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Nearest Optimal Repeatable Control Strategies
for Kinematically Redundant Manipulators

Rodney G. Roberts, Student Member, IEEE, and Anthony A. Maciejewski, Member, IEEE

Abstract— Kinematically redundant manipulators, by defini-
tion, possess an infinite number of generalized inverse control
strategies for solving the Jacobian equation. These control strate-
gies are not, in general, repeatable in the sense that closed
trajectories for the end-effector do not result in closed trajectories
in the joint space. The Lie bracket condition (LBC) can be used
to check for the possibility of integral surfaces, also called stable
surfaces, which define regions of repeatable behavior. However,
the LBC is only a necessary condition. In this work, a necessary
and sufficient condition for the existence of stable surfaces is used
to illustrate that such surfaces are much rarer than previously
thought. This motivates the main result of this work, which is a
technique for designing a repeatable control that is nearest, in
an integral norm sense, to a desired optimal control. The desired
optimal control is allowed to take the form of any generalized
inverse. An example is presented that illustrates the capability of
designing repeatable controls that approximate the behavior of
desired optimal inverses in selected regions of the workspace.

I. INTRODUCTION

INEMATICALLY redundant manipulators are robotic

systems that possess more degrees of freedom than are
required to perform a specified task. For single-arm manipu-
lators the task is usually specified as a location or path for the
end-effector. A manipulator can be described by its kinematic
equation

z = f(#) M

where z € IR™ represents the workspace position and/or
orientation of the end-effector and § € R” represents the
manipulator’s joint configuration. Thus, m < n by definition
for redundant manipulators. The Jacobian equation relates
the joint velocities to the end-effector velocities and, for
the positional component, is obtained by differentiating (1)
resulting in

= Jb. ®)

Due to the extra degrees of freedom, redundant manipulators
possess an infinite number of local control schemes of the form

0=Gx (3)

where JG = I (except at singularities of .J or possibly (7) in
order to satisfy the constraint of a given end-effector velocity.
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A popular local control scheme is pseudoinverse control due
to its desirable minimum norm property.

A generalized inverse control like the one given in (3)
may not be repeatable in the sense that closed trajectories
in the workspace may not be mapped to closed trajectories
in the joint space. Pseudoinverse control is no exception as
Klein and Huang [3] have shown. When a cyclic task is
performed using a nonrepeatable control, the joint angles of the
manipulator do not necessarily return to their initial position.
In other words, generalized inverse control of kinematically
redundant manipulators may produce a drift in joint space
when a cyclic task is performed in the workspace. This may
pose a problem since the manipulator’s behavior would be
hard to predict without prior analysis. By using a repeatable
control, the setup time for a manipulator can be reduced for
cyclic tasks since one would only need to check one cycle to
see if the manipulator functioned as desired.

Shamir and Yomdin [9] have developed an elegant test
using Frobenius’s theorem from differential geometry for
determining whether or not an arbitrary inverse is repeatable
on an open subset of the joint space. This test, called the Lie
bracket condition (LBC), is formulated in terms of the Lie
bracket of the columns of the inverse. The Lie bracket of two
vectors u and v, where both vectors are functions of 6, is
given by the vector

wie () (2o,

An inverse G is said to satisfy the LBC if the Lie bracket
of any two columns of G is in the column space of G. A
necessary and sufficient condition for a control strategy to
be repeatable on an open singularity-free region of the joint
space is that the LBC hold on this region. For the special
case of the pseudoinverse one need only apply the LBC
to JT, which greatly simplifies the computations required
(sce Appendix I). The LBC also gives necessary conditions
for what are called stable surfaces, which are defined as
m-dimensional hypersurfaces in the joint space on which
the control strategy exhibits repeatable behavior. When a
manipulator starts initially on a stable surface, the manipulator
will continue to remain on this surface except possibly when
encountering a singular configuration. An example is given in
[9] where the stable surfaces for the pseudoinverse solution
of a three-link planar manipulator described in absolute joint
angles are calculated. It is important to note that the LBC is
a necessary but not sufficient condition for testing whether or
not a surface is a stable surface. A surface that satisfies the
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LBC but that is not necessarily a stable surface will be called
a candidate surface. An example illustrating the significance
of this distinction is presented in the following section.

The remainder of this paper is organized in the follow-
ing manner: Section II discusses a necessary and sufficient
condition for a candidate surface to be a stable surface for
planar three-link manipulators [8]. Some of the difficulties
in identifying such surfaces are illustrated. In particular, it
is shown that a commonly analyzed manipulator that had
previously been thought to possess stable surfaces does not
in fact have any such surfaces. In Section III, the LBC is
used to define a class of repeatable solutions. After a class of
repeatable solutions is found, a technique for determining the
member of this class nearest to a desired inverse in an integral
norm sense is presented. Section IV then illustrates this design
technique with a specific example. Simulation results are then
presented in Section V with conclusions appearing in Section
VI

II. STABLE SURFACES

As pointed out in [8] and [9], even if the LBC is satisfied
for a given surface, the surface is not necessarily a stable
surface. For planar three-link manipulators, there is a simple
sufficiency condition for stable surface candidates. If using a
control strategy that has the form of (3), the LBC specifies
that a candidate surface must satisfy the equation

n&lg;. 95 =0 Q)

where G = [g,9,] and ng is a null vector of G7. It can be
easily shown (see Appendix II) that (5) is equivalent to

ng - Vxng=0 (6)

which is the curl condition used in [3]. Thus, for planar three-
link manipulators, candidate surfaces must satisfy s(8) = ng -
Vxng = 0. For the special case where G is the pseudoinverse,
a candidate surface must satisfy s(f) = n;-V xn; = 0 where
ny is a vector in the null space of J.

Now suppose that this manipulator has a stable surface S
and that this surface is described by the equation s(6) = 0.
If the manipulator is on this surface S, then for any specified
end-effector trajectory the following must hold:

) . 9s - .
szzﬁeizvs-ezo. (7)
i=1

Using the fact that § = G4, one obtains

VTsGi = 0. (8)
Since this is true for all &

visq =0T, 9)

If the manipulator is not in a singular configuration, then (9)
implies that Vs(6,) and ng(6,) are proportional for all 6, on
S. Thus, (9) provides a necessary and sufficient condition for
identifying a stable surface for planar three-link manipulators

(8]-

Fig. 1. Geometry of a planar three-link manipulator whose first joint is
prismatic and whose last two joints are revolute and of unit link length. The
rotary joints are described in terms of absolute angles.

As an illustration of this necessary and sufficient condition,
consider the planar manipulator depicted in Fig. 1 with one
prismatic joint and two revolute joints of unit length. This
manipulator is described by the kinematic function

(10)

s = f(y) = {dl + costpy +cos1/)3}

sinys + sinys

where ¢ = [d) ¥ wg]T and 1; represents the absolute joint
angle as opposed to the more commonly used relative joint
angle. The manipulator Jacobian is then given by

J:[l —sinyg —SiH’l/}g:!.

0 cosyy  cosys

an

A null vector of the Jacobian can easily be calculated by taking
the cross product of the two rows and is given by

sin(t3 — 1)

—cosys
cosip

ny = (12)

A simple calculation shows that the necessary condition for a
stable surface described by (6) results in

$(8) =ny-V xn; = costpz — costp, = 0. (13)
This condition is satisfied on the surfaces
P2 =13 (14
and
P = —s. 15)

Applying the condition described by (9), the gradient of s(4)
on the first surface is proportional to the null vector ny while
on the second surface it is actually perpendicular to n ;. Thus,
(14) describes a stable surface, but the surface described by
(15), while satisfying the LBC, is not a stable surface.

In fact, the existence of stable surfaces is not as common
as previously thought. In the literature [9], stable surfaces
have been used to explain the convergence of a cyclic task
to a repeatable solution. It was claimed that, as a manipulator
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approaches a stable surface, the drift in the joint angles ap-
proaches zero. However, it will be shown through an example
that convergence to a repeatable solution does not imply that
the manipulator has a stable surface. This will be done by
applying the LBC and (9) to the planar three-link revolute
manipulator shown in Fig. 2. Note that the joint angles for
this manipulator are expressed in relative angles as opposed
to absolute angles. The Jacobian for this manipulator is given
by

J =

—sinf; — sinflio — sinfliog  —sinfio — sinflips  —sind sy
costl; + cosfia + cosfliog  cosfia + cosbias  cosfio3
(16)

where ;; denotes 6; + 6;. In order for this manipulator to be
on a stable surface, the following equation must be satisfied:

5(6) = —sinfly + sinf3cosfy + sinzcos(fe + 63) =0 (17)

where §; are the relative joint angles. For this manipulator, a
null vector is given by

sin93
—Sil’lag — sin(92 + 93)
sinfy + sin(fa + 63)

ny = (18)

while the gradient of s is

Vs =
0
—cosfly — sinflysinfs — sinfssin(fy + 03)
cosflacostlz 4 cosfzcos(fa + 63) — sinfzsin(f2 + 03)

(19)

Now in order for this manipulator to possess a stable surface,
(9) must be satisfied, which can only occur when either n;
and Vs are proportional or Vs = 0. By comparing the first
element of (18) with (19), it is easily seen that the first case
can only occur when sinfs = 0. If this is true, then from (17)
it can be seen that sinfl, is also zero so that the manipulator
is in a singular configuration. Now consider the case where
Vs = 0. One can show that the second element of Vs cannot
be zero on a surface described by s by noting that

2
st 4 <ﬁ) = 1 + 25in%83(2 + cosbs) > 0 (20)
06

where 9s/06, is the second element of Vs. Since s2 +
(9s/882)? > 0, there is no value of § for which s = 0
and Vs = 0. Thus, the two surfaces satisfying s = 0 are
not stable surfaces. Therefore, the convergence behavior noted
in [3] and [4] is convergence to a repeatable solution for a
given closed trajectory as opposed to convergence to a stable
surface. Since this manipulator is known to possess a stable
surface when described in terms of absolute angles [9], this
example illustrates the important point that stable surfaces are
not preserved under joint transformations. Thus, one cannot
simply warp an existing surface by changing the weighting
matrix on the pseudoinverse.

A geometrical interpretation of the constraints imposed
by the LBC illustrates why one should intuitively consider

Fig. 2. Geometry of a planar three-link manipulator whose joints are all
revolute and of unit link length. The joint angles are described in terms of
relative angles.

stable surfaces to be the exception rather than the rule. For a
stable surface to exist, all of the hypersurfaces defined by the
constraint equations obtained from the LBC must all intersect
on the same hypersurface of appropriate dimension. While
one can construct an infinite number of such examples, they
are typically highly restricted cases of a general manipulator.
For example, consider the generalization of the planar 3R
manipulator in [9] to a general n-link planar manipulator
described in absolute angles. By applying (9) one can show
that stable surfaces will only exist under the restriction that
there are at most two distinct link lengths. On such surfaces
there will only be two distinct joint values. Physically this
means that all but two of the joints are frozen so that, in effect,
all such manipulators behave as planar two-link manipulators.
Note that for all practical purposes one could never even
manufacture such a manipulator since the link lengths could
never be guaranteed to be exactly equal.

III. A CLASS OF REPEATABLE INVERSES

The previous section has shown that one cannot rely on
the existence of stable surfaces to achieve repeatability. An
alternative, which is illustrated in this section, is to derive a
class of repeatable solutions. These inverses, like the extended
Jacobian [1], have foliations of stable surfaces and so are
guaranteed to be repeatable. The inverses under consideration
are generalized inverses like those described by (3). For a
manipulator with a single degree of redundancy, any of these
inverses can be written in the form

G=J" +aw’ )
where 77 is the unit length null vector of the Jacobian J and
w is a vector that uniquely determines G. This follows from
the fact that J(G — J*) = [0]. Similarly, for higher degrees
of redundancy

w]

G=J"+[n (22)

ﬁn—m]
T

wn—m
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where 71,...,7,_,, form an orthonormal basis for the null
space of J. For simplicity, only the case of a single degree of
redundancy will be considered unless otherwise noted. From
(21), it is easy to verify that

ng :JT’U)—‘fI.J (23)

is a null vector of G”. The first step in designing an optimal
repeatable inverse is to determine the vector functions w that
characterize the set of repeatable inverses. This can be done by
determining all of the w that satisfy the differential equations
given by

n&(g:.9,] = 0. 1<i<j<m. (24)

For three-link planar manipulators, this set of equations can
be simplified by using the equivalent form

nG‘Van:O. (25)

Equation (24), or (25) where applicable, determines a class of
admissible w so that for any w in this class, the corresponding
inverse G, is repeatable.

There are infinitely many such repeatable inverses so that
it is possible to optimize over this class in order to obtain
additional desirable properties. One possible approach is to
minimize the distance to an unrepeatable inverse Gy that
possesses some desirable characteristics. The measure that will
be used in this work is

/ G, = Ga|l2d6
Q

where || - ||2 is the Euclidean matrix norm. Equation (26)
gives a measure of the closeness of the two inverses over
the connected subset © of the joint space. Alternatively, one
could integrate over a region of the workspace in order to
determine the optimal foliation in the joint space. From (21)
it follows that

1Gr = Galla = [|[(JF + 2gw)) — (T + agwl)]s

= ||fs(w, — wa) |2

(26)

27

where wy is the unique vector that corresponds to Gy. Since
the Euclidean matrix norm of an outer product is equal to the
product of the corresponding vector norms, it follows that

G = Gallz = llsll2]lw, —wall- (28)

Since 71 is of unit length, the optimization criterion becomes

/ |G, — Ga|3d6 = / llw, — wal|3df
Q Q

which greatly simplifies the computations.

In practice, solving for closed-form analytical solutions
to a sct of partial differential equations such as (24) may
be a virtually impossible task. In order to find the nearest
optimal repeatable control for more complicated manipula-
tors, it is necessary to develop a method that does not rely
on solving complicated differential equations. By using the
known geometrical properties of repeatable inverses, it is
possible to generate a subset of analytic solutions to these
differential equations by utilizing gradient functions. While

(29)

this technique has the advantage of avoiding complicated
equations, its disadvantage is that it only optimizes over a
subset of repeatable inverses. In order to apply this technique,
a different characterization of the repeatable control strategies,
which does not explicitly require the solution of equations
resulting from the LBC, is necessary. This method relies on
characterizing the vectors that are at every value 6 orthogonal
to the joint trajectories determined by the control strategy.
These vectors are given by the null space of the transpose of
the generalized inverse, which, for essentially all repeatable
generalized inverses, are determined by gradient functions [8].
Thus, these repeatable strategies can be obtained by inverting
the square matrix

J

Jy = (30)

o7
where v is a gradient function that characterizes the repeatable
generalized inverse. In other words, inverses obtained in this
manner are automatically guaranteed to satisfy the LBC given
by (24) without explicitly solving the associated differential
equations. As shown by Baker and Wampler, these inverses
correspond to inverse kinematic functions [2]. Note that Jy
is superficially of the same form as an augmented or ex-
tended Jacobian. Clearly, if one can identify an appropriate
number of additional kinematic constraints that correspond to
the desired use of the redundancy, augmenting the Jacobian
with these equations is the method of choice for resolving
the redundancy and automatically guaranteeing a repeatable
solution [7]. Likewise, if the desired additional objective is
strictly a function of 6, Baillieul [1] has shown how one
can construct an optimal v. However, it is important to point
out that the technique presented here is distinct from both
the augmented and extended Jacobian techniques since there
may be no physically meaningful function of ¢ that describes
the desired optimization criterion. In particular, the proposed
technique is able to handle more general optimization criteria
such as the minimum joint velocity norm solution obtained
using the pseudoinverse, which will be used as an example in
the remainder of this work.

The repeatable inverses described by (30) are calculated at
nonsingular configurations by taking the first m columns of

,]‘1:[ _ a5 G n ] 31
v Gd njmi 771'71'17 ( )

where once again Gy is some desired (but typically not
repeatable) generalized inverse. Thus any repeatable strategy
has the form
Tq
Gy = Gy — iyt (32)
ny-v

where v is a gradient function. From (32) it follows that
w, — wy i given by
GTv

ny-v

w, — Wy = (33)
The values of 6 that result in 227 () - v(6) = 0, but correspond
to nonsingular configurations of the Jacobian, are called al-
gorithmic singularities. These singularities, which were first
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noted by Baillieu [1] in the case of the extended Jacobian,
cause (33) to take on infinite values. The cost function,
corresponding to (26), on a simply connected singularity-free
subset {2 of the joint space is thus given by

e [ lGEul3
16~ Gully = [ 1% o

(34)

An example of a set of augmenting vectors that yield
repeatable control strategies is the span of N linearly inde-
pendent gradient functions {v;,vs,...,vx}. For this case, the

augmenting vectors would have the form

N

v = E a;v;

=1

(35)

where each a; is a real constant. The fact that v is a gradient
follows from the linearity of the differential operator. Several
considerations should be made in choosing such a basis. One
should be careful to select the gradient functions to be linearly
independent from the row space of the Jacobian since failure to
do so will result in a singular augmented Jacobian. Second, it
should be noted that all multiples of an augmenting vector re-
sult in the same control. Thus, choosing an optimal augmenting
vector becomes a constrained optimization problem in which
each augmenting vector is normalized. Such a normalization
can be done, for example, by requiring that Z,\:1 a? = 1.
Combining (34) and (35) yields

N N T T
- =1 4ia;v; GaGhv;
IG, = Gali3 = / Z’—I(EH T (36)
Q

; N 2
211::1 agny - 'u)

which is a criterion function of the coefficients a;. Since
the augmenting vectors have been normalized, (36) represents
an (N — 1)-dimensional optimization that will typically be
performed numerically to obtain the desired coefficients of v.
While this may require a significant amount of computation,
it is important to note that it is all off-line calculation.

One can also generalize the above technique to higher
degrees of redundancy. In this case, the augmented Jacobian
has the form

J
Jy= |- 37)
vT
where V' is a matrix of n — . gradient vectors. Equation (33)
generalizes to

W, - Wy = -GIV(NTV)~! (38)

where NV is a matrix whose columns form an orthonormal basis
for the null space of J. The optimization still requires the nu-
merical integration of (36) except that one must now calculate
a matrix norm in place of the vector norm. Clearly, this may
result in a considerable computational burden; however, once
again it is all off-line calculation.

d1 |
Fig. 3. Geometry of a planar three-link manipulator whose first two joints
are prismatic and whose last joint is revolute and of unit link length.

IV. EXAMPLE

In order to illustrate the ideas in the previous sections,
a specific example will be presented. Consider the planar
manipulator shown in Fig. 3 consisting of two orthogonal
prismatic joints and a third revolute joint of unit length. The
kinematic function for this manipulator is given by

_ | dy + cosbls
z=f0)= [(ig + sin€3:l
where £ = [z y]|" and 6 = [d; dy 63]7. It is easy to
see that the Jacobian for this manipulator is

7= 1 0 —sinfy
S0 1 cosby |

(39

(40)

One can easily show that this simple manipulator possesses
no stable surfaces when using pseudoinverse control [6]. In
particular, the unit length null vector can be obtained by
normalizing the cross product of the two rows of J to yield

sinfly
— | —cosfy
V2|
Testing the necessary condition for a stable surface, one
obtains

ny = (41)

7y -V X fy=—1/2 (42)

thus proving that there are no stable surfaces. Therefore, no
strategy that relies on convergence to a stable surface can be
applied when a minimum norm solution is desired. However,
the technique presented in Section I11 can be applied to achieve
repeatable solutions and still retain some of the minimum norm
properties of the pseudoinverse solution.

The first step in determining the repeatable inverse that is
closest to the pseudoinverse is to characterize all generalized
inverses by their null vectors. By using (23) these vectors can
be written as

wy — %sinﬂg
“3)

ng = wy + %00593

—wisinds + wacosfs — %
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where they are now parameterized by w; and ws. Next,
these null vectors are restricted to those null vectors that
correspond to a subset of repeatable inverses. This can be done
by determining solutions to the differential equations obtained
from (25) and (43). For this particular example, the solution
of these equations is characterized by the relation

wi = kwy + \%(Sinﬁg + kcostz)
where £ is an arbitrary constant and it is assumed that the
inverses are only function of 3. Thus, (44) parameterizes
these repeatable inverses in terms of the function wo and the
constant k.

Now that a class of repeatable inverses has been derived, the
optimal member of this class with respect to an appropriately
chosen criterion function can be found. For this example the
criterion function is given by

(44)

b
(k) = / 1G, — J*||2d6s (45)

which is a measure of the distance from the repeatable inverse
G to the pseudoinverse in the region a < 83 < b. It follows
from (28) that

Gy = 715 = llwl} = wf + wi (46)
so that minimizing w? + w? is required. Using (44) and
completing the square gives
k(sinfs + k cosbz) ]’
V2(E2 4+ 1)
(sinfs + k cosf3)?
(k2+1)

Now there is nothing that can be done about the last term of
(47); however, the first term can be minimized by setting

3 k(sinds + k cosf3)
V2(k2 4 1)

wi+wi = (k* +1)|w, +

(47)

wo =

(48)

which results in
k cosfl3 + sinfy
= ————
V2(k2 + 1)

Equations (48) and (49) give a family of repeatable inverses,
parameterized by k, that minimize (46). Substituting (48) and
(49) into (46) gives

(49)

(sinf3 + k cosfz)?
2(k2+1)

which is bounded by 1/2 thus insuring that the criterion
function is well defined. Therefore, (45) becomes

b 2
Clk) = / (sinfs -};kcosﬁg)
a 2(k2 + 1)

Note that the optimization resulting in (48) and (49) is inde-
pendent of a and b, the limits of integration for (51).

The final form of the inverse that minimizes the cost
function given by (51) depends on the limits of integration.
This cost function when evaluated over an interval of length

llwll3 =

(59

dbs. (51)

TABLE |
OPTIMAL PARAMETERS FOR SYMMETRIC JOINT LiMITs (7 = 0)
0<b< 3 b= 7% F<b<rw b=rn
Cy — 4} + 0
Kopt 0 any value > any value
wy %sin(); equation (49) 0 equation (49)
5 :

e 0 equation (48) _%(-(,593 equation (48)

27 has a value of 7 /4 for all k so that all choices of & result in
the same cost. However, one will typically want to restrict the
limits of integration in order to obtain a closer match to the
desired minimum norm solution in select configurations since
the global constraint of repeatability significantly restricts the
region in which the pseudoinverse can be approximated. To
more clearly illustrate the effect of the limits of integration on
the optimal solution, (51) is rewritten as

Cik + Cy
) = 52
Oh) = G +Os (52)
where
1
C, = 5(0052(1 — cos2b) (53)
Cy = %(sinZa — sin2b) (54)
and
1
Cs = Z(b—(l—02>. (55)

It can be easily shown that if C is nonzero, the optimal choice
for k is

b= Co —\/C?+C3

o (56)

When C; = 0 the optimal choice for &k breaks down into
two special cases, namely, k¥ = 0 and &k = oo. This will
occur, for example, when the joint limits are symmetric, i.e.,
when a = —b, which is summarized in Table I. Note that for
this case when 0 < b < /2 the inverse G differs from the
pseudoinverse only in the first column while for 7/2 < b < 7
the difference is only in the second column. This clearly
illustrates the effect that the specified end-effector trajectory
has on the difference between the repeatable solution and the
minimum norm solution.

It is important to note that the optimal inverse need not be
unique as is illustrated in Table I for the cases b = #/2 and
b = 7 where any value of £ will result in an optimal solution.
For this particular example, k gives a parameterization of
the optimal solutions in terms of (48) and (49) as k varies
over IR. In such cases where the optimal is not unique, it is
possible to use some additional criterion to choose a specific
solution. One possibility is to choose the optimal solution that
is the least computationally expensive to implement. So for this
particular example, the solution £ = 0 is selected to simplify
the computation of (48) and (49).
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It is also possible to do the optimization in a different way.
The criterion function C(k) can be rewritten as

¥ (si s63)? 1

mmzlgﬂ%%%%%imyil§mﬂ%+@ws

(57)
where ¢ = tan™'k € [—7/2,7/2]. The cost function C(k)
has now been written as a differentiable function of ¢ on the
interval [~ /2,7/2]. It then follows that C' has a minimum
value on this closed interval and that this minimum occurs
cither at a point where the first derivative of C' with respect
to ¢ is zero or at an endpoint of the interval. Setting dC/d¢
to zero and applying the second derivative test results in the
following optimal solution:

—3(a+b)+nr, f0<b—a<nm

¢ = (38)

—sla+b)+ 2 ifr<b—a<2r
where n is chosen so that ¢* € [-r/2,7/2]. Since (57)
is periodic with respect to ¢ with period #, one does not
need to check the endpoint —7/2 and 7/2 to know that (58)
determines a global minimum. The corresponding &* is found
by taking the tangent of ¢* resulting in

—tan(442), fO0<b-a<m

k= (59)
cot(%£2),
Note that infinite values of k* are allowable and that this in
fact does correspond to an inverse that is given by the limit
of (48) and (49) as k approaches co. Thus, for ¥ = oc the
inverse is given by taking w; = 0 and wy; = —(1/v/2)cosbs.

To get a more geometrical understanding, note that from
(48) and (49) it follows that we = —kw,. Thus, the inverse
G(0,k) can be written in the form

ifr<b-—a<2r.

kcosfls + sindy | Sin¥3
G,.(g,k):Ju“;(,;‘j?;” —coss |[1 —k] (60)
1

where the dependence on the parameter k is made explicit.
Note that from (59) it follows that at the center point of a
closed interval [a, b] of length less than , the optimal inverse
is exactly the pseudoinverse. So for such intervals the nearest
optimal repeatable inverse matches the pseudoinverse exactly
at the interval’s center. This optimization can be performed
graphically by using the three-dimensional plot shown in Fig.
4. In particular, for 3 intervals of length less than =, one
would simply choose the k value from Fig. 4 that gives a zero
value of [lw|| at the center of the 63 interval.

V. SIMULATION RESULTS

In order to illustrate the example in Section IV, this section
presents simulation results for the manipulator depicted in Fig.
3, commanded to follow the 10 square end-effector trajectories
shown in Fig. 5. For each square trajectory, the manipulator’s
initial configuration is set to the origin of the joint space, which
corresponds to the point (z,y) = (1,0) in the workspace. The
joint space trajectories obtained using pseudoinverse control
are shown in Fig. 6. As expected, pseudoinverse control
produces a drift in the joint space that results in a set of
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Fig. 4. A 3-D plot of the matrix norm of the difference between the
pseudoinverse and the nearest repeatable inverse as a function of 63 and
& for the manipulator depicted in Fig. 3.

(1,0)

Fig. 5. The end-effector paths used in the simulation of the manipulator
depicted in Fig. 3. Each path starts and ends at (. y) = (1.0).

Joint trajectories that spiral along the fiber corresponding to the
point (1,0) in the workspace. In Fig. 7, the same end-effector
trajectories and initial conditions are used while applying a
nearest optimal repeatable control with & = 0, which is
designed to exactly match the pseudoinverse at the origin
of the joint space. The surface corresponding to the value
> = 0 and the initial condition (dy,d».63) = (0,0,0) can
be clearly seen in this figure. In Fig. 8, the pseudoinverse
trajectory corresponding to the end-effector trajectory denoted
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Fig. 6. Three orthogonal views of the ten joint space trajectories obtained
when using pseudoinverse control on the manipulator in Fig. 3 to follow
the end-effector trajectories shown in Fig. 5. In all cases the initial joint
configuration corresponds to the origin. The spiral represents the fiber of the
initial end-effector position so that all points on this spiral correspond to the
point (. y) = (1.0) in the workspace. Note the drift in each trajectory.

by ABCDE is shown relative to this integral surface. Note
that the pseudoinverse trajectory initially lies on this stable
surface, as designed, but starts to diverge as the end-effector
leaves point C'. It is at this point that the global repeatability
requirement forces the repeatable inverse to abandon the
optimal pseudoinverse solution.

It is clear from Fig. 8 that the constraint of repeatability
will restrict the region in which the repeatable inverse can
accurately approximate the optimal pseudoinverse solution.
However, as shown in the previous section, one does have the
ability to select the point at which the approximation is exact
by setting the value of & and the manipulator configuration
appropriately. This is illustrated in Fig. 9 where two different
repeatable controls are compared to the desired pseudoin-
verse solution. One of the repeatable controls is that used in
Figs. 7 and 8, ie., with £ = 0 and an initial configuration
corresponding to #3 = 0, which matches the pseudoinverse
at the origin of joint space. The other repeatable control is
designed to match the pseudoinverse at the configuration that
corresponds to 63 = —57/4, denoted by (7 is the figures,
which occurs near the end of the trajectory and requires that
k = —tan(-5n/4) = 1. Obviously, the performance of these
two inverses is quite different and, due to the harsh constraint
of repeatability, they only approximate the desired optimal be-
havior of the pseudoinverse in their respective design regions.
This is more clearly illustrated in Fig. 10, which in effect
plots the configuration of the manipulator, since any joint
value uniquely identifies the configuration, along the specified
end-effector trajectory. It is easy to see from this figure that

d>

Fig. 7. Three orthogonal views of the ten joint space trajectories obtained
when using a repeatable control on the manipulator in Fig. 3 to follow the
end-effector trajectories shown in Fig. 5. The repeatable inverse corresponds
to A = 0 and each trajectory has its initial joint configuration at the origin.
Once again, the spiral represents the points in the joint space corresponding to
the point (r. y) = (1.0) in the workspace. Note that each trajectory returns
to the initial starting configuration (d;.d».63) = (0.0.0). These trajectories
clearly show the surface determined by the initial condition and & value of
the repeatable inverse.

Fig. 8. A 3-D view of one of the joint space trajectories corresponding
to pseudoinverse control and the surface representing the repeatable con-
trol for the manipulator in Fig. 3 with A = 0 and initial configuration
(dy.dy.63) = (0.0.0). Note that the pseudoinverse trajectory initially starts
out on the surface, but later the two diverge. In order for a trajectory to be
repeatable, it must stay on the surface. At the point where the pseudoinverse
trajectory diverges from the surface, the repeatable control can no longer
satisfy staying close to the pseudoinverse while maintaining the repeatability
requirement.

the £ = 0 repeatable inverse solution exactly matches the
performance of the pseudoinverse trajectory up to the point
F and that the & = 1 repeatable inverse exactly matches the
pseudoinverse at the design point G and provides a reasonable
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93

dy e Pseudoinverse

Fig. 9. Three orthogonal views of one joint space trajectory obtained using
pseudoinverse control and two trajectories obtained using repeatable controls
corresponding to & = 0 and & = 1 for the manipulator shown in Fig.
3. The repeatable trajectories start on the pseudoinverse trajectory at the
values 83 = 0 and —57 /4, respectively, and illustrate the ability to design a
repeatable control that approximates 2 desired control for a specified region
of the workspace.

approximation to the pseudoinverse solution in the region from
D o A. Tt is important to note that, despite the fact that the k =
1 inverse configuration and the pseudoinverse configuration
match at H, this does not imply that the inverses match at this
point. This fact is clearly illustrated in Fig. 11 where it can
be seen that the joint velocity norm for the k¥ = 1 solution
is considerably higher than the norm of the pseudoinverse
solution at point H. Fig. 11 also illustrates an important point
concerning the “optimal” nature of the pseudoinverse solution,
namely, that it is optimal over all possible solutions for a given
manipulator configuration. Thus, the apparently anomalous
behavior observed near E where the norm of the £k = 0
solution is smaller than the norm of the pseudoinverse solution
is not unexpected since the configurations are not identical (see
Fig. 10). A pointwise comparison of the joint velocity norm
between the k£ = 0 solution and the pseudoinverse solution is
given in Fig. 12 for identical configurations corresponding to
the £ = 0 joint space trajectory in Fig. 9. This figure illustrates
the penalty, in terms of increased solution norm, incurred by
requiring repeatability. It also illustrates the profound effect
that the direction of the specific commanded end-effector
velocity has on the difference between the two solution norms.
This accounts for the exact match between the pseudoinverse
solution and the k¥ = 0 solution in the region from A to
C despite the fact that these two inverses are actually quite
different in the region from B to C.

VI. CONCLUSIONS

It has been shown that one cannot rely on the existence

93 Pseudoinverse
_____ k=0
oo k=1
-6
A B C D E A

Fig. 10. A plot of 63 that, together with the end-effector position, uniquely
identifies the configuration of the manipulator shown in Fig. 3, as a function
of the position of the end-effector in the workspace for the trajectory used
in Fig. 9. Point F' identifies the configuration at which the repeatable inverse
corresponding to k = 0 diverges from the desired optimal pscudoinverse
solution. Point G is the point at which the repeatable inverse corresponding
to k = 1 was designed to exactly match the pseudoinverse solution. Point
H identifies a point at which the configurations for both the pseudoinverse
solution and the repeatable solution match but whose inverses differ.

0.05

1181

Pseudoinverse

0.

A B Cc D E A

Fig. 11. A plot of the joint velocity norm as a function of the position
of the end-effector in the workspace for the trajectory used in Fig. 9.
The repeatable inverse corresponding to k = 0, which was designed to
approximate the optimal minimum norm behavior of the pseudoinverse in
the initial region of the trajectory, exactly matches its behavior until point F.
The repeatable inverse corresponding to & = 1 was designed to approximate
the pseudoinverse near point G. Note the difference in the solutions at point
H despite the fact that the configurations are identical (see Fig. 10). This
is due to the fact that the repeatable inverse was not designed to match the
pseudoinverse at this point.

of stable surfaces to guarantee repeatable performance for a
desired generalized inverse control. The LBC alone, by virtue
of the fact that it is only a necessary condition, can only
identify candidate surfaces, many of which are not stable
surfaces. Likewise, convergence to a particular joint space
trajectory for a given end-effector trajectory does not imply
the existence of a stable surface. The constraint of repeatability
for all end-effector trajectories and all initial conditions, which
is characterized by foliations of stable surfaces, significantly
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0.0:

18- d*x |

0.00| ]
A B C D E A

Fig. 12. A plot of the norm of the difference between the joint velocities
obtained using the repeatable control with k = 0 and the pseudoinverse
control as a function of the position of the end-effector in the workspace for
the trajectory used in Fig. 9 is given by the solid line. The pseudoinverse
control is calculated for the manipulator configuration obtained as a result
of the selected repeatable control. A plot of ||wl|2]|Z||2 along the same
end-effector trajectory, given by the dashed curve, represents the norm of the
worst case difference between the joint velocities of the repeatable (k = 0)
and pseudoinverse strategies for all trajectories passing through the joint values
with an end-effector velocity of ||£{|2 = 0.04.

restricts the choice of available generalized inverse controls.
However, it has been shown that it is possible to approximate
the behavior of any desirable optimal inverse in a specified
region by determining the repeatable inverse that is closest
to the desired inverse. This results in a control that takes
advantage of the available redundancy to locally optimize
some desirable performance criterion in the specified region of
the workspace while also satisfying the extremely restrictive
global constraint of repeatability.

APPENDIX 1
APPLYING THE LBC TO JT INSTEAD OF J*

Shamir and Yomdin [9] established a necessary and suf-
ficient condition for an inverse G to be repeatable. This
condition is summarized by the following theorem.

Theorem 1: Let G be the control matrix, which is assumed
to be a smooth function in an open subset @ of the joint space.
Let U C f(®) be a simply connected region of the workspace.
Then the control is repeatable for any closed paths lying in
U if and only if the following condition holds: For any two
columns g; and g, of G, their Lie bracket [gl-,g]-] is a linear
combination of the columns of G.

Theorem 1, which is called the Lie bracket condition (LBC),
provides an analytical tool for testing the repeatability of
a given control strategy; however, this technique results in
some rather tedious work, which motivates the result given
in Proposition 1, which can sometimes simplify the algebraic
computations involved. This result basically says that two
control strategies that have identical column spaces for each
value of 6 in an open subset ¢ simultaneously satisfy or fail
the LBC.

Proposition 1: Suppose L = GT on an open subset ®
of the joint space where T' is a smooth nonsingular matrix
function. Then G satisfies the LBC on & if and only if L does.

Proof: (=)LetG =g, --- g, L=[L - L.]
and T = [t;;]. Suppose that G satisfies the LBC on ®. The

matrix L is given by

L=GT = [2;’;1 tig, Y t,,mgp] (A1)

The Lie bracket of columns ¢ and j of the matrix L is given by

[l?~ l.i] = {Z tpigy: Z tqj.qq:|
p=1 q=1
=37 [tigy- ta;9,)- (A2)
p=1qg=1
From the following identity
oz, By] = aB[z, Y] + (VB -z)y — B(Va-y)z  (A3)

where « and 3 are scalar functions and = and y are vector
functions, it follows that

[llv l]} = Z Z(tmt(n [ypvgq] + tpi(thj : gp>gq
p=1g=1

Clearly this is in the column space of G and is thus in the
column space of L so that the LBC holds for L.

(<) Suppose that L satisfies the LBC on ®. Since L = GT
and T is nonsingular, then G = LT~! and the result follows
from the only if part above. Q.E.D.

As a corollary of the above result, one need only apply the
LBC to JT when testing the pseudoinverse for repeatability.
A proof is given below.

Corollary 1: Let ) be an open simply connected singularity-
free subset of the joint space. The LBC holds for J* on Q if
and only if it holds for J7.

Proof: Since J is nonsingular on , JT is given by
JT(JJT)~L. The result then follows directly from the propo-
sition. Q.E.D.

A proof similar to the one shown above is given in [5],
which appeared while this paper was in review.

APPENDIX I
PROOF OF THE EQUIVALENCE OF THE
LBC AND THE CURL CONDITION FOR RR®

For planar three-link manipulators, the LBC can be written
in terms of a curl condition. While the LBC utilizes the column
space of the inverse G, the simpler curl condition, which is
given by (6), uses only the null space of GT. The equivalence
of these two conditions is shown in Proposition 2.

Lemma 1: @ satisfies the LBC on an open singularity free
subset ¢ if and only if for all nonzero vectors ng € ker(GT)

"’GT[giﬂgj} =0 l<ig<m. (B1)
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Proof: (=) Suppose G satisfies the LBC. Then [g;, g;]
is in the column space of G. Therefore, there exists a vector
function 2z such that

l9: gﬂ =Gz (B2)

so that

nG’(9;,9;] = ne" Gz =0 (B3)
for all ng € ker(GT).

(«) Suppose that (B1) is satisfied for all ng € ker(G7).
Then [g;,g;] is in the column space of G for 1 < 4,5 < m.
Therefore, the LBC holds for G. QE.D.

Lemma 2: Let X : R® = R® and o : R — RR. Then

aX - Vx(@X)=a’X -VxX. (B4)
Proof: See [10].

Proposition 2:  Let ng be any nonzero null vector of
G=1[g; g,])€R>?and let Q be an open singularity-free
subset of the joint space. Then the following are equivalent:

1) The LBC holds for G on ).

2) nlg1,95] = 0 on Q.

3) ng -V xng =0on .

Proof: The equivalence of 1 and 2 has already been
shown in Lemma 1. It thus suffices to show that 2 and 3
are equivalent. Let g5 = g, X g5.

V xg3=V x(g; xg,)
=91V -9:-9,V-91+(9:-V)g, — (9, - V)g,
=91V 9,92V 91— [91,95] (B5)

so that

95V x g3 =—g3[9,9,]- (B6)
Thus, g3 - V x g3 = 0 if and only if —g3[g;,9,] = 0. Any
null vector ng has the form ag, for some scalar function of
a. Thus, by Lemma 2, it follows that nZ[g,,g,] = 0 if and
onlyifng-Vxng =0 Q.E.D.

A proof similar to the one shown above is given in [5],
which appeared while this paper was in review.
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