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Algorithms for ray tracing parametric surfaces are in
general too computationally expensive to be widely applicable.
The algorithm presented here combines well-known graphics
procedures with a modified Newton iteration to provide a
computationally efficient means of including parametric surfaces
in a ray traced image. By allowing only planar surfaces to be
reflective and/or refractive the resulting high degree of ray
coherence is utilized to make the algorithm incremental and
results in an order of magnitude improvement in computation speed

over existing algorithms.
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I. Introduction

Ray tracing is unquestionably the most
powerful method to date for displaying
realistic images. Whitted's paper [1] is the
classic reference on the basic technique with
Rogers [2] providing an excellent overview of
the algorithm as well as discussions on
related issues. While the realism achievable
with the technique is unparallelled [3], the
computation time required precludes its use
for many applications. Thus the past five
years have seen a number of techniques
proposed in order to reduce the computational
expense incurred, the majority of which is
due tb intersection calculations.

Bounding volumes [1], hierarchical
environment descriptions [4], space
subdivision [5,6], and adaptive tree depth
control [7] are all useful for reducing the
total number of intersection calculations.
However, in order to be effective they must
be combined with a computationally efficient
means of finding the actual ray-surface
intersection. Excluding a few exceptions
[8,9,10,11] most traditional ray tracing
programs are limited to polygonal or quadric
surfaces for which the ray surface
intersection calculations are particularly
simple. The direct calculation of the
intersection of a ray and a parametric
surface has proven to be extremely time
consuming [12]. An approach based on
interval techniques [13] represents a
significant decrease in computation time,
however, it is still prohibitive for many
applications.

The very generality which makes
parametric surfaces difficult to ray trace
also makes them attractive for a variety of
applications. CAD/CAM modelling in
particular makes wide use of parametric
since

surface descriptions [14]. However,

rapid visual feedback is desirable in the
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design process, scan line display algorithms
[15,16] are typically employed.
Unfortunately, when objects are displayed
using only local illumination information,
some useful three-dimensional cues are not
present. Shadows and reflections from planar
surfaces can provide additional information
which the CAD/CAM designer can utilize in
evaluating a model. This application was the

original motivation for the algorithm

presented here.

II. Algorithm Overview

From the results of previous research it
appears that Newton iteration is the most
promising approach in obtaining a
computationally efficient intersection
algorithm for parametric surfaces.
Unfortunately, existing algorithms [13]
require a significant amount of computation
time in determining if the iteration will
converge before it is even applied. It will
be shown that by using a modified iteration
procedure [17], one can avoid these time
consuming convergence tests as well as other
numerical difficulties. Furthermore, if

coherence is fully exploited as in the case

of scan line algorithms [15], then the

calculations can be made incremental with a

significant increase in speed. To this end,
it will be assumed that there exists a strong
degree of coherence among rays. In
particular, rays will be considered to be
travelling in parallel to compose beams much
in the same way as described by Heckbert and
Hanrahan [18]. This assumption, by removing
the generality of the ray-surface
intersection calculation, will result in a
significant increase in speed at the expense
of excluding glossy and refractive patches.
Since the above assumption does not effect

the control flow of the standard ray tracing

algorithm, the following discussion will be



limited to the beam-surface intersection
calculation portion of the algorithm. It
should be noted that many of the techniques
for reducing the computation time of a ray
traced image which were discussed previously
are still applicable with bounding volumes
and adaptive tree depth being particularly
useful.

The procedure for the beam-surface
intersection calculation will now be
outlined. The patch is first transformed so
that the direction of the beam is parallel
with the z axis. The view of a patch along
the beam direction now appears as a grid with
the rays being located at grid intersections.
Thus the rays can be identified by their x
and y coordinates in the beam coordinate
system. Using a modified univariate Newton
iteration, the rays which pass closest to the
boundary curves are then computed and stored
on a stack along with the corresponding patch
parameters. After all of the boundary curves
have been completed, the algorithm begins
processing the stack. Until the stack is
empty, the following procedure is performed.
First, a ray-patch intersection is popped
from the stack and checked against the beam z
buffer to see if it is the closest
intersection. Next, the modified bivariate
Newton iteration is used to compute the
intersection of the patch with the current
rays four nearest neighbors. If these ray
patch intersections have not already been
processed then they are placed on the stack.

The main portion of the algorithm
amounts to a variant of the seed fill
algorithm [2] using the boundary curve ray
intersections as seeds. A check on the patch
parameters gives a simple test for
determining whether the intersection is
inside or outside of the patch. By

exploiting the coherence of adjacent rays,

the intersection calculation is made
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incremental which results in a significant
decrease in the amount of computation time
required. The required modification to the

iteration procedures will be discussed in the

following section.

III. Implementation

This section considers some of the
details of the implementation of the above
algorithm. For the sake of illustration only
the specific example of a bicubic surface
will be considered, although this by no means
implies any restriction on the generality of
the method. A general bicubic surface can be
described by the equation
S(u,v) = [u3 u? u 11 M (v3 viy I]T (1)
where S(u,v) is a three dimensional point

with components X(u,v), Y(u,v), and Z(u,v), M
is a matrix of constant coefficients, and the
parameters u and v are restricted to be
within the interval [0 1]. In the discussion
that follows it will be assumed that the
transformation to beam coordinates has been
applied to the patch description and that X,
Y, and Z are the patch coordinates with
respect to the beam coordinate system.
Therefore, the next step is the computation
of the ray-boundary curve intersections.

The four boundary curves of the patch
are obtained by substituting u=0, u=1, v=0,
and v=1 into the patch description given by
eq. 1. All of the resulting curves are
univariate and can be expressed in the form
clt) = N3 t3 + Ny t2 + Ny t 4+ N
where once again C(t) is a three dimensional

point with components X(t), Y(t), and 2z(t)
with the parameter t in the interval [0 1].
Since the patch has been transformed into

beam coordinates, only the x and y components
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address is given by the x and y coordinates
of the ray in question. The minimum contents
of the buffer are the u and v parameters of
the ray patch intersection since position and
surface normal information can be easily
computed. The z value of the intersection
may also be stored in order to speed up the
depth check at the expense of additional
memory storage.

After checking and possibly updating the
z buffer, the patch intersections of this
rays four nearest neighbors, if any exist,
need to be calculated. The first step is to
simpiy compute the neighbor rays x and y
coordinates and determine if they lie within
the boundary of the beam. If they do then
iteration starts from the current
intersection to find the neighboring
intersection. A flowchart of the modified
bivariate Newton iteration procedure is given
in fig. 3.

The procedure begins by setting the u
andvv parameters of the patch to those that
were popped from the stack. The desired x
and y positions, denoted xq and Yqr are then
set to the coordinates of the popped rays
nearest neighbor. The desired x and y
displacements from the current patch
position, denoted Axd and Ayd, are then

obtained by subtracting the desired position

from the' current position. The squared
length of the desired displacement is then
stored in order to measure the progress of
the Newton iteration scheme. This completes
the initialization and the procedure is now
ready to start the actual iteration.

The rate of change of the patch
parameters u and v is related to the rate of

change in x and Y through the equation
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the neighboring ray-patch intersections.



where J denotes the Jacobian matrix given by

aX/au 3X/av

(5)
aY/su

aY/av
If it is assumed that a linear approximation
is valid, then the required change in the

patch parameters which will result in the

neighboring ray intersection is given by

au axg
= gt (6)
av AYg
Since the Jacobian is only a 2 x 2 matrix,
its inverse is easily computed using
’ 3¥/av -3Y¥/3u
J° = / (det.) (7)
-3aX/av  aX/au
provided that J is of full rank (i.e. the
determinant is not equal to zero). The
required partial derivatives are easily
obtained by differentiating eqg. (1) with
respéct to u and v. This results in
9s/3u = [3u? 2u 1 01 M (v3 v2 v 1] (8)
65/av = (ud u? u 1] M [3v2 2v 1 0] (9)

The difficulties usually cited when
discussing Newton iteration arise when J is
ill-conditioned. This occurs when J is
approaching a singularity and is associated
with the determinant approaching zero.
Physically this will occur in the
neighborhood of a silhouette edge which is
analagous to the boundary curve proceeding
parallel to the z axis in the univariate case
discussed earlier. The method of dealing
with this case is also similar to that used
earlier. One can consider the solution for
the vector[au av]T to be composed of two

parts, one which specifies a direction

(although not a unit vector) and the other

(8)

being a scale factor. This is clearly

illustrated by substituting eq. (7) into eq.

(6) to obtain

aY/av axgq - 3Y/au ayy
= (1/det.)
av 3X/au ayq - 3X/3v axg

(10)

Thus the direction of the vector [au AV]T is
specified by the elements of the Jacobian and
the desired x and y displacements. The only
effect of the determinant is to appropriately
scale the vector specifying direction. Since
the procedure is iterating toward a solution,
it is concerned with always improving its
position and not necessarily getting there in
one step. This is particularly true when the
exact solution of eq. (6) results in a
solution which represents a large change
since this generally means that the linear
approximation was a poor one. Therefore, the
algorithm puts a threshold on the value of
the determinant to limit the maximum change
in the patch parameters u and v.

Once the vector [au Av]T is computed,
the patch parameters are updated and checked
to see if they still lie within the patch
boundary. If they do then the x and y
coordinates of the current patch position,
X(u,v) and Y(u,v), are computed along with an
updated version of the required changes in x
and y to arrive at the ray intersection. At
this point an error term is computed and
compared to the previous error term. If
there is not an improvement towards the
desired solution then the procedure assumes
that no solution exists and it terminates.
This easily handles the case where one ray
just intersects a silhouette edge but its
neighbor misses. The error is then checked
against a maximum threshold to determine if
another iteration is necessary. If the
solution is sufficiently close then the new

ray patch intersection is checked to see if



it has been previously processed. If not number of objects in the scene as with many

then it is pushed on the stack and the ray tracing aléorithms, but is a function of
procedure terminates. At this point the the cross-sectional area of the actual beam-
algorithm moves to the rays next nearest patch intersection. Fig. 8, which is
neighbor. If all neighbors have been composed of only 11 bicubic patches, was
processed then the next ray-patch generated to illustrate the flexibility of
intersection is popped from the stack. modelling with parametric surfaces as well as

to provide further evidence for the preceding
IV. Results statement (compare the computation times for

The resulting images for various fig. 6 with fig. 8).

surfaces computed using the above algorithm
are presented in figures 4 thru 8 with

timing data given in table 1. All
computations were done on a Hitachi M200H
computer equipped with a Ramtek display. All
images are computed to a resolution of 1024 x
1024 using the illumination model presented
in {1]. Due to insufficient color resolution
(256 colors) dithering is used to improve the
effective number of gray scales. Fig. 4 is a
single patch similar to one presented in [13]

which was generated to provide a timing

comparision. After normalization of image
resolution and CPU speed, the current
algorithm represents an order of magnitude Fig. 4. A simple patch used for timing
decrease in computation time. Fig. 5 is an comparisons.
example of a patch with a rather complex
silhouette edge which was generated to
illustrate the robustness of the algorithm
when dealing with regions where a standard
Newton iteration scheme would be unstable.
Fig. 6 illustrates the importance of
transparency and shadows in determing the
three-dimensional characteristics of a
surface from an otherwise ambiguous image

(the vertical ridges are an artifact of the

dithering process). Fig. 7 consists of 43
bicubic patches including one reflective

planar patch. A comparison of the

computation time for fig. 7 with that of the
single patch images illustrates an important

Fig. 5. A tch with a complex silhouette
advantage of the algorithm. The computation 9 egzl.

time for an image is not proportional to the

(7)



Fig. 6. A transparent patch over a

checkerboard.

Fig. 7. A safe landing on a frozen lake in
front of plastic hills.

Fig.

8.

Still life.

(8)

Table 1. CPU Time Requirements

Figure Number CPU Time
Number of Patches (sec.)
4 1 187
5 1 184
6 2 1326
7 43 1231
8 11 313

V. Discussion

This section discusses some of the
capabilities and restrictions inherent to the
algorithm presented above. First, the
algorithm is useful because it is a general
algorithm which can be used for a variety of
parametric surfaces. Since there is no
approximation involved with modelling the
surface, one can obtain a precise image of
the object. 1In addition, the algorithm is
comparatively simple, thus making it easy to
implement and accessible to a variety. of
users.

A second advantage of the algorithm is
that, unlike most ray tracing procedures, it
is incremental. In this respect it is much
like Blinn's scan line algorithm for
displaying curved surfaces [151]. However,
unlike scan line algorithms, the algorithm
presented here is capable of utilizing a
global illumination model for more realistic
images. In addition, there is no need for
edge tracking (silhouette or otherwise) or
heuristic procedures. The modified iteration
scheme presented here smoothly handles all
cases, including those that are singular or
ill-conditioned.

An additional advantage of the algorithm
presented here is that, again unlike most ray
tracing procedures, it has excellent
information for implementing antialiasing.
Some of this information stems from the fact
that three-dimensional beams are being traced

instead of one-dimensional rays as discussed

e i



in [18). Furthermore, due to the modified

iteration procedure, when a silhouette edge
lies in between two ray, at the point where
the procedure exists due to no improvement in
the iteration, it contains information on
exactly how close the patch was to the ray in
question.

On the negative side, the algorithm
requires a much larger amount of memory
storage capability than other algorithms.
Since an array of rays is being traced at one
time, all of the related data must be stored.
For beams with a large cross-sectional area

this can present a problem. In particular,

for the initial viewpoint beam there are 1024
x 1024 rays and the related data structures
which must maintain the patch id and u and v
parameters of the surface intersections.

Thus in the current implementation, beam
areas are restricted to an area of 10,000
rays with larger beams being subdivided.
Using this scheme the current program uses a

maximum of 4 M bytes of memory.
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