relative performance of the heuristics derived by the simulator through the use of an experiment
on a physical testbed system for one scenario.

Preliminary versions of portions of this material appear in the 2015 Metaheuristics International Conference [10] and the
2016 Heterogeneity in Computing Workshop [11]. The differences between this work and the preliminary versions include:
(a) the design, analysis, and evaluation of two new metaheuristics that in general result in improved performance; (b) the
simulation of many more environments, which is used to further analyze the performance of the heuristics and the effect
that different parameters have on the heuristics; and (c) experiments on a physical testbed are used to further evaluate the
heuristics.

This paper is organized as follows. In Section 2, we define the HPC environment and problem we are addressing.
Section 3 explains the resource management techniques that are utilized. The setup for our simulated environment is
detailed in Section 4. The simulation analyses and comparisons are presented in Section 5. An experiment that we per-
formed on a testbed system has its setup and results shown in Section 6. In Section 7, we discuss related work. Finally, in
Section 8 we conclude and discuss future work.
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Fig. 1. A compute system composed of C clusters. Cluster 1 has n nodes and cluster C has m nodes.

2. Environment and problem description
2.1. Compute system model

We modeled an environment where the compute system is composed of heterogeneous clusters of nodes, as shown in
Fig. 1. A node is the atomic unit of resource allocation in this model. Each node is composed of one or more cores. The
nodes that form each cluster are homogeneous, meaning that they are identical (and therefore have the same number and
type of cores). The node architecture varies among clusters and each cluster can have different numbers of cores per node.
We modeled cores that utilize dynamic voltage and frequency scaling (DVFS) to switch among multiple performance states
(P-states), where each P-state provides different power consumption and execution speed [12]. h

2.2. Workload and environment characteristics

Tasks arrive dynamically and may be required to execute on multiple nodes concurrently (i.e., parallel execution). Because
the environment is oversubscribed, it is not possible for all tasks to earn their maximum utility due to the delay in their
completion time. In this study, we do not allow a task to be assigned across nodes in separate clusters. Our model assumes
that tasks are independent (potentially submitted by different users) and therefore do not communicate with one another.
We make the assumption that tasks cannot be preempted (i.e., once they begin executing, they execute to completion).

Task types in this environment have estimated execution characteristics (execution time and energy consumed) that are
deterministic and known to the system resource manager. We assume that this information is available through historical
and experimental data. This assumption is a common practice in research for resource allocation (e.g., [13-15]). Tasks with
similar execution characteristics belong to the same task type. Whenever a task arrives to the system it specifies its task
type, the number of nodes that it will need depending on the cluster it is assigned to, and its utility function (tasks of the
same type do not necessarily have the same utility function). Because the environment is heterogeneous, cluster A may be
faster (or more energy efficient) than cluster B for one task type, but not for all task types.

When a task is assigned to execute in the system, it is assigned to a set of nodes in one of the clusters. All nodes in this
set will use the same P-state. Within each cluster, execution characteristics are defined by an Estimated Time to Compute
(ETC) matrix and an Average Power Consumption (APC) matrix [6]. The ETC matrix is used to specify the execution time of
tasks for each task type, cluster type, and P-state combination for some number of nodes. Because nodes within a cluster are
homogeneous, the ETC only needs to reference the number of nodes that a task type will use in a given cluster. An example
of part of an ETC matrix, where the cluster and P-state have already been selected, is shown in Fig. 1. It is assumed that
from past executions or experiments we have entries for certain levels of parallelism, i.e., for certain numbers of nodes.
In some cases, a task type's execution time may increase (instead of decrease) with an increased number of nodes due to
increased communication and synchronization overheads. In our simulations, if the number of nodes the task needs is not
listed in the ETC matrix then its execution time is assumed to be between two values listed in the matrix, and we calculate
its execution time using linear interpolation. We assume that all tasks require a number of cores between the minimum
and maximum values provided in the ETC matrix.

The APC matrix defines the average power consumption of the nodes that a task will utilize and is structured similarly
to the ETC matrix. We can calculate an estimate of the total energy that any task will consume by multiplying its execution
time and average power consumption value.
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Table 1
An example of an ETC matrix that specifies execution time for task type and number of
nodes for a given cluster and P-state.

task type number of nodes above execution time
1 1 2 4 16 32
100 70 50 25 30
5 256 512
300 200
3 8 16 64
100 80 70
clusters
cluster 1

| node 1 | | node 2

___I nndenl

cluster 2

=1 =)

Fig. 2. Flow for the proposed resource manager. Tasks enter the resource manager and are mapped to the nodes of clusters. Each task is mapped to the
nodes of a single clusters.
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6 utility 5.18
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Fig. 3. An example of a utility function for task 1, If task 1 completes at time 15, it earns 5,18 utility, If task 1 complete at time 40, it earns 2.84 utility.

In Fig. 2, the interaction between the different components of the modeled system is shown. Tasks arrive dynamically
and are sent to the resource manager. The resource manager will use the ETC and APC information, in addition to the utility
function of the task, to map the tasks to nodes in one of the clusters.

2.3. Utility functions

Our performance metric is based on utility, a flexible measure of the importance of a task. Utility functions [1] are
monotonically decreasing functions that define the utility that a task earns upon completion, and depend on the amount of
time that has passed since the task was submitted to the system as depicted in Fig. 3. In this study, utility functions are
defined by three parameters: priority, urgency, and a utility class. The priority of a utility function is equal to its starting
utility (the maximum it can possibly earn). Urgency is used to define the rate at which the utility function will decay. The
utility for functions with a higher urgency value will decrease at a faster rate than those with a lower value. The utility class
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defines the shape of the utility function, and is scaled using the priority and urgency. Each task has an associated utility
function that may differ from the utility functions of other tasks.

2.4. Problem statement

We defined the system utility earned over a day as the sum of utility earned by all tasks that are completed by the sys-
tem during that day. This also includes a portion of the utility earned by each task if the task would be partially completed
during that day. This can occur when the task has an execution time greater than the amount of time remaining in the day
when its execution begins and it has not yet finished its execution when the day reaches its end. For example, if a task
were to complete 70% of its total execution time during day i and 30% of its total execution time during day i+ 1, then
the utility earned for this task during day i would be 70% of the task’s final utility and the utility earned during day i+ 1
would be the remaining 30% of the task’s final utility. The system is oversubscribed, and has an energy constraint, which is
the maximum amount of energy that it can consume each day. The goal of our resource manager was to maximize the utility
earned by the system subject to the energy constraint of the system.

3. Resource management
3.1. Mapping events

Mapping is the process of assigning and scheduling tasks to the nodes of the HPC system. When a task arrives to the
system, it is added to the set of mappable tasks. Once a task is mapped to nodes, it is removed from this set. During a
mapping event, the resource manager makes allocation decisions for some or all mappable tasks in the system. In each
mapping event, three techniques are used to assist in maximizing system utility. First, some of the tasks are dropped to tol-
erate oversubscription (described in Section 3.3). Next, energy filtering (detailed in Section 3.8) attempts to improve energy
efficiency by limiting the allocation options for tasks. Finally, one of the heuristics defined in Sections 3.4, 3.5, or 3.6 is used
to make the final resource management decisions. In the environment we considered, mapping events occur every 60 s, but
this can be changed depending on factors such as task arrival rates and the average execution time of tasks.

3.2. Permanent reservations and place-holders

A permanent reservation marks the resources that will be allocated to a task at some point in the future. The number
of cores allocated to a task is equal to the number of nodes that are allocated to the task multiplied by the total number of
cores on each node (even if only a subset of the cores in a node are used by the task). Throughout this paper, we refer to
the resources allocated to a task as the amount of time that the task will take to execute multiplied by the number of cores
that are allocated to that task:

resources allocated = execution time x cores allocated. (1)

If a task cannot begin executing immediately on available nodes, a permanent reservation can be made for the task so
that it can begin executing at a future time. This is done so that the resource manager is aware of tasks that cannot begin
executing immediately due to required resources being unavailable. Permanent reservations cannot be removed or moved,
i.e., they ensure that the reserved task will start execution on those resources at that future time. We created place-holders
as an alternative to permanent reservations. A place-holder is similar to a permanent reservation, except that all place-
holders are removed from the system at the beginning of the next mapping event. This creates opportunities for newly
arriving tasks to begin execution sooner if those tasks would earn more utility than the tasks originally scheduled to those
resources during the last mapping event.

3.3. Tusk dropping

At the start of a mapping event, we calculate the amount of utility that each task can earn if it were to start execution
immediately in the cluster that allows the shortest execution time for the task. This calculated value is an upper bound on
the utility that the task can earn and may be more than is realistically achievable. If this amount of utility is lower than a
preset dropping threshold, then the task is dropped from the system. This is done so that tasks that are unable to earn a
significant amount of utility are removed from the set of mappable tasks. This is particularly important when dealing with
permanent reservations because, without dropping, reservations for tasks that earn little utility can be made far into the
future. This can be a poor use of the system's resources in terms of earning little utility for the reserved task, and can also
result in reduced utility being earned for the tasks that arrive in the future due to the delay caused by these reservations.
Determining the optimal dropping threshold may be accomplished through simulations.
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3.4. Comparison heuristics

3.4.1. Overview

Four of the heuristics we considered were for the purpose of comparison to our utility-aware resource management
techniques. Three of these heuristics are commonly used in parallel scheduling. In addition, we consider a Random heuristic
as an additional point of comparison. The process used by these heuristics to select a subset of nodes within a cluster is
described in Section 3.7.

3.4.2. Random
This heuristic takes the tasks in order of arrival and assigns a task to a random cluster with a random P-state. This
process is repeated until all mappable tasks have been assigned to some cluster, or until no more assignments are possible.

3.4.3. Conservative backfilling

This heuristic, described in [9], considers tasks in order of arrival and assigns each task to a cluster where it can start
execution immediately. If there is no cluster where the task can start execution, then the heuristic makes a permanent
reservation for the task on a cluster where the task can start execution as soon as possible. This process is repeated until
each task is executing or has a permanent reservation, or it is not possible to assign any more tasks to the system because
there is no availability in the system to start the task before the end of the day being simulated. This heuristic employs
backfilling, the process of assigning tasks to the voids (gaps in node usage) in the schedule that can occur when reservations
are made for a future time. A backfilled task may be able to start execution immediately or may create another reservation.
This heuristic was designed for homogeneous clusters and an environment that does not consider utility or energy. The
heuristic always used 0 as the P-state, indicating the highest performance for a given node.

3.4.4. EASY Backfilling

Extensible Argonne Scheduling sYstem (EASY) Backfilling, from [8], is a common heuristic for scheduling parallel tasks.
[t initially works in the same way as Conservative Backfilling. The major difference is in how it handles permanent reser-
vations. It makes a permanent reservation for a single task that cannot start execution immediately such that the task will
start execution as soon as possible, but will not make reservations for any tasks if a reservation already exists. Similar to
Conservative Backfilling, it will still continue to search for backfilling opportunities for other tasks, as long as they can start
execution immediately without delaying the single reservation. This heuristic was designed for homogeneous clusters and
an environment that does not consider utility or energy. The heuristic always uses P-state 0.

3.4.5. FCFS with multiple queues

The FCFS (first come, first served) with multiple queues heuristic, designed to model systems such as CSU’s [STeC Cray
[16], is another comparison heuristic. It is similar to the Conservative Backfilling heuristic, except that it uses multiple
queues instead of a single FCFS queue. The purpose of these queues is to separate the tasks based on their expected resource
usage. The three queues used in this study are labeled small, medium, and large. Based on the information available in the
ETC matrix, it is possible to determine the amount of resources (based on Eq. (1)) that any task will be allocated, averaged
over the clusters. This average amount of resources is then used to determine onto which queue that task will be appended.
The tasks are added to queues in order of their arrival. Tasks that consume less than a lower threshold of resources will
be added to the “small” queue. Tasks that consume more than an upper threshold of resources will be added to the “large”
queue. The rest will added to the “medium” queue. In our simulation study, the lower threshold was set to 30% of the
average resources of the task that needs the most resources in the system and the higher threshold was set to 60% of the
average. The rest of the execution of the heuristic is identical to Conservative Backfilling, except that instead of taking one
task at a time from the single queue, the heuristic will cycle through the three queues in a round robin manner such that
within each cycle, at most one large task is assigned, at most four medium tasks are assigned, and finally at most eight
small tasks are assigned. The specific lower threshold, upper threshold, and the number of tasks assigned from each queue
in each iteration are examples of what may be used in a system. Implementations of this heuristic on other systems may
use different values for these parameters. The motivation for this heuristic is to attempt to balance the tasks being assigned
to the system based on resources needed.

3.5, Utility-aware heuristics

3.5.1. Overview

We have designed four utility-aware heuristics that can be used with permanent reservations or with place-holders. All
of these heuristics use a framework that is based on the concept of the Min-Min scheduling technique from [17], which
has been used successfully in many environments (e.g., [18,19]), but has not been explored in an oversubscribed energy
constrained environment with parallel tasks. All of these utility-aware heuristics have a similar structure that defines their
execution, but each utilizes a different objective measure.
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3.5.2. Heuristic objective measures
We utilized four objective measures for our heuristics. These are Utility (Util), Utility-per-Time (UPT), Utility-per-Resource
(UPR), and Utility-per-Energy (UPE):

Util = value of the task’s utility function at completion, (2)
UPT = Util/the task’s execution time, (3)
UPR = Util/resources allocated to the task, (4)
UPE = Util/energy consumed by the task. (5)

We defined four heuristics, Max Util, Max UPT, Max UPR, and Max UPE using the objective measures listed in Egs. (2)-
(5), respectively. Max Util, Max UPT, and Max UPE were used in our work in [1,6] with an energy constraint, but only for
serial tasks. Thus, the work presented in this study is significantly different because the heuristics are designed for parallel
tasks that are assigned to sets of nodes.

3.5.3. Maximizing the objective measure for each task

The first phase of these heuristics involves finding the maximum value of the heuristic’'s objective measure for each
mappable task. This is done by selecting an allocation of nodes within each cluster that maximizes this objective measure
(varying the P-state as needed to achieve this maximum). This is shown for the Max UPE heuristic in Algorithm 1, lines 2-4.

Algorithm 1 Pseudo-Code for the Max UPE heuristic.

1: while the set of mappable tasks is not empty and a mappable task exists
that can be scheduled to begin executing during the current day based on
energy remaining do

2: for each task in the set of mappable tasks do

3: find nodes/cluster/P-state combination

that maximizes UPE for the task
4: end for

5: select task from the set of mappable tasks with nodes/cluster/P-state
combination that has the highest maximum UPE
6: if selected task can start execution immediately

with that nodes/cluster/P-state combination then
assign selected task to that nodes/cluster/P-state combination

: else
9: create a permanent reservation for selected task
on that nodes/cluster/P-state combination
10: end if
11: remove task from the set of mappable tasks

12: end while

3.5.4. Assigning tasks to resources

Once a maximum objective measure allocation has been found for each unmapped task, the task that has the highest
maximum objective measure is assigned to its selected resources (defined by a cluster, nodes, a P-state, a start time, and a
finish time). This may create a permanent reservation if necessary (i.e., when the task cannot start execution at the current
time). The task is removed from the set of mappable tasks. This process of greedily assigning tasks to resources is repeated
until no more unmapped tasks exist in the system, or until it is not possible to assign any more tasks due to running out of
energy or reaching the end of the day. This is shown in Algorithm 1 for the Max UPE heuristic in lines 5-11. This algorithm
also can use place-holders instead of permanent reservations, by replacing “permanent reservations” with “place-holders” in
line 9 of Algorithm 1.

3.6. Metaheuristics

3.6.1. Overview

In some cases, none of the heuristics described are well suited to a particular environment. In this situation, a strategy
based on a concept in [20], permits switching between heuristics depending on the current state of the system. We designed
two metaheuristics to achieve good performance regardless of the energy constraint. These metaheuristics switch between
Max UPE and Max UPR depending on conditions defined below.
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Fig. 4. An example of a mapping on a cluster with ten nodes. The colored rectangles represent different tasks, and the rounded rectangles represent voids
where new tasks can be inserted. (a) State of a cluster before assigning task where the first time available to schedule the task is shown. (b) the selected
nodes for task t Note that n4 is not chosen due to the second tiebreaking criteria described in Section 3.7.

3.6.2. Event-based metaheuristic

The Event-Based metaheuristic chooses one of Max UPE and Max UPR at the start of each mapping event and uses that
heuristic for the entire mapping event. At any given time during the day, we define a “goal energy,” which is the energy
that should be consumed up to a specific point of the day. This goal energy could also be determined using known task
arrival data to potentially improve the metaheuristic, but because the environment in this study has an unknown dynamic
task arrival pattern, we consider the case where the goal is to consume energy at a constant rate so that tasks arriving
at any point during the day will have energy to use. At the start of each mapping event, we calculate the sum of energy
consumed since the beginning of the day and the energy that will be consumed if all tasks in the current mapping also
execute (i.e., currently executing tasks and tasks with reservations or place-holders). If this energy is greater than the goal
energy, the Event-Based metaheuristic will use Max UPE because the system has been consuming energy at a rate above
the goal. Otherwise, the metaheuristic will select Max UPR.

3.6.3. Task-based metaheuristic

The Task-Based metaheuristic will initially select Max UPE or Max UPR using the same strategy as the Event-Based
metaheuristic described above. If the metaheuristic chooses to use Max UPR, it will use the heuristic to assign tasks one
by one. As tasks are assigned, the sum of energy consumed since the beginning of the day and the energy that will be
consumed if all tasks in the current mapping also execute is updated. Once this sum reaches the goal energy, the heuristic
will switch to Max UPE and will finish the mapping event by assigning tasks with Max UPE.

3.7. Finding allocation options for a task

We designed a technique to select a node allocation for a task within a cluster (line 5 of Algorithm 1). Given that nodes
in a cluster are homogeneous, the maximum value of any heuristic’s objective function for each task/P-state combination
(e.g., Max UPE) within each cluster is achieved when that task finishes execution as soon as possible in that cluster with
that P-state. The execution time of a task will be the same irrespective of which nodes in a cluster it uses. Because of this,
finding the earliest possible finish time for a task is equivalent to finding the earliest possible start time for the task. The
allocation options that are considered for a task are the earliest possible start time for each P-state/cluster combination.
This strategy was used for all of the heuristics that we present in this paper (i.e., the comparison heuristics discussed in
Section 3.4, the utility-aware heuristics detailed in Section 3.5, and the metaheuristics described in Section 3.6).

When the earliest possible starting time for a task is found within a cluster, it is possible that there will be a set of
nodes to choose from that contains more nodes than are requested by the task. In this case, we use two criteria to attempt
to pick the best subset of nodes. The first of these criteria is to pick nodes that cause the smallest number of idle voids in
the system (i.e., sections of time between the executions of two tasks on node). The second criterion, which is only applied
if there is a tie in the first criterion, is to compare the size of the idle voids into which the task would be inserted, and to
choose the nodes with the smallest voids. An example of this process is shown in Fig. 4a, where a task t is requesting three
nodes. The earliest time when three nodes are available is a time when four nodes (n3, n4, n5, and n6) are available and we
use this algorithm to select three nodes out of the four. In this example, n6 and n5 are selected in that order using the first
criterion, and then n3 is selected using the second criterion (the red arrows in Fig. 4 show the size of the idle voids being
compared in this step). The node n4 is not selected. The motivation for these criteria is to reduce the overall fragmentation
of the schedule to give future tasks a better chance of being backfilled.
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3.8. Energy filtering

3.8.1. Overview

We have designed energy filtering techniques to improve the effectiveness of our utility-aware heuristics under an energy
constraint. An energy filter is used to remove allocation options that exceed a notion of “fair share” of energy consumption.
The motivation for energy filtering is to limit the rate at which energy is consumed by the resource manager until the
energy constraint is reached at the end of the day. Without energy filtering, many heuristics will use up their energy part
way through the day, which could result in lost utility due to the inability to execute potentially high utility tasks that arrive
after the energy constraint has been reached. This is just a heuristic approach and its effectiveness will need to be evaluated
to determine what is suitable for a typical expected environment.

3.8.2. Energy-per-task filtering

We calculate the energy-per-task budget for a task as the fair share of energy that the task is permitted to consume. This
budget, extended from our serial version of this energy filter in [6] to apply to parallel tasks, is calculated using the energy
remaining in some interval of time (such as a day), and the estimated number of tasks that will be executed in that same
interval:

resources remaining = Z unallocated time remaining on node i x cores on node i, (6)

(7)

. . . resources remaining energy remaining
estimated number of tasks remaining = mm( .

average resources used’ average energy consumed

energy remaining

energy-per-task budget = leniency factor x — —.
&P & v f estimated number of tasks remaining

(8)

A leniency factor is included that can be used to adjust the filter. As the leniency factor is increased, the filter will allow
more options for each task. In our simulations, we set this factor by performing a parameter sweep to find the best possible
leniency value. Any task allocation options where the task would consume energy greater than the energy budget are not
considered by heuristics.

3.8.3. Energy-per-resource filtering

In our previous work, there were only serial tasks resulting in a one-to-one mapping between a single task and a single
resource. In contrast, here we are considering parallel tasks that can use different numbers of resources. We need to consider
the resources needed when designing the energy filter. We present a new energy-per-resource filter that provides better
performance in an environment with parallel tasks. We calculate the energy-per-resource budget as the fair share of energy-
per-resource that a task is permitted to consume. This energy-per-resource budget is calculated by dividing the energy
remaining in the day by the unallocated resources remaining in the system during the day:

energy remaining 9)
resources remaining’

Again, we multiply by a leniency factor determined by simulations to improve the results of this filter. We can then
calculate the energy-per-resource of any task allocation as the amount of energy that the allocation will consume, divided
by the resources allocated to the task, as defined in Eq. (1). If the energy-per-resource of some task allocation exceeds the
energy-per-resource budget, then that allocation is not considered by the heuristics.

energy-per-resource budget = leniency factor x

4. Simulation setup
4.1. Overview

The simulation setup described in this section was designed based on discussions with researchers from ORNL and DoD.
We generated 48 simulation trials as described in Section 4.2. We simulated a total of 28 h, but only analyzed the results
for the last 24 h of each simulation. The first four hours ensure that the simulated system does not begin with all nodes in
an idle state.

4.2. Generation of compute system and a synthetic workload

4.2.1. Compute system

The compute system we simulated is composed of 100,000 cores that are distributed across six heterogeneous clusters.
Of the clusters, four are general-purpose and two are special-purpose. Special-purpose clusters are clusters with specialized
hardware that are designed to execute only specific tasks. For example, the nodes of a special-purpose cluster may have
GPUs available and would only execute tasks that can utilize the GPUs. It is assumed that each special-purpose cluster
will have more cores on average than the individual general-purpose clusters. The difference between general-purpose and
special-purpose clusters is the type of tasks they are able to execute.
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Table 2
Priority and urgency table.
starting utility urgency rate

jority level
briority feve range 0.6 0.2 0.1 0.01
critical (6,8] 2% 2% 0.05% 0%
high (4,6] 345% 5% 1.5% 3%
medium (2,4] 0% 10%  10% 10%
low [1,2] 0% 0% 20% 33%
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Fig. 5. The correlation between single core execution time and starting utility for the 48 simulation scenarios, each with 100 task types, for a total of 4800
points,

4.2.2. Workload

In our simulations, two workloads were considered. The first has a mean of 5000 parallel tasks arriving per day and
the other has a mean of 10,000 parallel tasks arriving per day. Each of the tasks belongs to one of 100 task types that we
generate for each simulation trial with different ETC values and APC values. Of these 100 task types, 60 are tasks that can
execute on general-purpose clusters and 40 are tasks that execute on special-purpose clusters. General-purpose tasks can
only run on the general-purpose clusters. Of the tasks that execute on special-purpose clusters, 20 types can execute only
on one of the special-purpose clusters and the other 20 types can only execute on the other special-purpose cluster. Because
they cannot execute on the same clusters, the only interaction between the tasks that execute on general-purpose clusters
and the tasks that execute on special-purpose clusters is the shared system energy constraint.

4.2.3. Utility functions

To describe a task’s utility function, we used three parameters: priority, urgency, and utility class [1]. The priority (or
starting utility) and urgency parameter for the utility function of each task type was generated using the distribution of
priority and urgency shown in Table 2 (from [1]). The actual starting utility value was chosen uniformly from the starting
utility range associated with each priority level. For each task of a task type, a utility class (defined in Section 2.3) is
randomly selected from one of 20 that we generated for our simulation studies in [1].

4.2.4. Single core execution time

The execution time for each task type on a single core for one of the clusters is sampled from a Gaussian distribution.
Because we assumed there is a correlation between the single core execution time of a task and the starting utility value,
the mean of the Gaussian distribution is selected based on the starting utility of the task type. This was because, in our
intended environment, longer running tasks are generally of higher importance. The perfectly correlated values for starting
utility and single core execution time were defined such that task types with the minimum possible single core execution
time (set to 1 h) had the minimum possible starting utility (set to 1). Similarly, task types with the maximum possible
single core execution time (set to 18 h) had the maximum possible starting utility (set to 8). The perfectly correlated values
are obtained through linear interpolation using these perfectly correlated end points. The perfectly correlated values were
used as the mean values for the Gaussian distribution described above for determining the single core execution time for
each task type. The correlation between the single core execution time of a task type and the starting utility of a task that
we use for the 100 task types in the 48 simulation scenarios can be seen in Fig. 5. This correlation was generated by using
a coefficient of variation (COV) value of 0.15 for the Gaussian distribution described above. The execution time on other
clusters (i.e., the heterogeneity) was modeled using the COV method from [21] with a COV parameter of 0.3. To generate
this heterogeneity using the COV method, the execution time on each other cluster is sampled from a gamma distribution
with the COV of 0.3 and a mean equal to the correlated single core execution time described above. The entries of the
APC matrix were generated using the COV method for generating ETC matrices [21]. The power consumption on one of the



58 D. Machovec et al./Parallel Computing 83 (2019) 48-72

Table 3
Core distribution of tasks.
percentage of tasks  minimum cores maximum cores
20% 2 4
20% 5 256
40% 257 4096
19% 4097 max cores of cluster - 1
1% max cores of cluster max cores of cluster

clusters is generated by sampling a gamma distribution with a mean power consumption of 133W and a COV of 0.2. The
power consumption for each of the other clusters is then sampled from a new gamma distribution with a COV of 0.2 and a
mean equal to the power consumption obtained for the first cluster.

4.2.5. Individual task arrivals

Once we had the completed set of task types, individual tasks were generated for each task type. We defined a mean
number of total tasks to generate an equal mean number of tasks for each task type. From this mean number of tasks, the
mean rate of task arrival is calculated by dividing the mean number of tasks of each type by the duration of a day (24 h).
We sample the uniform distributions obtained from Table 3 to determine that the number of cores that each task of a task
type will use. The values in this table, which were used for our simulation study, were based on typical DOE and DoD
environments. Next, we generated the arrival pattern for a task type. If the task type requires fewer than or equal to 4096
cores, then its tasks will arrive with a sinusoidal pattern throughout the 24-h period. All other tasks will instead arrive with
a high rate during work hours (i.e., between 9:00 AM and 6:00 PM) and a low rate at other times during the day. This is
done to model the expected arrival patterns for workloads of interest to DOE and DoD. The high rate is equal to two times
the mean rate of the task type and the low rate is set below the mean rate so that the average arrival rate over the day is
still equal to the mean rate.

4.2.6. Parallel execution time scaling

The execution time for parallel tasks in our simulations is determined from the single core execution times using the
Downey model for the speedup of parallel programs [22]|. We use the high variance model, which is defined in terms of
two parameters A (the average degree of parallelism for the program) and o (the COV of the parallelism for the program).
The o value used in our simulations is sampled uniformly between 4 and 10 for each task type and A is equal to the average
number of nodes requested by the task type. This model represents tasks that have a sequential component of length o and
a parallel component with an execution time of 1 when the task is given its maximum parallelism. The parallel component
has a maximum parallelism of A + Ao — &. The execution time of a task in terms of the number of nodes, n, allocated to it
is then defined as:

AtAo—o 1 A+Ac —
T(n){UJr—" <n<A+Ao -0 (10)

o+1 n>A+Ao —o

4.2.7. P-states

Cores may have many P-states. For our simulation study, we assumed they each had three P-states. This provides for a
choice between the lowest P-state, an intermediate P-state, and the highest P-state. We also ran simulations with fifteen
P-states and found that the relative performance of the heuristics was the same as using three P-states. Because of this,
we consider three P-states to be a good sample for modeling the advantages that can be gained from having multiple P-
state options. This allows for energy-aware heuristics and techniques to improve energy efficiency while keeping the search
space for allocations tractable. All cores in each node must always have the same active P-state. For our simulations, the
differences among P-states for the same node type were defined using a “power scaling factor” for each P-state. This factor
was used to scale the average power usage and execution time of each task for that P-state. The three P-states have power
scaling factors of 1.0, 0.75, and 0.5. A “randomness factor” also was used so that the power scaling factor is not the same
for all combinations of task types and clusters. Each randomness factor was generated by sampling a gamma distribution
with a mean of 1, and a COV of 0.3 for general-purpose tasks and 0.2 for special-purpose tasks. The power consumption
scaling for each of the three P-states is determined by sampling from one of three gamma distributions (each P-state has a
different distribution). These gamma distributions have means equal to the power scaling factor associated with that P-state
multiplied by a randomness factor (generated as described above). In addition, the gamma distributions have a COV of either
0.03 for general-purpose tasks or 0.02 for special-purpose tasks. The execution time scaling for each P-state was determined
in a similar way to the power scaling. The execution time scaling for each of the three P-states is determined by sampling
from one of three gamma distributions (each P-state has a different distribution). These gamma distributions have means
equal to the square root of the product of the power scaling factor associated with that P-state and a randomness factor [6].
The final execution time scaling was found by taking the reciprocal of this value so that the execution time of the task type
is increased when there is less power.
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Fig. 6. A range of energy leniency factors using energy-per-task filtering for the Max UPR with place-holders heuristic.

4.3. Generating a workload from a real system trace

We also simulated a system that used a workload of tasks generated from the log of the Curie Supercomputer in France
from Dror Feitelson's Parallel Workloads Archive [23,24]. We used the “clean” version of the Curie trace and selected 48
days from the trace for our simulations. Because we simulate 28 h in total, we use the last four hours from the previously
simulated day as the first four hours of the 28 h. In addition, we removed any tasks that requested more than 4096 cores
from the trace to keep the size of the simulations tractable. Over the 48 days of log data, this resulted in the removal of
1114 tasks out of 92,298 tasks in total (1.2% of the tasks).

From this trace, we took each task’s arrival time, execution time, and the number of cores that were allocated to it.
Unlike the environment we considered in this study, the data we took from the Curie trace was for a homogeneous system.
To generate a workload for a heterogeneous system, we use the execution time as the tasks execution time on one of the
clusters of the simulated system and generate values for the other clusters using the method described above in Section 4.2.
In addition, the size of the simulated system in cores is equal to a fraction of the 92,160 cores of the Curie system. This
fraction is varied between 10% and 80% of the cores in our simulations. We always use a fraction of the cores to ensure that
the system is oversubscribed (all tasks in the Curie trace started and finished execution on the real Curie system). All other
aspects of the workload and system are generated using the same methods described above in Section 4.2.

4.4, Resource management parameters

4.4.1. Dropping threshold

The dropping threshold for our resource manager was set to 0.5 for the majority of our simulations. We also simulated
scenarios where there was no dropping or a dropping threshold of 0, 0.1, or 0.3. Using a dropping threshold of 0.5 means
that tasks that could no longer earn utility greater than 0.5 if they were to start execution immediately in their fastest
cluster were dropped from the system. We selected this threshold value because it gives all tasks the opportunity to execute
(i.e., because all tasks arrive with a starting utility of at least 1.0, it is possible for them to be mapped to nodes in the
system). Lower dropping thresholds resulted in all heuristics earning less or equal utility than they did with a dropping
threshold of 0.5. In actual practice, the threshold can be set based on simulations modeling the real system environment
to be used. Dropping may also be disabled entirely, but this could greatly decrease system performance in terms of utility
earned depending on which heuristic is used.

4.4.2. Energy filter leniency factors

We define the maximum system utility as the utility that would be earned if all tasks began execution at the time that
they were submitted to the system. This is an upper bound on how much utility can be earned, i.e., the system utility, but
is unobtainable in an oversubscribed environment because by definition all tasks cannot earn their individual maximum
utility values (as discussed in Section 2.3). The leniency factors for the two energy filters were both selected empirically
using simulations, by varying the energy leniency factor for the Max UPR heuristic with place-holders as seen in Figs. 6 and
7 for a mean of 5000 tasks arriving per day. The 95% mean confidence intervals are based on the 48 simulation trials. The
leniency factor that performed the best was then used for all utility-based heuristics that were not energy-aware (i.e., Max
Util, Max UPT, and Max UPR) with permanent reservations and with place-holders. Using these results, a leniency factor of
2.0 was chosen for the energy-per-task filter and a leniency factor of 4.0 was chosen for the energy-per-resource filter. The
energy leniency factors for a mean of 10,000 task arrivals were determined using the same method. In practice, the leniency
factors can be set based on the results of simulations modeling the real system environment to be used.

4.4.3. Energy constraint

We set the energy constraint by running simulations without an energy constraint and observing how much energy the
best heuristics consumed. We then set the energy constraint to a fraction of the energy that the best heuristic consumed to
show the advantages of the energy-aware approaches.
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Fig. 7. A range of energy leniency factors using energy-per-resource filtering for the Max UPR with place-holders heuristic.

The energy constraint for our simulations for a mean of 5000 tasks arriving was initially set to 70% of the energy con-
sumption for the Max Util with place-holders heuristic (and no energy constraint) because this heuristic earned the highest
mean percentage of maximum utility. This resulted in an energy constraint of 12 GJ, which was used for most of our simu-
lations. This provided a good starting point to ensure that the system would be constrained in terms of energy. In addition,
we varied the energy constraint for this system from 8 GJ to 18 GJ to study a wider range of constraints. For our study of
the workload generated using the Curie trace, we varied the energy constraint from 8 GJ to 26 GJ.

When the level of oversubscription of the system was increased by modeling a mean of 10,000 task arrivals per day, and
there was no energy constraint, Max UPR with place-holders was the best heuristic. The energy constraint for a mean of
10,000 tasks arriving per day was set to 70% of the energy consumed by the Max UPR with place-holders heuristics equal
to 15 GJ. In a real system, the energy constraint would be set by the system administrator.

5. Simulation results
5.1. Comparing 5000 and 10,000 tasks per day

In Fig. 8a, the percentage of maximum system utility earned in an energy constrained environment for a mean of 5000
tasks is shown. Here, the utility-based heuristics made use of task dropping. In addition, results are shown for simulations
where the utility-based heuristics used no energy filtering, energy-per-task filtering, and energy-per-resource filtering. The
energy consumption for these results can be seen in Fig. 8b with an energy constraint of 12 GJ. Results using the energy
filters are not shown for the UPE heuristic because they had identical performance in this environment. Using either energy
filtering technique allows the other utility-based heuristics to operate with a higher level of energy efficiency. This allows
them to earn significantly more utility than they did when an energy constraint was set with no energy filtering. The
confidence intervals in Fig. 8 are based on the 48 simulation trials. The set of comparison heuristics (Random, Conservative
Backfilling, EASY Backfilling, and Multiple Queues) did not use the energy filters because they are not applied to these
heuristics in the literature.

The utility-aware heuristics (Max Util, Max UPT, Max UPR, and Max UPE) that we proposed to solve this problem are able
to earn significantly more utility than the comparison heuristics from the literature that do not consider utility and make
permanent reservations instead of using place-holders (EASY Backfilling, Conservative Backfilling, and Multiple Queues). Be-
cause the system is oversubscribed and these comparison heuristics attempt to execute tasks in their FCFS arrival order,
they will often run tasks that have had significant decay in their utility functions, resulting in less overall utility. The com-
parison heuristics obtain close to 35% of the maximum system utility on average, while the worst performing utility-aware
heuristics earn an average of 55% of the maximum system utility. Finally, the best performing heuristics have an average
utility of around 73% of the maximum system utility.

The energy-per-resource filter that we designed during this study outperformed the energy-per-task filter, earning 8%
more utility on average in the case of Max UPR with place-holders, as seen in Fig. 8a and b for a mean of 5000 task arrivals.
This is due to the increased ability of the energy-per-resource filter to execute tasks that have a higher amount of resources
allocated to them (see Eq. (1)). Recall that tasks that have longer execution time in general have higher starting utility values
(see Fig. 5). The energy-per-task filter will almost always remove all options for these tasks because of the large amount
of energy that they consume due to the increased amount of resources allocated to them (Eq. (1)). We also examined how
the energy-per-resource filter performs with a higher level of oversubscription created by a mean of 10,000 task arrivals per
day. The results with this higher level of oversubscription can be seen in Fig. 9. The relative performance of Max UPR with
place-holders and Max UPE with place-holders is comparable to the results for a mean of 5000 task arrivals per day, but
the performance of Max UPT with place-holders has degraded such that the other place-holder heuristics perform better
with no overlapping 95% confidence intervals, obtaining up to 50% more utility in the case of Max UPR with place-holders.
Max UPT does poorly because it prioritizes tasks with shorter execution times (it does not consider the number of nodes a
task is assigned to). Tasks that are parallelized over many nodes will often have the shortest execution times. Max UPT will
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Fig. 8. Results for a mean of 5000 tasks arriving per day. The utility-based heuristics utilize task dropping with a dropping threshold of 0.5, and the
utility-based heuristics that are not energy-aware are also shown with and without the energy-per-task and energy-per-resource filters, (a) The percentage
of maximum utility earned with 95% confidence intervals. (b) The energy consumption of each heuristic with 95% confidence intervals.

prioritize these tasks, which is inefficient in terms of resources. This results in especially poor performance because of the
high level of oversubscription in this environment.

The performance of the comparison heuristics from the literature became significantly worse with this increase in over-
subscription. With so many tasks arriving, it is more common for these heuristics to schedule tasks that earn insignificant
amounts of utility. The permanent reservations for these tasks can extend far into the future preventing newly arriving tasks
from running quickly. When Fig. 9a is compared with the results in Fig. 8a, the difference between the performance of the
heuristics that earn the most utility (Max UPR with place-holders and Max UPE with place-holders, which have 49.5% and
48.7% of the maximum utility on average, respectively) and the comparison heuristics from the literature such as Conserva-
tive Backfilling and EASY Backfilling, which obtain averages of only 15.3% and 7.1% of the maximum utility, respectively, has
become more significant.

Even though the Max UPR with place-holders heuristic using the energy-per-resource filter is able to earn comparable
utility to the Max UPE with place-holders heuristic for multiple levels of oversubscription, shown in Figs. 8a and 9 a, the
Max UPE with place-holders heuristic consumes less energy as seen in Figs. 8b and 9 b, where the average energy consumed
by Max UPR with placeholders increases by 20% when compared to Max UPE with place-holders. We consider Max UPE with
place-holders to be the best heuristic that we have designed for use in energy constrained environments because it is able
to earn utility comparable with all other high performing heuristics, while consuming less energy.

We do not expect the overhead of our heuristics to be prohibitive when running on a typical computing environment'’s
frontend or scheduling node. A single mapping event for the Max UPE with place-holders heuristic took 0.1 s on average
when simulating the results shown in Fig. 8. If the number of P-states were increased to 15, our simulations showed that
the Max UPE with place-holders heuristic would only take 0.3 s to execute on average. In addition, with 15 P-states the
performance of the heuristic in terms of utility earned and energy consumed is similar. When considering the larger number
of tasks shown in Fig. 9, the Max UPE with place-holders heuristic took less than two seconds to execute. A single mapping
event for the Max UPR with place-holders and energy-per-resource filtering took three seconds on average when simulating
the results shown in Fig. 8 and the Max UPR with place-holders heuristic with energy-per-resource filtering took 80 s in
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Fig. 9. Results for a mean of 10,000 tasks arriving per day. The utility-based heuristics utilize energy-per-resource filtering and task dropping with a
dropping threshold of 0.5. (a) Percentage of maximum utility earned with 95% confidence intervals. (b) Energy consumption of each heuristic with 95%
confidence intervals.

the larger simulations shown in Fig. 9. With the smaller number of tasks, both of these heuristics complete well within
the scheduling interval of a typical cluster scheduler (usually approximately 60 s). Max UPE with place-holders continues to
execute well within this scheduling interval even for larger numbers of tasks.

5.2. Evaluation of the metaheuristics

We also designed two metaheuristics that combine Max UPR and Max UPE. Results comparing these heuristics to the
other heuristics are shown in Fig. 10. In these results, all heuristics utilize a dropping threshold of 0.5 and results are not
shown for the utility-based heuristics with permanent reservations because permanent reservations never performed better
than place-holders in any of our simulations. These results show that the metaheuristics are able to use the entire energy
budget for the day while earning an average utility that is comparable to Max UPE. The advantage of the metaheuristics
over Max UPE is discussed in Section 5.4 Because the Event-Based metaheuristic requires simpler operations, it runs faster
than the Task-Based Metaheuristic, but their performance in terms of utility earned is the same, therefore we consider the
Event-Based metaheuristic to be a better metaheuristic. Another significant advantage to the metaheuristics over Max UPR
is that they perform well even without the use of an energy filter. In our simulations, using an energy filter resulted in
a significant increase in the execution time of the heuristics. Because the metaheuristics do not use an energy filter, the
overhead of running these heuristics is significantly lower than Max UPR with place-holders and the energy-per-resource
filter. The Event-Based Metaheuristic completes mapping events in the simulations used to generate Fig. 10 with an average
execution time of 0.1 s compared to an average execution time of three seconds for Max UPR with place-holders and the
energy-per-resource filter.

5.3. The effects of varying the dropping threshold
The dropping threshold was varied for the 5000 task environment to obtain the results shown in Fig. 11. The figure

shows the percentage of maximum utility earned by all of the heuristics for each dropping threshold. In this environment,
the energy constraint is 12 GJ. These results demonstrate the effect of various dropping thresholds below the minimum
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Fig. 10. Results for a mean of 5000 tasks arriving per day. A comparison of the two metaheuristics with the heuristics from Section 3.6, where the utility-
based heuristics all use place-holders and all heuristics use a dropping threshold of 0.5. (a) Percentage of maximum utility earned with 95% confidence
intervals. (b) Energy consumption of each heuristic with 95% confidence intervals.
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Fig. 11. Results for a mean of 5000 tasks arriving per day, where the dropping threshold is varied, the energy constraint is 12 GJ, and none of the heuristics
utilize the energy filtering techniques, The percentage of maximum utility earned for each environment with 95% mean confidence intervals is shown.

starting utility of any task in the system. For the utility-based heuristics, dropping does not have a significant effect on
performance. For the comparison heuristics other than Random, there is a significant increase in performance when the
dropping of tasks is enabled and the dropping threshold is greater than 0. For example, when increasing dropping threshold
from O to 0.1, Conservative Backfilling, EASY Backfilling, and Multiple Queues see increases of 28%, 20%, and 28% in their
average utility earned, respectively. This is because these heuristics do not normally consider utility and consider the tasks
in FCFS order. This means that the oldest tasks, which are the most likely to have a large decay in their utility functions,
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Fig. 12. Results for a mean of 5000 tasks arriving per day where the energy constraint is varied from 8 GJ to 18 GJ. None of the heuristics utilize the
energy filtering techniques. (a) Percentage of maximum utility for a variety of energy constraints with no energy filter with 95% mean confidence intervals.
(b) Energy consumption for a variety of energy constraints with no energy filter with 95% mean confidence intervals.

will be scheduled first. Using dropping with these heuristics ensures that all tasks that get scheduled by the heuristic will
earn some utility. This effect is not as significant for the Random heuristic (there is an increase of 5% when increasing the
dropping threshold from 0 to 0.1) because it often skips over some of the tasks that would not earn a significant amount of
utility.

5.4. Energy constraint analysis

In Fig. 12a, the percentage of maximum system utility earned in eleven energy constrained environments for a mean of
5000 tasks is shown. Here, all heuristics employed task dropping. The energy consumption for these results can be seen in
Fig. 12b. The confidence intervals in Fig. 12 are based on the 48 simulation trials.

It can be seen in Fig. 12a that for environments that have a tight energy constraint, the Max UPE heuristic and both
metaheuristics (Event-Based and Task-Based) are able to earn the most utility. On average, they earn 60% of the maximum
system utility in the case with an 8 GJ] energy constraint. The reason for this is because these heuristics consider the energy
consumption of tasks when making mapping decisions. Max UPE will always choose the most energy efficient option for
any task while the metaheuristics will attempt to use energy at a constant rate throughout the day so that tasks arriving
later in the day have the opportunity to execute.

In the environments with a loose energy constraint, the Max Util heuristic, Max UPR heuristic, and the metaheuristics
are able to earn the most utility. In the case with an 18 GJ energy constraint, they earn almost 80% of the maximum system
utility on average. This is because in these environments energy is not a significant constraint and it is more important to
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Fig. 13. Results for a mean of 5000 tasks arriving per day where the energy constraint is varied from 8 GJ to 18 GJ. All of the heuristics make use of
the energy-per-resource filter with a leniency factor of 4.0. (a) Percentage of maximum utility earned for each environment with 95% mean confidence
intervals, (b) Energy consumption for each environment with 95% mean confidence intervals,

use the system resources efficiently by selecting the tasks that would earn the highest utility. In addition, the metaheuris-
tics behaved similarly to Max UPR because with a loose energy constraint they rarely select Max UPE. The utility-aware
heuristics that do not consider energy also see a very significant drop-off in terms of utility earned as the energy constraint
becomes tighter.

For the cases with intermediate energy constraints, the metaheuristics earn the highest utility. In the environment with
a 15 GJ energy constraint, the metaheuristics get 79% of the maximum system utility while the Max UPE and Max UPR
heuristics obtain 74% of the maximum system utility on average and the corresponding 95% confidence intervals do not
overlap. This is because they are energy-aware, but do not always choose the most energy efficient option for a task if a
task with higher utility is available. In these environments, Max UPE will maximize its energy efficiency, resulting in reduced
utility earned due to not using the entire energy constraint.

5.5. Impact of integrating an energy filter

Results for the same set of environments using the energy-per-resource filter are shown in Fig. 13. Fig. 13a shows the
percentage of maximum system utility earned by each of the heuristics with this filter. This filter improves the utility earned
by the utility-based heuristics when their energy consumption without an energy constraint is greater than the energy con-
straint. In all cases, the Event-Based metaheuristic earns utility that is comparable to the other best performing heuristics.
The leniency factor used in these simulations was the one found in Section 4 for the case with a 12 GJ energy constraint.
Fig. 13b shows the energy consumption for each of the heuristics. These results suggest that it is only worth spending time
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Fig. 14. Results when tasks are based on a trace from the Curie supercomputer and there is no energy constraint, In these environments, the size of the
system is varied from 10% to 80% of the original Curie system. (a) Percentage of maximum utility earned for each environment with 95% mean confidence
intervals. (b) Energy consumption for each environment with 95% mean confidence intervals.

determining the best leniency factor for very tight energy constraints because the metaheuristics are able to earn the highest
utility for the more the forgiving constraints without energy filtering.

5.6. Analyses with curie workload arrival trace

5.6.1. Results without an energy constraint

Fig. 14 shows the percentage of maximum system utility earned in 15 environments using the workload generated from
the Curie system trace. The different cases shown for each heuristic represent different system sizes. The size of each system
is given as a percentage of the size in cores of the actual Curie system associated with the trace. Here, all heuristics made
use of task dropping. The energy consumption for these results can be seen in Fig. 14b. The confidence intervals in Fig. 14 are
based on the 48 simulation trials.

Fig. 14a shows that the utility earned by the metaheuristics, Max UPT, and Max UPR is the highest among the heuristics.
This makes sense because this environment is not energy constrained and the heuristics that do not consider the energy
consumed by a task perform the best. The reason for the poor performance of Max Util is likely because there are periods
in this trace where very large numbers of small tasks arrive to the system needing to be mapped. Because the maximum
utility given to a large task is eight, if it is possible to execute more than eight small tasks that would earn one utility in that
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(b) Energy consumption for a variety of energy constraints with a real task trace.

Fig. 15. Results when tasks are generated using a trace from the Curie supercomputer and there is a varied energy constraint, In these environments the
size of the system is equal to 80% of the original Curie system. (a) Percentage of maximum utility earned for each environment with 95% mean confidence
intervals. (b) Energy consumption for each environment with 95% mean confidence intervals,

time then the larger task should not be executed. Max Util underperforms in comparison to the other heuristics for these
task arrival cases because it only considers maximizing the utility earned by each task. The other utility aware heuristics are
able to account for this (by considering time or resources) and select the smaller tasks instead. Max UPE is able to achieve
high performance in these scenarios because tasks with a very short execution time use less energy than the tasks with a
long execution time.

5.6.2. Results with an energy constraint

Fig. 15 shows the performance in the Curie trace environment for a simulated system with 80% of the total number
of cores of the actual Curie system. These results are shown for a range of energy constraints. The 95% mean confidence
intervals in these results are larger than in the other results because variance between task arrival patterns on different days
of the trace can significantly affect the performance of the heuristics. The heuristic that earns the highest average utility for
the tighter energy constraints, as seen in Fig. 15a, is Max UPE. This is because the Max UPE heuristic always chooses the
most energy efficient mapping option for each task. The metaheuristics still perform well relative to every utility-aware
heuristic except for Max UPE. However, they do not perform as well in some of these environments because they attempt to
keep the rate of energy consumption constant throughout the day. In this environment, there are often very large bursts of
tasks that arrive all at once. This means that the rate of energy consumption throughout the day should not be assumed to
be constant and energy should be saved for the periods when a large set of tasks is arriving. The arrival pattern of the tasks
is not known in advance because the environment is dynamic. If the arrival pattern was known, then the metaheuristics
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Table 4

Cluster configuration showing heterogeneity.
cluster cores per node RAM size (GB) total number of maximum allowable operating maximum

per node nodes frequency (MHz) C-state

cluster 1 1 1 16 1596 1
cluster 2 2 1 8 1862 c6
cluster 3 4 15 4 2261 1
cluster 4 8 2 2 2660 C6

could be modified to consume energy at a rate consistent with the rate of arriving tasks in the system, which may result in
increased performance. This arrival pattern could also be approximated through the use of historical data. The other utility-
aware heuristics do not perform as well as Max UPE or the metaheuristics, but still perform better than the comparison
heuristics (Random, Conservative Backfilling, EASY Backfilling, and FCFS with Multiple Queues). Similar to the results with
a fully synthetic workload, the energy consumption (shown in Fig. 15b) is lowest for the Max UPE heuristic. The other
heuristics have energy consumption that stays closer to the energy constraint.

5.7. Discussion of results

The results shown in this section indicate that: (a) the use of place-holders results in more utility earned than permanent
reservations; (b) utility-based heuristics earn more utility than the comparison heuristics; (¢) in most environments, the
Event-Based Metaheuristic and Task-Based Metaheuristic earn the highest utility; (d) the energy filtering techniques are
only beneficial when the energy constraint is very tight; and (e) when the Max UPE heuristic earns utility equal to the
other best performing heuristics it often consumes significantly less energy. Based on these results, it is clear that the best
heuristics for these HPC environments are Max UPE and the Event-Based Metaheuristic. In addition, it can be beneficial to
add the energy-per-resource filter (which was shown to be better than the energy-per-task filter) to these heuristics if the
energy constraint is tight, as shown in the difference between Figs. 12 and 13. We also evaluated and compared several of
our heuristics on a testbed system as discussed in the next section.

6. Experiment
6.1. Experimental setup

We conducted an experiment on a testbed system, where we implemented several of our heuristics. We used an IBM
HS22 blade server with four homogeneous clusters. Each cluster consists of two Intel Xeon X5650 six core processors
(2.67 GHz), with 24 threads (two threads per core) and 24GB RAM (memory). Each cluster runs the Kernel-based Virtual
Machine (KVM) hypervisor [25]. We treated each of the 24 threads as an individual CPU for a virtual machine (VM). A VM
in the experimental setup corresponds to a node in the simulation environment. For consistent use of terminology in this
paper, we referred to VM as a node in the experimental study. We recorded the power consumption of each node using the
IBM Advanced Management Module [26]. The nodes in a given cluster have the same pre-determined configuration (core
count and RAM allocation). However, the node configuration across the clusters shows heterogeneity as illustrated in Table 4
(columns 2-4). The allocation of cores and RAM varies across clusters to emulate a heterogeneous environment.

We used a subset of NAS-NPB MPI benchmarks [27] for the experimental evaluations. This subset included an integer
sort (IS), Poisson equation solver (MG), and conjugate gradient (CG). Similar to the simulation study, we assumed that each
benchmark had a fixed number of required cores, e.g., the 1S.8 is an eight thread task with the requirement of eight cores.

Each node on cluster 4 has more cores than the nodes of the other clusters. This means that applications scheduled
on cluster 4 will often have less inter-node communication than the other clusters. For example, a task that requires eight
cores will be able to run entirely on one node in cluster 4 and would have no inter-node communication. On the other
clusters, it would need to use additional nodes and may have to communicate between them. Because of this, if the memory
requirement (i.e., the minimum amount of memory required to execute the benchmark without significant slowdown due to
swapping) is met for a given benchmark by all the clusters, then cluster 4 will always have better execution time than the
others. In the simulation study, the purpose behind the heterogeneity across the clusters was to have best execution time for
different task type on different clusters. For our experimental study, where we emulate heterogeneity, this is only feasible
if certain benchmarks are selected such that their memory requirements may not be satisfied by all the clusters but only a
few. IS_CG.8 is an eight core customized task created by combining IS and CG benchmarks. The memory requirements for
IS and CG are 2GB and 1GB, respectively. The combined memory requirement for the IS_CG is 3GB. This task has minimum
execution time on cluster 3, because 3GB memory is available for eight cores (two nodes). Cluster 4 provides only 2GB
memory for eight cores (one node), which leads to accessing of swap memory and increase in the execution time. Table 5
shows the estimated time to compute (ETC) matrix for our benchmarks. MG.8 has a minimum memory requirement of 3.5
GB. Therefore, execution of MG.8 on clusters 3 and 4 is not feasible due to unavailability of minimum required memory
with eight cores.
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Estimated time to compute (ETC) matrix.
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task core execution time on execution time on execution time on execution time on
requirement cluster 1 (sec) cluster 2 (sec) cluster 3 (sec) cluster 4 (sec)

IS.8 8 1675 750 552 430

MG.8 8 1100 712 n.a. n.a.

MG.16 16 702 500 380 326

IS_CG.8 8 1039 900 700 1366

Table 6

Estimated energy to compute (EEC) matrix.

task energy on cluster 1 (]) energy on cluster 2 (]) energy on cluster 3 (]) energy on cluster 4 (J)
IS.8 25,962 35,250 17,388 28,380

MG.8 27,500 41,296 na. na.

MG.16 34,398 55,000 30,400 50,530

1S CG.8 23,897 47,700 27,650 105,865

Even after addressing the heterogeneity issue for clusters and benchmark execution time, we still observed that the max-
imum power consumption was approximately same for a given benchmark on all the clusters. Therefore, the dynamic energy
consumption for a benchmark became linearly proportional to its execution time and preference of resource allocation for
this benchmark was same for the UPR and UPE heuristics. This created a challenge for differentiating the UPE from UPR.
To overcome this challenge, we set the maximum limit on P-states (operating frequency) and maximum possible C-states
(sleep states) for each cluster as shown in the last two columns of Table 4. By setting a limit to the maximum P-state, we
were able to vary the maximum dynamic power consumption for a given benchmark across the clusters. With lower range
on C-states, we were able to increase the idle power consumption on clusters 1 and 3, and this gave us more flexibility
in varying the dynamic power consumption for each task across all the clusters. Table 6 represents the estimated energy
consumption to compute (EEC) for all the benchmarks on different clusters. In our experimental study, each benchmark
represents a task.

6.2. Workload generation, experimental flow, and data collection

Our synthetic workload was designed such that at a regular interval of 120 s (on average) a new task arrived with a
probability of 40% for the task being IS.8, 40% for the task being IS_CG.8, 10% for the task being MG.16, and 10% for task
being MG.8. The task inter-arrival time was selected as 120 s (experimentally determined) so that the system could achieve
non zero utility for more than 98% of the tasks. IS.8 and IS_CG.8 were given a higher probability because they required
fewer core count than MG.16 and provided more options for cluster selection compared to MG.8. We generated a workload
based on these constraints for a duration of three hours. Each task was associated with a utility function. For each task,
maximum utility value was randomly selected in the integer range of one to four with uniform probability. For each task
the maximum utility was set to decay after 2.5 times of task’s minimum execution time. The utility function was set to
reach O at four times of task’s minimum execution time.

Our experimental setup consisted of a centralized scheduler (CS) and four local schedulers (LS) (one per cluster). We used
the CS for running heuristics on the input workload, and tracking the total utility earned by the scheduler and the energy
consumption of the whole system. We used the LS to collect the list of tasks from the CS, schedule them on the available
nodes, monitor their progress, and collect cluster power consumption. We used the internal clock of the CS to compare the
time stamp of each task in the workload. Inside CS, each mapping event occurs at a regular time interval of 50 s. On each
mapping event, we updated the waiting task queue with the new tasks, and monitored the status of pre-scheduled tasks by
communicating with LS of each cluster. Upon the completion of a task, we updated the total system utility earned since the
last mapping event. Based on the state of the nodes (available or busy) and the wait queue, we ran the heuristics to identify
the next set of tasks for scheduling. We considered dynamic energy as the energy metric for all the heuristics.

6.3. Experimental results

The duration for each experiment was set to 180 minutes to utilize the generated three hour workload. We repeated the
experiment four times for each of the heuristics using the same workload. We then calculated the average utility for each
heuristic. We calculated the maximum limit on dynamic energy by running the Max UPR heuristic for 180 minutes. We
defined an energy constrained environment by setting a new threshold relative to the maximum limit on dynamic energy.
We used 85% and 70% as the two thresholds to compare the behavior of all the heuristics under different energy constraints.
We terminated the experiment when either the time limit reached the 180 minute mark or dynamic energy consumption
exceeded the energy constraint set for the experiment. Fig. 16 shows the plot of utility earned for the EASY Backfilling,
Max UPR, Max UPE, and the Event-Based Metaheuristic under three energy constraints. Task selection criterion for the EASY
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Fig. 16. Utility earned versus energy constraint, as percent of maximum allowed, where maximum is 2.8 megajoules. The standard deviation is shown for
each bar.

Backfilling is independent from the utility of the task. Therefore, the utility earned by the EASY Backfilling is less than
the utility based heuristics for all energy constraint levels. With 100% energy constraint, we see the utility earned by Max
UPR, Max UPE, and the Event-Based Metaheuristic is approximately the same. As the energy constraint becomes tighter,
fewer tasks get completed resulting in a reduction in the total utility earned by all heuristics. Max UPE and the Event-Based
Metaheuristic (switches between Max UPR and Max UPE), under tighter energy constraints, behaved similarly and resulted
in around 20% and 18% increase in total utility earned compared to the Max UPR heuristic for the 85% and 70% energy
constraints, respectively. With the 100% energy constraint, Max UPR, the Event-Based Metaheuristic, and EASY Backfilling
consumed approximately all of the allocated energy budget, but Max UPE consumes only 92% of the energy budget.

We performed simulations for a system with only one P-state option for each cluster to better match these experiments.
In these simulations, the relative performance of the heuristics was very similar to these experimental results. For example,
in an unconstrained system the simulations showed that Max UPE, Max UPR, and the Event-Based Metaheuristic earned
similar utility. When an energy constraint was added, Max UPE and the Event-Based Metaheuristic earned the most utility.
The similarity of these results suggests that the assumptions we made in designing our simulations (e.g., deterministic
execution times) do not significantly alter our results and that our conclusions about the relative performance of each
heuristic from these results apply to actual systems.

7. Related work

Many heuristics and techniques for resource management have been designed to operate in parallel dynamic HPC en-
vironments. Many of them, however, are designed for metrics that are not applicable to our oversubscribed, utility-based
environment because they use fairness and time-based objectives as their performance measure (e.g., [8,9,28-30]). When
designing resource managers for parallel resource allocation, it is common to start with Conservative Backfilling or EASY
Backfilling and modify one of them to generate an improved heuristic. In [28], the authors designed an iterative Tabu search
algorithm to improve the fairness of Conservative Backfilling. The Conservative Backfilling heuristic was also modified in
|29] to create a heuristic that improves the average turnaround time of tasks. One of the reasons that our work differs from
these is that we use the total utility earned over an interval of time as our performance measure.

Other authors have determined that utility functions are an effective metric for measuring the performance of resource
managers in oversubscribed environments (e.g., [31,32]). This is done through surveying the literature in [31] and through
the development of a framework for measuring supercomputer productivity in [32]. Our work extends these efforts by
designing a resource manager that attempts to maximize utility earned while obeying an energy constraint. Monotonically
decreasing functions, such as “value functions”, also have been used to measure the performance of resource managers
in various HPC environments and behave similarly to utility functions [33-36]. Differences between these works and ours
include that [33,34,36] do not consider heterogeneity and [36] does not consider parallel tasks.

The authors of [37] model a resource manager for a computing system where heterogeneous computing sites that are
similar to our clusters are used, but they do not consider utility functions or energy consumption in their study. In addition,
they measure the performance of their resource manager using utilization and average turnaround time. This is very differ-
ent from our oversubscribed environment, which uses utility functions, total utility earned as a performance measure, and
has an energy constraint.

Genetic algorithms are sometimes used to solve resource management problems because they are able to find very good
solutions if they are given enough time to run. Utility was maximized using a genetic algorithm in [34], where the genetic
algorithm was able to earn more utility than EASY Backfilling, Conservative Backfilling, and a Priority-FIFO heuristic. The
drawback of genetic algorithms is that they require a significant amount of execution time to produce good results (e.g., the
genetic algorithm in [34] had an average execution time of 8900 s). When compared with our best heuristics, which take
significantly less than a minute to execute on average, this long execution time is a major drawback of genetic algorithms.
Being able to generate solutions to resource management problems quickly is very important in a dynamic environment.
This is because nodes can be idle while the resource manager is making decisions and no work would be accomplished on
those nodes during that time.
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In [4], a technique called Incremental Static Voltage Adaption (ISVA) is proposed and evaluated. This technique attempts
to minimize makespan under an energy constraint. First, ISVA builds a schedule (using any scheduling technique) without an
energy constraint using the minimum voltage possible to execute each task. This schedule is then modified by increasing the
voltage used to execute specific tasks to reduce the makespan. This work differs from ours in several significant ways. First,
this work considers a static DAG scheduling problem, while our study focuses on scheduling dynamically arriving tasks with
no precedence constraints. In addition, this work does not consider utility, and instead uses makespan as the performance
measure.

8. Conclusion and future work

We designed and evaluated the performance of several utility-aware resource allocation heuristics (Max Util, Max UPT,
Max UPR, Max UPE, and two metaheuristics), and associated dropping and filtering techniques. Performance was measured
in terms of the total system utility that was earned from the completion of parallel tasks in an oversubscribed HPC environ-
ment with an energy constraint. The novel concept of place-holders that we presented, in addition to our new energy-per-
resource filtering technique, allowed our utility-based heuristics to achieve significantly higher system utility than popular
scheduling techniques from literature that do not consider utility functions and heterogeneity. Due to energy filtering, our
Max UPR with place-holders heuristic was able to earn utility comparable to our energy-aware Max UPE with place-holders
heuristic, although Max UPE with place-holders is much more energy efficient. In addition, both of our metaheuristics, the
Event-Based Metaheuristic and the Task-Based Metaheuristic, were able to earn utility greater than or equal to all other
heuristics in environments where there was a steady rate of task arrivals regardless of the energy constraint. In environ-
ments with a highly variable task arrival pattern, the Max UPE heuristic performed best in the energy constrained envi-
ronment. In addition, it is worth noting that although energy consumption is limited by a constraint in this work and is
not a goal for optimization, the Max UPE heuristic often earns utility equal to the other best performing heuristics while
consuming significantly less energy.

A topic that we are interested in exploring in the future is employing the concept of preemption in an environment
where the system performance measure is based on a time varying utility. We expect that having a resource manager that
supports preemption will allow for improvement in the execution of critical tasks, in particular when there has been a
period of low utility task arrivals that may fill up many of the nodes within an environment, which can cause high utility
tasks arriving later to wait. This is especially important for an environment where tasks arrive dynamically (i.e., information
about tasks that arrive in the future is not known). The most significant difficulty of designing and analyzing techniques
and heuristics that utilize preemption is to limit the potential complexity of the problem. Similar to how it is not possible
to explore all possible solutions of this scheduling problem in reasonable time, we cannot consider preempting every task
individually to optimize the schedule. To limit this complexity, we will need to determine what type of task should be able
to cause preemption among currently executing tasks, and will consider techniques for effectively selecting which tasks to
preempt in a reasonable amount of time. Working with preemption may also require studying techniques for saving the
state of a task so that the task can resume execution at a later point in time.

The energy filters presented in this paper could be used to dynamically control the energy consumption of the system by
adjusting the energy budget or energy-per-resource budget throughout the day. This could be used to more effectively man-
age system resources in environments with time-of-use pricing (i.e., environments where energy prices change throughout
the day).

Our metaheuristics that switch between Max UPR and Max UPE perform well in environments where tasks arrive at a
steady rate, but when the task arrival rate varies significantly throughout the day the metaheuristics do not perform as well
as Max UPE when there is a tight energy constraint. Currently, the metaheuristics attempt to guide the system to consume
energy at a constant rate throughout the day. It would be interesting to modify the metaheuristics so that the goal for the
system’s rate of energy consumption is the same as the expected arrival pattern of tasks. This may result in performance of
the metaheuristics that matches the best of Max UPR or Max UPE in all environments instead of just environments where
tasks arrive at a steady rate.
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