
UTILIZATION-BASED TECHNIQUES FOR STATICALLY MAPPING
HETEROGENEOUS APPLICATIONS ONTO THE HIPER-D

HETEROGENEOUS COMPUTING SYSTEM∗

SHOUKAT ALI† , JONG-KOOK KIM† , YANG YU‡ , SHRIRAM B. GUNDALA‡ ,
SETHAVIDH GERTPHOL‡ , HOWARD JAY SIEGEL§¶, ANTHONY A. MACIEJEWSKI§ ,

AND VIKTOR PRASANNA‡

Abstract. This research investigates the problem of allocating a set of heterogeneous applica-
tions to a set of heterogeneous machines connected together by a high-speed network. The proposed
resource allocation heuristics were implemented on the High Performance Distributed Computing
Program’s (HiPer-D) Naval Surface Warfare Center testbed. The goal of this study is to design
static resource allocation heuristics that balance the utilization of the computation and network re-
sources while ensuring very low failure rates. A failure occurs if no allocation is found that allows
the system to meet its resource and quality of service constraints. The broader goal is to determine
an initial resource allocation that maximizes the time before run-time re-allocation is required for
managing an increased workload. This study proposes two heuristics that perform well with respect
to the load-balancing and failure rates. These heuristics are, therefore, very desirable for HiPer-D
like systems where low failure rates can be a critical requirement.

1. Introduction. With the widespread use of increasingly powerful commer-
cial off-the-shelf (COTS) products, some system designers have started a shift from
custom development to COTS-based systems to achieve lower costs and more flexi-
ble systems [22, 26]. However, to use COTS-based systems effectively as parts of a
larger system, one needs to exploit the heterogeneity in processor speeds, memory
structures, specialized hardware capabilities, etc., that most likely will be present
in different COTS products. Heterogeneous computing (HC) is the coordinated use
of different types of machines, networks, and interfaces to meet the requirements of
widely varying application mixtures and to maximize the combined performance or
cost-effectiveness, e.g., [11, 16, 20, 34].

An important research problem in HC is mapping, i.e., how to assign resources
to applications so as to maximize some performance criterion without violating any
resource and quality of service constraints. This research addresses the problem of
mapping in a High Performance Distributed Computing Program (HiPer-D) [26] like
HC system consisting of heterogeneous sets of sensors, applications, machines, and
actuators. Each sensor produces data sets periodically at a fixed rate (the rate may
be different for different sensors), and these data sets are input into applications.
The applications process the data sets and send the output to other applications or to
actuators. Each application is required to finish processing a given data set before the
next one arrives (this is the throughput constraint on each application). Each sensor
can be characterized by the amount of “load” constituted by a given data set (e.g.,
number of objects in the data set to be processed). The system is expected to operate
at a given value of initial workload (i.e., the set of sensor load values). However,

∗This research was supported by the DARPA/ITO Quorum Program through the Office of Naval
Research under Grant No. N00014-00-1-0599, and by the Colorado State University George T. Abell
Endowment. Some of the equipment used was donated by Intel and Microsoft.

†Purdue University, School of Electrical and Computer Engineering, West Lafayette, IN 47907-
1285 ({alis, jongkook}@purdue.edu).

‡University of Southern California, Department of Electrical Engineering, Los Angeles, CA
90089-2560 ({yangyu, gundala, gertphol, prasanna}@halcyon.usc.edu).

Colorado State University, §Department of Electrical and Computer Engineering, ¶Department
of Computer Science, Fort Collins, CO 80523-1373 ({hj, aam}@colostate.edu).

1

shoukat
Text Box
Parallel and Distributed Computing Practices, Special Issue on Algorithms, Systems and Tools for High Performance Computing, accepted, to appear in 2004.



2 S. ALI ET AL.

unpredictable changes in the initial sensor loads are likely over time as the content
of data sets generated by the sensors changes. This causes unpredictable increases in
the execution and communication times for different applications. This means that,
at a certain value of the increased workload, some applications may not be able to
process a given data set before the next one arrives, causing a throughput violation.
Such increases in the workload could require a run-time re-mapping (re-mapping in
real time) to manage the increased workload.

The goals of this research are to design a mapping heuristic that (1) produces an
initial mapping that maximizes the time before a run-time re-mapping is required,
and (2) has a very small “failure rate.” It is possible that when a given heuristic is
executed for a particular scenario, the heuristic might not be able to find a mapping
(e.g., if the heuristic is left with an application that needs more CPU utilization than
is available on any machine). This may happen because no feasible mapping exists
or because the heuristic made some “bad” assignments early on in its operation so
as to leave not enough capacity on the machines for the remaining applications. The
failure rate for a given heuristic is defined in this research as the ratio of the number of
instances in which the heuristic fails to find a resource allocation to the total number
of times the heuristic was executed in different scenarios.

In an ideal situation, one would know the dependence of the computation and
communication times of different applications on changes in the workload from its
initial state, and use that information to determine a mapping that could meet the
first goal. Instead, the information provided was, for each application, the worst-case
values of the minimum CPU, input network link, and output network link utilizations
that the application requires on a given machine to satisfy the throughput constraint
at the initial workload. This research uses minimizing Umax, the utilization of the most
utilized computation or network resource, as an approximate approach to reaching the
first goal. This approach is reasonable because, generally, as the load from a given
sensor increases, the applications that receive data sets from that sensor will utilize
more resources. If the system is minimally utilized initially, it can better “absorb”
such increases in the workload.

The contribution of this research is the design of two mapping heuristics, MIP*
and HRA Max-min, for the initial allocation of resources to applications in the HiPer-
D environment. MIP* and HRA Max-min are compared with several other heuristics
from the related literature by using simulation experiments, and are seen to outper-
form the other heuristics, particularly for HC systems with high heterogeneity. The
heuristics perform well in the sense that they have very small failure rates, and gen-
erate mappings with low values of Umax (as compared to other heuristics). These
heuristics are, therefore, very desirable for HiPer-D like systems where increases in
workload are likely (assuming that systems that are minimally utilized initially can
“absorb” such increases) and low failure rates can be a critical requirement. Note
that even though HiPer-D is a real-time system, the contribution of this research is
not in guaranteeing the real-time operation of the system, but in designing an initial
mapping (to be used when the system is first started) that delays the need for real-
time, dynamic, on-line re-mapping due to changes in the workload that will cause a
throughput violation.

The heuristics discussed in this research are “static” mapping heuristics. Static
mapping is performed when the applications are mapped in an off-line planning phase
[10], e.g., when a system is first started up and a mapping is needed to ensure that
all quality of service (QoS) constraints will be met for a given initial workload. The



UTILIZATION-BASED TECHNIQUES FOR STATICALLY MAPPING . . . 3

mapping problem has been shown, in general, to be NP-complete [14, 17, 29]. Thus,
the development of heuristic techniques to find near-optimal mappings is an active
area of research, e.g., [2, 7, 10, 11, 16, 18, 21, 33, 35, 41].

MSHN (Management System for Heterogeneous Networks) is a collaborative re-
search effort among Colorado State University, Purdue University, the University of
Southern California, NOEMIX, and the Naval Postgraduate School [27]. It was sup-
ported by the DARPA/ITO Quorum Program. One objective of MSHN is to design
and evaluate mapping heuristics for different types of HC environments, including the
COTS-based HiPer-D environment at the Naval Surface Warfare Center (NSWC) [26].
A specific example of a HiPer-D subsystem is shown in Figure 1.1. Fire Sim 21, OTH
(Over the Horizon) Data Server, and ALT (Air Engagement Control Local Track)
Data Server send periodic data to the applications. Tacfire, CFF (Call for Fire) Bro-
ker, Land Attack Engagement Server, Deconflict Server, Gun Control, and Display
Components are the applications to be mapped. The arrows denote communications,
and the labels next to them denote the network protocols used for communications.
The labels in parentheses next to the applications denote the types of machines on
which those applications can execute. The HiPer-D system consists of a large number
of such subsystems.

Fire
Sim
21

Tacfire

ALT
Data

Server

OTH
Data

Server

CFF
Broker

Land Attack 
Engagement

Server

Display 
Components

Deconflict
Server

Gun
Control

(SGI)
(SUN)

(NT)

TCP
TCP

Ensemble

Ensemble

Ensemble

Ensemble
TCP

NDDS
CORBA

Fig. 1.1. An example HiPer-D subsystem composed of heterogeneous COTS components.

The rest of the paper is organized as follows. The system model is described
in Section 2. Section 3 presents the static mapping heuristics. The details of the
simulation experiments are given in Section 4. Section 5 outlines how this work is
related to the previous work in this area. Section 6 concludes the paper.

2. Model. The system consists of heterogeneous sets of sensors, applications,
machines, and actuators. Each machine on the network has a full-duplex communi-
cation link to a non-blocking switch. The sensors and actuators have unidirectional
connections. Each sensor produces data sets periodically, and these data streams are
fed into applications. The applications process the data sets and send the output to
other applications or to actuators (Figure 1.1).

Let M be the set of machines in the system. Each machine in M has some
“background loads” on its CPU and input/output network links. The background
loads on a machine are the utilizations of the CPU, input link, and output link before
any applications are mapped on the system.

Let A be the set of applications that need to be mapped. All applications in A
execute continuously to process the periodic inputs that arrive from the sensors or to
process input data from predecessor applications. An application can start processing



4 S. ALI ET AL.

input data as soon as the data is available and the application has finished processing
prior data inputs. Recall that each application is required to finish processing a given
data set before the next one arrives.

An application is characterized by the worst-case values of the minimum CPU,
input network link, and output network link utilizations that it requires on a given
machine to satisfy the throughput constraint at the initial workload. That is, each
utilization is a worst-case value for the fraction of the resource required by the given
application on a given machine to process a data set (based on its initial load value)
within its allowed time period. The utilization of resources information is the required
amount of resource to ensure that an application does not violate its throughput
constraint. As an example of the relation between the utilization of resource and
throughput constraint consider the following. Assume that application A needs 20%
of machine 1 for the given initial workload. If application A gets 20% of the CPU
cycles on machine 1, then it can meet the throughput constraint. The 20% is the
percentage of machine cycles needed (as specified by the sponsor, NSWC) irrespective
of the OS multitasking scheduling method within a given machine. This information
is the experimental data for the given application, given machine, sensor output rate,
and workload.

Let C(ai,mj) be the CPU utilization that application ai requires on machine mj ,
with the initial workload, to process a data set within the required time period (based
on the rates of its associated sensors). Analogously, let I(ai, mj) and O(ai,mj) be the
input network link and output network link utilizations, respectively, that application
ai requires on machine mj . Note that the values of C(ai,mj), I(ai, mj), and O(ai,mj)
are associated with the initial workload.

Let Cbg
j , Ibg

j , and Obg
j be the background utilizations on the CPU, input network

link, and output network link, respectively, of machine mj . Let Aj be the set of appli-
cations already mapped on machine mj . Let Cj , Ij , and Oj be the total utilizations
on the CPU, input network link, and output network link, respectively, of machine
mj . Then,

Cj = Cbg
j +

∑

ai∈Aj

C(ai,mj),

Ij = Ibg
j +

∑

ai∈Aj

I(ai,mj), and

Oj = Obg
j +

∑

ai∈Aj

O(ai,mj).

The total utilization of the most heavily loaded resource (the CPU, input link,
or output link) of machine mj is given by Uj = max(Cj , Ij , Oj). Ensuring that no
resource is more than 100% utilized implies that, for 1 ≤ j ≤ |M|, Uj ≤ 100%.

Recall that the performance objective for the mappings in this study is the min-
imization of Umax, the utilization of the most heavily loaded resource, from now on
called the maximum utilization. Note that Umax = max1≤j≤|M|(Uj).

Including the background load on resources, the utilization of any resource on
any machine cannot exceed 100%. This condition ensures that no application violates
its throughput constraint. If the resource utilization exceeds 100%, this means that
some or all applications on that machine will violate their throughput constraint. If
the total utilization of a resource is less than 100%, all applications mapped onto the
resource do not violate their throughput constraint.



UTILIZATION-BASED TECHNIQUES FOR STATICALLY MAPPING . . . 5

3. Mapping Heuristics. This study examines five mapping heuristics, namely:
(i) the Min-min heuristic, (ii) the Max-min heuristic, (iii) the host-restriction-aware
(HRA) Min-min heuristic, (iv) the host-restriction-aware (HRA) Max-min heuristic,
and (v) the Mixed-Integer-Programming-based heuristic (referred to as MIP* in the
following text). The HRA Min-min, HRA Max-min, and MIP* heuristics are the
three heuristics proposed in this research; Min-min and Max-min are used here for
comparison purposes.

The Min-min heuristic is based on [29], and is one of the heuristics implemented
in SmartNet [19]. Some variants of the Min-min heuristic were studied in, e.g., [5, 10,
12, 33, 41], and were seen to perform well in many different environments.

Formally, the version of the Min-min heuristic designed for this system can be
defined as follows. Let Ur,j be the total utilization of the most heavily loaded resource
(the CPU, input link, or output link) of machine mj , if the currently unmapped
application ar is mapped on machine mj . That is,

Ur,j = max(Cj + C(ar,mj), Ij + I(ar, mj), Oj + O(ar,mj)).

Let U∗ = mini:ai∈(A− S
j:mj∈M

Aj)(minj:mj∈M Ui,j).

The outer minimum in the preceding expression is taken over all unmapped applica-
tions. Figure 3.1 shows the pseudo-code used to implement Min-min for this system.
Min-min selects the x, y for which Ux,y = U∗ ≤ 1, assigns ax to my, adds ax to Ay,
and updates Uy to reflect the assignment. The above process is repeated until all
applications are mapped. If U∗ > 1 in some iteration, a mapping cannot be found
with this heuristic. The time complexity of Min-min is O(|M||A|2).

(1) do until all applications are mapped
(2) for each unmapped application ar, find the machine mk such that

Ur,k = min
j:mj∈M

Ur,j and Ur,k ≤ 100%

(3) if no such machine found, this heuristic cannot find a mapping; stop
(4) from the (ar, mk) pairs found in step (2), select the pair (ax, my) for

which Ux,y = min(ar, mk) Ur,k

(5) assign the application ax to the machine my, mark the application ax as
mapped, and update Cy, Iy, and Oy

(6) end do

Fig. 3.1. The Min-min heuristic.

The Max-min heuristic is similar to the Min-min heuristic, and is also one of the
heuristics implemented in SmartNet [19]. It differs from the Min-min heuristic in that
now

U∗ = max
i:ai∈(A− S

j:mj∈M
Aj)

( min
j:mj∈M

Ui,j),

and in Figure 3.1, “min(ar, mk)” in step (4) is replaced with “max(ar, mk).” Note that
the Max-min and Min-min heuristics as described above are directly based on their
classical counterparts. This research has adapted the objective function to fit the
problem and environment, so that these heuristics could be used here to compare
with our proposed heuristics. In some prior studies [10, 33], Min-min had performed



6 S. ALI ET AL.

better than Max-min in various HC environments. There are cases where Max-min
can outperform Min-min. For an example, see [3]. Note that the time complexity of
Max-min is the same as that of Min-min, i.e., O(|M||A|2).

The host-restriction-aware Min-min heuristic (HRA Min-min) considers the fact
that in many systems a given application may not be able to execute on all machines in
the system. This may arise because the application is not compiled for all machines or
it requires specialized capabilities available only on select machines. In such systems,
the Min-min or Max-min heuristics may fail to find “obvious” mappings for some cases.
One such case is shown in Table 3.1, where, for all i, j, I(ai,mj) = O(ai,mj) = Cbg

j

= Ibg
j = Obg

j = 0. The symbol ∞ for an entry C(ai,mj) indicates that application
ai cannot execute on machine mj . Min-min assigns a1 to m1 in the first iteration,
thereby depriving a0 of the only machine on which it could execute. Similarly, Max-
min first assigns a0 to m1, and then assigns a1 to m0 in the second iteration, thereby
depriving a2 of the only machine on which it could execute. Hence, both Min-min
and Max-min fail to find the obvious mapping (a0 on m1, a1 on m2, and a2 on m0).
The HRA Min-min heuristic, described next, does find the obvious mapping.

The HRA Min-min heuristic is shown in Figure 3.2. In each iteration, the heuristic
splits the unmapped applications into two sets, and tries to map those sets separately.
Let Up

1 and Up
2 be the two sets of unmapped applications in iteration p. Let S(k)

be the set of applications that can map on exactly k machines. In the first iteration,
the heuristic splits all applications such that U1

1 = S(1) and U1
2 = A − S(1). Then

it attempts to map the applications in U1
1 onto their respective machines. If that

partial mapping is not successful, then no mapping exists. If this partial mapping is
successful, the heuristic saves the partial mapping, and then tries to map U1

2 by using
Min-min. If the mapping of U1

2 fails, the heuristic undoes any changes it made to the
system while trying to find the mapping of U1

2 , and then moves to the second iteration.
In the second iteration, U2

1 = S(2) and U2
2 = A − U2

1 − U1
1 . In general, before the

N -th iteration, S(i) for 1 ≤ i < N has been mapped. At that time, UN
1 = S(N) and

UN
2 = A−

N⋃
k=1

Uk
1 . For all N , HRA Min-min uses Min-min to map UN

1 and UN
2 . (For

the case of U1
1 , performing Min-min is equivalent to assigning each application in U1

1

to the only machine on which it can execute.) Also note that if S(N) = ∅ for the
N -th iteration, HRA Min-min simply proceeds to the (N + 1)-th iteration without
performing either of the two Min-min operations in iteration N .

A time complexity analysis for HRA Min-min is now presented. The time com-
plexity of determining the set S(N) for 1 ≤ N ≤ |M| is O(|M||A|). The maxi-
mum number of while iterations (Line 2, Figure 3.2) is equal to the total number
of machines in the system. If a complete mapping is found in the i-th while it-
eration, then the running time for the k-th while iteration (k ≤ i) is given by
the sum of the running times of the two Min-min operations performed in itera-
tion k. Mathematically, the running time for the k-th iteration is O(k|S(k)|2) +
O(|M||A −⋃k

j=1 S(j)|2) = O(|M||A|2). Given this, HRA Min-min time complexity

equals O(|M||A|)+ ∑i
k=1

(
O(|M||A|2)

)
. Assume that a complete mapping is found

in the first iteration. (This was found fairly common in the experiments performed
in this research.) Then, the time complexity for HRA Min-min is equal to that for
Min-min. In the worst case, HRA Min-min finds a complete mapping in |M| while
iterations, and the time complexity could be up to O(|M|2|A|2).

The host-restriction-aware Max-min heuristic (HRA Max-min) is similar to the



UTILIZATION-BASED TECHNIQUES FOR STATICALLY MAPPING . . . 7

Table 3.1
A scenario showing C(ai, mj) values for a system where HRA Min-min finds the obvious map-

ping, but Min-min and Max-min do not find any feasible mapping.

m0 m1 m2

a0 ∞ 60% ∞
a1 60% 45% 70%
a2 50% ∞ ∞

(1) N = 1
(2) while (N ≤ |M|)

// if there are any applications that can execute on only N machines, map
// those applications first

(3) if (|S(N)| > 0)
(4) use Min-min to find a mapping for S(N)
(5) if a mapping for S(N) is not found, this heuristic has failed; stop
(6) use Min-min to find a mapping for all of the remaining applications,

marking each assignment as “speculative”
(7) if a complete mapping is not found in step (6)

// roll back - undo all changes to the system data structures,
// and perform the next iteration

(8) for each speculative assignment (ai, mj) made in step (6)
(9) undo the mapping of ai on mj , and mark application ai as unmapped
(10) undo the increases in the CPU, input link, and output link utilizations

of machine mj that were caused by speculative mapping of ai on mj

(11) N = N + 1
(12) else // matches the “if” in step (7)
(13) return mapping
(14) else // matches the “if” in step (3)
(15) N = N + 1
(16) end while

Fig. 3.2. The HRA Min-min heuristic.

HRA Min-min except that it uses the Max-min heuristic instead of Min-min. That
is, in steps (4) and (6) in Figure 3.2, Max-min is used instead of Min-min. The time
complexity analysis for HRA Max-min is the same as that for HRA Min-min.

The MIP* heuristic is based on the well-researched mixed integer programming
(MIP) mathematical technique for optimization [31]. A mathematical programming
formulation based on the model in Section 2 is developed to map the applications
onto machines. The set {xij}, for 1 ≤ i ≤ |A| and 1 ≤ j ≤ |M|, defines a mapping
of applications onto machines such that xij equals 1 if application ai is mapped onto
machine mj , but is 0 otherwise. In terms of xij ,

Cj = Cbg
j +

∑

1≤ i≤|A|
(xij × C(ai,mj)),

Ij = Ibg
j +

∑

1≤ i≤|A|
(xij × I(ai,mj)), and

Oj = Obg
j +

∑

1≤ i≤|A|
(xij ×O(ai,mj)).



8 S. ALI ET AL.

Let M(ai) be the set of hosts onto which application ai can be mapped. Fig-
ure 3.3 shows the MIP formulation, where U is an auxiliary variable that will equal
the minimum value of Umax when the optimization is complete. There are many com-
mercial MIP solvers available that, given enough time, can optimize an MIP problem
instance like that in Figure 3.3. The MIP solver, Lindo [38], used in this study employs
a branch-and-bound technique to find a solution to a given MIP formulation.

In this study, the objective of the MIP formulation is to minimize Umax based
on the constraints that both CPU and network utilizations of each machine are less
than or equal to 100%. (However, this approach can be extended to optimize more
complex metrics.) The two constraints in the last line in Figure 3.3 force application
ai to be mapped onto exactly one machine in M(ai).

Because the above objective function minimizes the maximum utilization (CPU
or network) among all machines, the mapping of applications on the less utilized ma-
chines may not be necessarily optimized. To try to achieve system-wide optimization,
the MIP* heuristic uses an iterative method to solve the problem. In each iteration,
MIP* removes from further consideration the most utilized machine and all of the
applications mapped thereon, and then attempts to optimize the assignments of the
remaining applications on the remaining machines. The mapping is described as a
set, T , of |A| two-tuples, where T = {T1, . . . , T|A|}. Each tuple Ti is in the form
(ai, mj), where ai ∈ A and mj ∈ M. Note that there is a tuple (ai, mj) in T if and
only if xij = 1. The complete pseudo-code is shown in Figure 3.4. When the stopping
condition M∗ = ∅ is reached, A∗ = ∅ (unless the heuristic fails to find a mapping).
Note, however, that for the performance metric being optimized for this investigation,
only one iteration of the repeat-until loop (Figure 3.4, Lines 4-12) is sufficient.

The time complexity of MIP* in the worst case is the same as that for exhaustive
search. In real life situations, the running time is usually better than exhaustive
search. However, an analysis of the average case time complexity is difficult to derive.
See [42] for a detailed complexity analysis of the branch-and-bound methods similar
to the one used in the MIP solver used in this study.

given M,A, {C(ai, mj)}, {I(ai,mj)}, {O(ai,mj)} and a real number U
find xij and U
to minimize U
subject to U ≤ 100%

∀mj ∈M, Cj ≤ U , Ij ≤ U , and Oj ≤ U
∀ai ∈ A,

∑
j:mj∈M(ai)

xij = 1 and
∑

j:mj /∈M(ai)

xij = 0

Fig. 3.3. The mixed integer programming formulation.

In addition to the five heuristics mentioned above, this study also examined a
fast greedy heuristic, a random allocation heuristic, and a lower bound (LB) on the
maximum utilization. The fast greedy heuristic and the random allocation heuristics
are shown in Figure 3.5. Note that, unlike the Min-min or Max-min heuristics, the
fast greedy and the random allocation heuristics iterate through the set of applications
only once. These two heuristics have time complexities of O(|M||A|).

The lower bound on the maximum utilization is calculated by assuming that for
all applications I(ai, mj) and O(ai,mj) are zero, that each application ai is mapped
on the machine mj where C(ai,mj) is minimum over all machines, and that the sum
of the utilizations can be divided equally over all of the machines (which, in general,



UTILIZATION-BASED TECHNIQUES FOR STATICALLY MAPPING . . . 9

(1) initialize T to ∅
(2) let M∗ and A∗ denote sets of machines and applications that must be mapped
(3) initialize M∗ to M and A∗ to A
(4) repeat
(5) using M∗ and A∗, construct a MIP problem instance

(based on the MIP formulation shown in Figure 3.3)
(6) solve the MIP problem instance using an MIP solver
(7) find out the machine mx that has the highest CPU or network utilization
(8) for each application ai ∈ Ax

// record the mapping information regarding mx in T
(9) add (ai, mx) into T and delete ai from A∗
(10) delete mx from M∗

(11)until M∗ = ∅

Fig. 3.4. The MIP* heuristic.

may not be physically realistic). Specifically,

LB =
( ∑

1≤i≤|A|
min

1≤j≤|M|
C(ai, mj) +

∑

1≤j≤|M|
Cbg

j

)
/|M|.

An example of when this lower bound situation could occur is: (1) all applications that
communicate with each other are mapped to the same machine, (2) each application
is mapped to its best machine, and (3) the set of applications is such that all machines
are equally utilized.

// iterate through the applications in an arbitrary order
(1) for r = 1 to |A|
(2) find the machine mk such that Ur,k = min

j:mj∈ M
Ur,j and Ur,k ≤ 1

(3) if no such machine found, this heuristic cannot find a mapping; stop
(4) assign the application ar to the machine mk, and update Ck, Ik, and Ok

(5)end for

(a)

// iterate through the applications in an arbitrary order
(1) for r = 1 to |A|
(2) find set, L, of machines such that if ar is mapped on mj ∈ L, Ur,j ≤ 1
(3) if L is empty, this heuristic cannot find a mapping; stop
(4) assign ar to a randomly chosen machine mk ∈ L, and update Ck, Ik, and Ok

(5)end for

(b)

Fig. 3.5. (a) The fast greedy heuristic. (b) The random allocation heuristic.

4. Simulation Experiments and Results. In this study, several sets of sim-
ulation experiments were conducted to evaluate and compare the heuristics. For all



10 S. ALI ET AL.

experiments, the number of machines in the system was fixed at ten. Also, it was
assumed that every application could execute on at least one machine. That machine
was chosen randomly from among all of the machines in the system. For any other
machine, the probability that a given application could execute on it was 50%.

The C(ai, mj) matrix was generated by sampling a probability distribution DC.
The entries in the C(ai,mj) matrix were generated to have a mean MC, a “task
heterogeneity” HC

task (heterogeneity is the standard deviation divided by the mean),
and a “machine heterogeneity” HC

mach. See [4] for a description of the method used
in this study for generating random numbers with these given mean and heterogene-
ity values. Analogous to the generation of the C(ai,mj) values, the I(ai, mj) and
O(ai,mj) values were generated by sampling a probability distribution, DIO, with a
mean M IO, and task and machine heterogeneities of HIO

task and HIO
mach, respectively.

The Cbg
j values were generated by sampling a uniform distribution with a mean

MC
bg and a heterogeneity HC

bg. The Ibg
j and Obg

j values were sampled from a uniform

distribution with a mean M IO
bg and a heterogeneity HIO

bg . For all experiments given

here, HC
bg = HIO

bg = 0.1.
Each experiment consisted of a set of trials. In each trial, new values for C(ai,mj),

I(ai, mj), O(ai, mj), Cbg
j , Ibg

j , and Obg
j were generated by sampling their respective

distributions. The number of trials for a given experiment was chosen to give, for
the mean of Umax, a 95% confidence interval with a “precision” (i.e., the ratio of the
half-width of the confidence interval to the mean [30]) of 10% or better.

The results for a selected set of representative experiments are shown in Figures
4.1 to 4.3. (Full results can be seen in [1].) For each heuristic, at most four bars are
shown in these figures. The first bar (from the left) shows the average value of Umax

found for that heuristic with a 95% confidence interval and a 10% (or better) precision.
The second bar shows umax, the Umax value averaged only for those trials for which
every heuristic successfully found a mapping. The third bar shows the failure rate for
the given heuristic. The failure rate (FR) of a heuristic is the ratio of the number of
trials in which the heuristic could not find a mapping to the total number of trials.
Note that the notion of a failure rate does not apply to LB (therefore FR for LB is
always shown to be zero in the results given here). When FR for a heuristic is zero,
that bar is not shown. The fourth bar shows the average mapping generation time (in
milliseconds) of the heuristic averaged only for those trials for which every heuristic
successfully found a mapping. Note that the mapping generation time for MIP* was
always much larger than that for the other heuristics, and therefore, was not shown in
these figures to facilitate graphical comparisons among other heuristics. (The timing
data for MIP* is given in the figure captions.)

Consider the significance of the performance metric umax. When FR is zero for all
heuristics in a given experiment, then umax equals the average value of Umax, because
no trials are excluded for the purpose of calculating umax. For the sake of discussion,
assume that, in a certain experiment comparing two heuristics Alg-A and Alg-B, FR
is non-zero for Alg-A and is zero for Alg-B. Then, for Alg-B, umax may differ from
the average value of Umax because some trials will be excluded for the purpose of
calculating umax. If Alg-B had performed as well in the excluded trials as in the
included trials, the difference between umax and Umax would be zero. However, if
Alg-B had performed poorly in the excluded trials, umax would be smaller than Umax.
Also, note that by definition, umax = Umax for Alg-A.

Figure 4.1 shows, for one set of parameters, the relative performances for the



UTILIZATION-BASED TECHNIQUES FOR STATICALLY MAPPING . . . 11

0

0.2

0.4

0.6

0.8

1

L
B



M
IP



H
R

A
M

a
x

-m
in



M
a

x
-m

in


H
R

A
M

in
-m

in


M
in

-m
in



G
re

e
d

y


R
a

n
d

o
m



FR
mapping generation time

0

40

80

120

160

200

240

m
a

p
p

in
g

g
e

n
er

a
ti

o
n

t
im

e
(

m
s

e
c

)

Umax
umax

, 
  
  
   

 ,
 a

nd
 F

R


U
 ma

x
u

m
ax



Fig. 4.1. The relative performance of heuristics in a system with |A| = 40, MC = M IO =
15%, HC

task = HC
mach = HIO

task = HIO
mach = 0.3, and DC = DIO = gamma. The mapping generation

time for MIP* was 30 seconds. A total of 33 trials were performed.

0

0.2

0.4

0.6

0.8

1

L
B



M
IP



H
R

A
M

a
x

-m
in



M
a

x
-m

in


H
R

A
M

in
-m

in


M
in

-m
in



G
re

e
d

y


R
a

n
d

o
m



FR
mapping generation time

0

40

80

120

160

200
m

a
p

p
in

g
g

e
n

er
a

ti
o

n
t

im
e

(
m

s
e

c
)

Umax

maxu

,  
   

  
  ,

 a
nd

 F
R


U

 m
ax


u

m
ax



Fig. 4.2. The effect of increase in the average heterogeneity on the relative performance of
heuristics. All parameters are the same as in Figure 4.1, except that HC

task = HC
mach = HIO

task =

HIO
mach = 0.8. The mapping generation time for MIP* was 60 seconds. A total of 197 trials were

performed.

heuristics discussed in this paper. It can be seen that, for this particular type of
HC environment, MIP* outperforms all other heuristics, giving a Umax value 14%
smaller than that of the second best heuristic, HRA Max-min. The random allocation
heuristic performs the worst. For this particular low heterogeneity HC environment,
Max-min, HRA Max-min, HRA Min-min, and Greedy perform comparably with re-
spect to both Umax and FR. However, Figure 4.2 shows that the difference in relative
performance increases when the heterogeneity of the application resource utilization
increases. Here, the values of HC

task, HC
mach, HIO

task, and HIO
mach increase to 0.8 from

0.3. The higher heterogeneity values increase the FR for all heuristics. However, this



12 S. ALI ET AL.

0

0.2

0.4

0.6

0.8

1

L
B



M
IP



H
R

A
M

a
x

-m
in



M
a

x
-m

in


H
R

A
M

in
-m

in


M
in

-m
in



G
re

e
d

y


R
a

n
d

o
m



mapping generation time

0

40

80

120

160

200

240

280

m
a

p
p

in
g

g
e

n
e

ra
ti

o
n

t
im

e
(

m
s

e
c

)

Umax
umax

FR

,  
  
   

  
, 
a

nd
 F

R


U
 m

ax


u
m

ax


Fig. 4.3. The effect of increase in the average resource requirement on the relative performance
of heuristics. All parameters are the same as in Figure 4.1, except that MC = M IO = 20%. The
mapping generation time for MIP* was 60 seconds. A total of 90 trials were performed.

increase is the smallest for MIP*, Max-min, and HRA Max-min. The mapping gen-
eration time of HRA Max-min (≈ 150 milliseconds) was smaller than that of MIP*
(≈ 30 seconds) by a factor of about 200. Note that the mapping generation time for
MIP* was limited to 60 seconds (on an UltraSparc III 750MHz, one gigabyte memory
machine running Solaris 5.8). The variation of the quality of mappings generated by
MIP* as a function of the mapping generation time will be discussed later.

Figure 4.3 shows the change in the relative performance of heuristics when the
mean value of the application resource utilization is increased. For this experiment,
MC = M IO = 20% (as opposed to MC = M IO = 15% in Figure 4.1). As compared
to Figure 4.1, the FR values for all heuristics except MIP* have increased. However,
FR for HRA Max-min is very small relatively. MIP* performs the best with respect
to both Umax and FR. HRA Max-min follows MIP* very closely with a Umax value
14% larger, and a very small FR value of 2%. Note the very significant difference
between the FR of the MIP* and HRA heuristics in comparison to the FR of the other
heuristics. The mapping generation time of HRA Max-min (≈ 170 milliseconds) was
smaller than that of MIP* (≈ 60 seconds) by a factor of about 350.

Note that unlike Figures 4.1 and 4.2, Figure 4.3 shows statistically significant
differences in the mapping generation times for HRA Min-min and Min-min. For this
experiment, some relevant data are shown in Table 3 and Figure 4.4. Table 3 gives the
distribution of S(N), the number of applications executable on N machines. It can be
seen from Figure 3.2 that Lines 4-13 contribute most towards the mapping generation
time of an HRA heuristic. Figure 4.4 shows the distribution of nmap(I), the number
of trials in which a complete mapping was found in I executions of Lines 4-13 of the
HRA heuristic. Note that, depending on the distribution of S(N), Lines 4-13 might be
executed only once or for up to |M| times during the |M| iterations of the while loop.
For example, Lines 4-13 will be executed only once if every application can execute
on every machine (because S(N) = 0 for N 6= |M|). The data in Figure 4.4 shows
that in approximately 40% of the 90 trials performed, HRA Min-min took more than
one iteration. For HRA Max-min this value is only 17%. A higher average number
of HRA Min-min iterations explains why HRA Min-min is slower than Min-min in



UTILIZATION-BASED TECHNIQUES FOR STATICALLY MAPPING . . . 13

Figure 4.3.

Table 4.1
The distribution of S(N), the number of applications executable on exactly N machines for the

experiment in Figure 4.3. The S(N) values are averaged over 90 trials.

N 1 2 3 4 5 6 7 8 9 10
S(N) 0.4 1.9 4.4 8.2 10.4 8.0 4.8 1.5 0.3 0.0

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

n m
ap

(I
)

I

(a)

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

n m
ap

(I
)

I

(b)

Fig. 4.4. The distribution of nmap(I), the number of trials in which a complete mapping was
found in I executions of Lines 4-13 of the HRA heuristics (Figure 3.2). The data shown corresponds
to Figure 4.3, where 90 trials were performed. (a) HRA Min-min. (b) HRA Max-min.

A discussion of how the length of mapping generation time affects the quality
of the mapping generated by MIP* is now presented. As for all iterative search
procedures, the quality of the mapping generally improves with the time allocated
for the MIP solver (unless the optimal mapping has been found). Experiments were
conducted for the maximum mapping generation times of one, two, five, fifteen, 30,
and 60 seconds on an UltraSparc III 750MHz, one gigabyte memory machine running
Solaris 5.8. Each experiment was defined by the set of parameters in Figure 4.2, and
was repeated for 30 trials. The solutions found with a maximum mapping generation
time of 30 seconds were very close in quality (as measured by Umax) to those found
with 60 seconds. For these two times, the average difference in Umax over all trials
was less than 3%. For the maximum mapping generation times of one second and
60 seconds, the average difference in Umax over all trials was about 11%. The timing
data suggests that for the HC environments discussed here 30 seconds is a reasonable
value for the maximum mapping generation time for MIP*.

The experiments conducted so far show that MIP* and HRA Max-min perform
the best among all heuristics considered. However, these experiments do not tell how
the Umax values given by MIP* and HRA Max-min compare with the optimal Umax

value, because finding the optimal mapping for the environment in these experiments
is an NP-complete problem. The rest of this section presents some experiments where
the simulation was set up so that the optimal value of Umax would be known a pri-
ori. For these experiments, following special conditions apply. (1) For one randomly
chosen application, ax, C(ax,mj) was set to a value of K for all mj . (2) For all
other applications, the C(ai,mj) values were randomly sampled to ensure that, for
all applications that can execute on a given machine mj , the sum of C(ai,mj) values



14 S. ALI ET AL.

would be at most K. That is,
∑

(ai ∈ A)∧(ai 6=ax)∧(mj ∈ M(ai))

C(ai,mj) ≤ K.

The above inequality would hold for all mj . (3) It was ensured that every application
could execute on at least two machines. (4) All communications were ignored, i.e.,
I(ai, mj) and O(ai,mj) values were set to zero for all i, j. It is easy to see that such a
simulation set-up ensures that the attainable optimal value of Umax = K. Figure 4.5
shows that, under the above conditions, MIP* and HRA Max-min perform optimally.
Note that the special conditions ensure that FR is zero for any heuristic.

Figure 4.6 shows the results for an experiment where all the special conditions
hold, except the second, i.e.,

∑
(ai ∈ A)∧(ai 6=ax)∧(mj ∈ M(ai))

C(ai, mj) could be larger
than K. For this experiment, Umax ≥ K; K is a tight lower bound on Umax. It can
be seen from Figure 4.6 that MIP* and HRA Max-min have Umax values only slightly
larger than the tight lower bound of K (0.81 as opposed to 0.80). Also, the FR values
are the smallest for MIP* and HRA Max-min.

0

0.2

0.4

0.6

0.8

1

M
IP



H
R

A
M

a
x

-m
in



M
a

x
-m

in


H
R

A
M

in
-m

in


M
in

-m
in



G
re

e
d

y


R
a

n
d

o
m



U
 m

ax


Fig. 4.5. The relative performance of heuristics for a system where the optimal value of Umax =
K = 0.8. |A| = 40, MC = 5%, HC

task = HC
mach = 0.3, and DC = gamma. FR was zero for all

heuristics, implying that Umax = umax for each heuristic. A total of 90 trials were performed.

5. Related Work. Most of the previous efforts in mapping applications on dis-
tributed systems consider the optimization of a given objective function, e.g., overall
expected response time or makespan, assuming that the mapping technique will find a
mapping. As was seen in Section 4, failure rates in high heterogeneity conditions can
be a major problem. One way in which our work differs from all of the related efforts
given below is that the failure rate analysis for resource allocation in a heterogeneous
distributed system is only carried out in our work; other ways are discussed below.

A number of related research efforts in the general topic of mapping and load
balancing in heterogeneous distributed computing systems are now discussed. This
section is a sampling of related literature and is not meant to be exhaustive.

Several dynamic mapping techniques are discussed in [7, 33], but our work inves-
tigates static mapping, and therefore differs from these efforts. The efforts in [2, 21]
have similar models to ours, however they differ from our work because they assume



UTILIZATION-BASED TECHNIQUES FOR STATICALLY MAPPING . . . 15

0

0.2

0.4

0.6

0.8

1

M
IP



H
R

A
M

a
x

-m
in



M
a

x
-m

in


H
R

A
M

in
-m

in


M
in

-m
in



G
re

e
d

y


R
a

n
d

o
m



FR

Umax
umax

,  
   

  
  
, a

nd
 F

R


U
 m

ax


u
m

ax


Fig. 4.6. The relative performance of heuristics for a system where the value of Umax is known
to be tightly lower-bounded by 0.8. All parameters are the same as in Figure 4.1, except that MC =
30% and HC

task = HC
mach = 0.8. A total of 90 trials were performed.

that the dependence of the computation and communication times of different appli-
cations on the workload is known. Our work assumes that only utilization information
is available, and, furthermore, that this utilization information is known only for the
initial workload. The differences in the available information make the problems in
[2, 21] different from ours. The research in [12] considers priorities, deadlines, and
multiple versions for a given application, and thus involves a model very different from
our model. The work in [10, 41] is perhaps most related to our work. Even though
these efforts consider communications differently, have a different performance mea-
sure, assume all applications can execute on all machines, and consider single-instance
applications rather than continuously executing applications, the problem in [10, 41]
has characteristics similar to ours. Therefore, this work uses the Min-min heuristic,
which performed among the best in [10, 41], as a basis for our study. We found that
there is a significant improvement in performance if Min-min is modified to take into
consideration the fact that a given application may not be able to execute on all
machines in our study.

Our problem is similar to load balancing problems that have been studied in
distributed systems. Many static and dynamic policies have been proposed for solving
the load balancing problem (e.g., [6, 8, 9, 15, 24, 25, 32, 37, 39, 40, 43]). Several
dynamic policies for load balancing are studied in, e.g., [8, 15, 24, 25]. However, our
work belongs to the category of static mapping. Probabilistic static policies with only
aggregate information about jobs are studied in, e.g., [6, 32, 40, 43]. However, static
utilization information on each individual job (instead of the statistical aggregate
information) is assumed to be available in our work.

The effort in [37] studies a distributed computer system that consists of hetero-
geneous host computers, linked together by a communication network. [37] modifies
the system model in [40] by considering, for each machine, a set of applications from
a dedicated traffic type that must execute on that machine. However, in general, an
application in our model can execute on more than one machine, thereby increasing
the mapping possibilities and making the problem harder.

The research in [9] studies load balancing in a distributed computer system that



16 S. ALI ET AL.

consists of heterogeneous host computers, linked together by a communication net-
work. However, it makes the simplifying assumption that the inter-application com-
munication overhead is constant for a given machine, regardless of the particular as-
signment of the applications. Another simplifying assumption is that all applications
present the same “load” to a given processor.

The effort in [39] investigates static mapping techniques to distribute workload
in a network of heterogeneous computers. The heterogeneity of the workload itself
however is not considered, i.e., it is assumed that a given application has different
execution times on different machines, but all applications have the same execution
time on a given machine. Our work does not make this assumption, and is more
general.

In one way our work complements the efforts in the DeSiDeRaTa [36], TAO [13,
23], and RT ARM adaptive resource manager [28]. These efforts focus on the adaptive
management of the system at run time, re-mapping resources in real-time if necessary.
Our work tries to configure the system in the lowest possible utilization state (based on
the specified initial load) to accommodate the maximum load increase possible before
a run-time resource mapping is needed to avoid a throughput constraint violation.

Note that when Umax is minimized, the mapping of applications on the less utilized
machines may not be necessarily optimized. Another way our work differs from the
related work is that MIP* iteratively removes from further consideration the most
utilized machine and all of the applications mapped thereon, and then optimizes the
assignments of the remaining applications on the remaining machines. Thus, MIP*
employs a procedure for attempting a “system-wide optimization.” This is a secondary
measure that does not impact the Umax results given in this paper.

6. Conclusions. This paper examined five static heuristics designed to map
applications onto machines in the HiPer-D system. The heuristics were compared
under a variety of simulated heterogeneous computing environments. The results
from the simulation experiments show that MIP* and HRA Max-min, proposed in
this research, perform the best. Both of these heuristics perform well with respect to
Umax, and also have very small failure rates. A failure occurs if no allocation is found
that allows the system to meet its resource and quality of service constraints. These
heuristics are, therefore, very desirable for HiPer-D like systems where low failure rates
can be a critical requirement. The performance advantage of these heuristics is highest
in HC environments with high application and machine heterogeneities, or with high
average resource requirements. The results show that, among all heuristics compared
in this study, MIP* is the best heuristic for mapping in the HiPer-D environment if
the time to generate the mapping is not an issue. However, if the time to generate a
mapping should be small, HRA Max-min is the best heuristic.

Acknowledgments: The authors thank the reviewers for their careful comments that
were very helpful to us. A preliminary version of portions of this work was presented
at the 11th IEEE Heterogeneous Computing Workshop.

REFERENCES

[1] S. Ali, Robust Resource Allocation in Dynamic Distributed Heterogeneous Computing Systems,
PhD thesis, School of Electrical and Computer Engineering, Purdue University, to appear,
2003.

[2] S. Ali, J.-K. Kim, Y. Yu, S. B. Gundala, S. Gertphol, H. J. Siegel, A. A. Maciejewski,
and V. Prasanna, Greedy heuristics for resource allocation in dynamic distributed real-



UTILIZATION-BASED TECHNIQUES FOR STATICALLY MAPPING . . . 17

time heterogeneous computing systems, in The 2002 International Conference on Parallel
and Distributed Processing Techniques and Applications (PDPTA 2002), Vol. II, June
2002, pp. 519–530.

[3] , Utilization-based heuristics for statically mapping real-time applications onto the
HiPer-D heterogeneous computing system, in 11th IEEE Heterogeneous Computing Work-
shop (HCW 2002) in the proceedings of 16th International Parallel and Distributed Pro-
cessing Symposium (IPDPS 2002), Apr. 2002.

[4] S. Ali, H. J. Siegel, M. Maheswaran, D. Hensgen, and S. Sedigh-Ali, Representing task
and machine heterogeneities for heterogeneous computing systems, Tamkang Journal of
Science and Engineering, 3 (2000), pp. 195–207, invited.

[5] R. Armstrong, D. Hensgen, and T. Kidd, The relative performance of various mapping
algorithms is independent of sizable variances in run-time predictions, in 7th IEEE Het-
erogeneous Computing Workshop (HCW ’98), Mar. 1998, pp. 79–87.

[6] S. A. Banawan and N. M. Zeidat, A comparative study of load sharing in heterogeneous
multicomputer systems, in 25th Annual Symposium on Simulation, Apr. 1992, pp. 22–31.

[7] I. Banicescu and V. Velusamy, Performance of scheduling scientific applications with adap-
tive weighted factoring, in 10th IEEE Heterogeneous Computing Workshop (HCW 2001)
in the proceedings of 15th International Parallel and Distributed Processing Symposium
(IPDPS 2001), Apr. 2001.

[8] K. Benmohammed-Mahieddine and P. M. Dew, A periodic symmetrically-initiated load bal-
ancing algorithm for distributed systems, ACM SIGOPS Operating Systems Review, 28
(1994), pp. 66–79.

[9] N. Bowen, C. Nikolaou, and A. Ghafoor, On the assignment problem of arbitrary process
systems to heterogeneous distributed computer systems, IEEE Transactions on Computers,
41 (1992), pp. 257–273.

[10] T. D. Braun, H. J. Siegel, N. Beck, L. L. Bölöni, M. Maheswaran, A. I. Reuther,
J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen, and R. F. Freund, A comparison
of eleven static heuristics for mapping a class of independent tasks onto heterogeneous
distributed computing systems, Journal of Parallel and Distributed Computing, 61 (2001),
pp. 810–837.

[11] T. D. Braun, H. J. Siegel, and A. A. Maciejewski, Heterogeneous computing: Goals,
methods, and open problems, in The 2001 International Conference on Parallel and Dis-
tributed Processing Techniques and Applications (PDPTA ’01), June 2001, pp. 1–12 (in-
vited keynote paper).

[12] , Static mapping heuristics for tasks with dependencies, priorities, deadlines, and multi-
ple versions in heterogeneous environments, in 16th International Parallel and Distributed
Processing Symposium (IPDPS 2002), Apr. 2002.

[13] B. S. Doerr, T. Venturella, R. Jha, C. D. Gill, and D. C. Schmidt, Adaptive schedul-
ing for real-time, embedded information systems, in 18th IEEE/AIAA Digital Avionics
Systems Conference (DASC ’99), Vol. 1, Oct. 1999, pp. 2.D.5-1–2.D.5-9.

[14] E. G. Coffman, Jr. (ed.), Computer and Job-Shop Scheduling Theory, John Wiley & Sons,
New York, NY, 1976.

[15] D. L. Eager, E. D. Lazowska, and J. Zahorjan, Adaptive load sharing in homogeneous
distributed systems, IEEE Transactions on Software Engineering, 12 (1986), pp. 662–675.

[16] M. M. Eshaghian, ed., Heterogeneous Computing, Artech House, Norwood, MA, 1996.
[17] D. Fernandez-Baca, Allocating modules to processors in a distributed system, IEEE Trans-

action on Software Engineering, SE-15 (1989), pp. 1427–1436.
[18] I. Foster and C. Kesselman, eds., The Grid: Blueprint for a New Computing Infrastructure,

Morgan Kaufmann, San Fransisco, CA, 1999.
[19] R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman, D. Hensgen,

E. Keith, T. Kidd, M. Kussow, J. D. Lima, F. Mirabile, L. Moore, B. Rust, and
H. J. Siegel, Scheduling resources in multi-user, heterogeneous, computing environments
with SmartNet, in 7th IEEE Heterogeneous Computing Workshop (HCW ’98), Mar. 1998,
pp. 184–199.

[20] R. F. Freund and H. J. Siegel, Heterogeneous processing, IEEE Computer, 26 (1993), pp. 13–
17.

[21] S. Gertphol, Y. Yu, S. B. Gundala, V. K. Prasanna, S. Ali, J.-K. Kim, A. A. Ma-
ciejewski, and H. J. Siegel, A metric and mixed-integer-programming-based approach
for resource allocation in dynamic real-time systems, in 16th International Parallel and
Distributed Processing Symposium (IPDPS 2002), Apr. 2002.

[22] C. D. Gill, F. Kuhns, D. Levine, D. C. Schmidt, B. S. Doerr, and R. E. Schantz, Applying
adaptive real-time middleware to address grand challenges of COTS-based mission-critical



18 S. ALI ET AL.

real-time systems, in 1st International Workshop on Real-Time Mission-Critical Systems:
Grand Challenge Problems (20th IEEE Real-Time Systems Symposium (RTSS ’99)), Nov.
1999.

[23] C. D. Gill, D. L. Levine, and D. C. Schmidt, The design and performance of a real-time
CORBA scheduling service, Real-Time Systems, 20 (2001), pp. 117–154.

[24] K. K. Goswami, M. Devarakonda, and R. K. Iyer, Prediction-based dynamic load-sharing
heuristics, IEEE Transactions on Parallel and Distributed Systems, 4 (1993), pp. 638–648.

[25] A. Hac and X. Jin, Dynamic load balancing in a distributed system using a decentralized
algorithm, in 7th International Conference on Distributed Computing Systems (ICDCS
’87), Sep. 1987, pp. 170–177.

[26] R. Harrison, L. Zitzman, and G. Yoritomo, High performance distributed computing pro-
gram (HiPer-D)—engineering testbed one (T1) report, Nov. 1995. Technical Report.

[27] D. A. Hensgen, T. Kidd, D. S. John, M. C. Schnaidt, H. J. Siegel, T. D. Braun, M. Ma-
heswaran, S. Ali, J.-K. Kim, C. Irvine, T. Levin, R. F. Freund, M. Kussow, M. God-
frey, A. Duman, P. Carff, S. Kidd, V. Prasanna, P. Bhat, and A. Alhusaini, An
overview of MSHN: The Management System for Heterogeneous Networks, in 8th IEEE
Heterogeneous Computing Workshop (HCW ’99), Apr. 1999, pp. 184–198.

[28] J. Huang, R. Jha, W. Heimerdinger, M. Muhanmmad, S. Lauzac, B. Kannikeswaran,
K. Schwan, W. Zhao, and R. Bettati, RT-ARM: A real-time adaptive resource man-
agement system for distributed mission-critical applications, in IEEE Workshop on Mid-
dleware for Distributed Real-Time Systems and Services (18th IEEE Real-Time Systems
Symposium (RTSS ’97)), Dec. 1997.

[29] O. H. Ibarra and C. E. Kim, Heuristic algorithms for scheduling independent tasks on non-
identical processors, Journal of the ACM, 24 (1977), pp. 280–289.

[30] R. Jain, The Art of Computer Systems Performance Analysis, John Wiley & Sons, Inc., New
York, NY, 1991.

[31] A. Kaufmann, Integer and Mixed Programming: Theory and Applications, Academic Press,
New York, NY, 1977.

[32] C. Kim and H. Kameda, Optimal static load balancing of multi-class jobs in a distributed
computer system, in 10th International Conference on Distributed Computing Systems
(ICDCS ’90), June 1990, pp. 562–569.

[33] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund, Dynamic mapping
of a class of independent tasks onto heterogeneous computing systems, Journal of Parallel
and Distributed Computing, 59 (1999), pp. 107–131.

[34] M. Maheswaran, T. D. Braun, and H. J. Siegel, Heterogeneous distributed computing, in
Encyclopedia of Electrical and Electronics Engineering, Vol. 8, J. G. Webster, ed., John
Wiley, New York, NY, 1999, pp. 679–690.

[35] Z. Michalewicz and D. B. Fogel, How to Solve It: Modern Heuristics, Springer-Verlag, New
York, NY, 2000.

[36] B. Ravindran, L. R. Welch, and B. Shirazi, Resource management middleware for dynamic,
dependable real-time systems, Real-Time Systems, 20 (2001), pp. 183–196.

[37] K. W. Ross and D. D. Yao, Optimal load balancing and scheduling in a distributed computer
system, Journal of the ACM, 38 (1991), pp. 676–689.

[38] L. Schrage, LINDO An Optimization Modeling System Text and Software, The Scientific
Press, South San Francisco, 1991.

[39] X. Tang and S. T. Chanson, Optimizing static job scheduling in a network of heterogeneous
computers, in 29th International Conference on Parallel Processing (ICPP 2000), Aug.
2000, pp. 373–382.

[40] A. N. Tantawi and D. Towsley, Optimal static load balancing in distributed computer sys-
tems, Journal of the ACM, 32 (1985), pp. 445–465.

[41] M.-Y. Wu, W. Shu, and H. Zhang, Segmented min-min: A static mapping algorithm for
meta-tasks on heterogeneous computing systems, in 9th IEEE Heterogeneous Computing
Workshop (HCW 2000), May 2000, pp. 375–385.

[42] W. Zhang and R. E. Korf, Performance of linear-space search algorithms, Journal of Artificial
Intelligence, 79 (1995), pp. 241–292.

[43] Y. Zhang, H. Kameda, and K. Shimizu, Parametric analysis of optimal static load balancing
in distributed computer systems, Journal of Information Processing, 14 (1991), pp. 433–441.




