JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 47, 8-22 (1997)
ARTICLE NO. PC971392

Task Matching and Scheduling in Heterogeneous Computing
Environments Using a Genetic-Algorithm-Based Approach’

Lee Wang,*2 Howard Jay Siegel,*? Vwani P. Roychowdhury,-> and Anthony A. Maciejewski**

*Parallel Processing Laboratory, School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907-1285;
and tElectrical Engineering Department, UCLA, Los Angeles, California 90095-1594

To exploit a heterogeneous computing (HC) environment, an
application task may be decomposed into subtasks that have
data dependencies. Subtask matching and scheduling consists
of assigning subtasks to machines, ordering subtask execution
for each machine, and ordering intermachine data transfers.
The goal is to achieve the minimal completion time for the
task. A heuristic approach based on a genetic algorithm is
developed to do matching and scheduling in HC environments.
It is assumed that the matcher/scheduler is in control of a
dedicated HC suite of machines. The characteristics of this
genetic-algorithm-based approach include: separation of the
matching and the scheduling representations, independence of
the chromosome structure from the details of the communication
subsystem, and consideration of overlap among all computations
and communications that obey subtask precedence constraints.
It is applicable to the static scheduling of production jobs and
can be readily used to collectively schedule a set of tasks that are
decomposed into subtasks. Some parameters and the selection
scheme of the genetic algorithm were chosen experimentally to
achieve the best performance. Extensive simulation tests were
conducted. For small-sized problems (e.g., a small number of
subtasks and a small number of machines), exhaustive searches
were used to verify that this genetic-algorithm-based approach
found the optimal solutions. Simulation results for larger-sized
problems showed that this genetic-algorithm-based approach
outperformed two nonevolutionary heuristics and a random
search. © 1997 Academic Press

1. INTRODUCTION

Different portions of an application task often require dif-
ferent types of computation. In general, it is impossible for a
single machine architecture with its associated compiler, op-
erating system, and programming tools to satisfy all the com-
putational requirements in such an application equally well.
However, a heterogeneous computing (HC) environment that

IThis research was supported in part by NRaD under Subcontract 20-
950001-70 and by the DARPA/ITO Quorum Program under NPS Subcontract
N62271-97-M-0900.

2E-mail: {lwang,hj,maciejew} @ecn.purdue.edu.

3E-mail: vwani@ee.ucla.edu.

0743-7315/97 $25.00
Copyright © 1997 by Academic Press
All rights of reproduction in any form reserved.

consists of a heterogeneous suite of machines, high-speed in-
terconnections, interfaces, operating systems, communication
protocols, and programming environments provides a variety
of architectural capabilities, which can be orchestrated to per-
form an application that has diverse execution requirements
[Fre89, FrS93, KhP93, SiA96, Sun92]. In the HC environ-
ment considered here, an application task can be decomposed
into subtasks, where each subtask is computationally homoge-
neous (well suited to a single machine), and different subtasks
may have different machine architectural requirements. These
subtasks can have data dependences among them. Once the
application task is decomposed into subtasks, the following
decisions have to be made: matching, i.e., assigning subtasks
to machines, and scheduling, i.e., ordering subtask execution
for each machine and ordering intermachine data transfers. In
this context, the goal of HC is to achieve the minimal com-
pletion time, i.e., the minimal overall execution time of the
application task in the machine suite.

It is well known that such a matching and scheduling prob-
lem is in general NP-complete [Fer89]. A number of ap-
proaches to different aspects of this problem have been pro-
posed (e.g., [EsS94, Fre89, IvO95, NaY94, TaA95, WaA94]).
Different from the above approaches, this paper proposes a
genetic-algorithm-based approach for solving the problem.

Genetic algorithms for subtask scheduling in a collection of
homogeneous processors have been considered (e.g., [AhD96,
BeS94, HoA94)). Performing matching and scheduling for a
suite of heterogeneous machines, however, requires a very
different genetic algorithm structure.

In [IvO95], a nonevolutionary heuristic based on level
scheduling [ChL88, MuC69] is presented to find a suboptimal
matching and concurrent scheduling decision. That approach
is compared to the performance of the evolutionary genetic-
algorithm-based approach proposed in this paper.

This paper proposes a genetic-algorithm-based approach for
solving the matching and concurrent scheduling problem in
HC systems. It decides the subtask to machine assignments,
orders the execution of the subtasks assigned to each machine,
and schedules the data transfers among subtasks. The charac-
teristics of this approach include: separation of the matching
and the scheduling representations, independence of the chro-

TASK MATCHING AND SCHEDULING

mosome structure from the details of the communication sub-
system, and consideration of overlap among all computations
and communications that obey subtask precedence constraints.
The computation and communication overlap is limited only
by intersubtask data dependencies and machine/network avail-
ability. This genetic-algorithm-based approach can be applied
to performing the matching and scheduling in a variety of HC
systems. It is applicable to the static scheduling of production
jobs and can be readily used to collectively schedule a set of
tasks that are decomposed into subtasks.

The organization of this paper is as follows. The matching
and scheduling problem is defined in Section 2. Section 3
briefly describes genetic algorithms and gives the outline of the
genetic-algorithm-based approach. In Section 4, the proposed
representation of matching and scheduling decisions within
the genetic framework is presented. Section 5 discusses how
to generate the initial population of possible solutions used by
the genetic algorithm. The selection mechanism is discussed in
Section 6. Sections 7 and 8 define the crossover and mutation
operators, respectively, used to construct new generations of
populations. Section 9 gives the method for evaluating the
quality of a solution and the experimental results are shown in
Section 10. Some related work is viewed and compared with
our approach in Section 11. Finally, Section 12 discusses some
future research directions.

2. PROBLEM DEFINITION

There are many open research problems in the field of HC
[SiA96]. To isolate and focus on the matching and scheduling
problem, assumptions about other components of an overall
HC system must be made. Assumptions such as those below
are typically made by matching and scheduling researchers
(e.g., [ShW96, SiY96]).

It is assumed that the application task is written in some
machine-independent language (e.g., [WeW94]). It is also
assumed that an application task is decomposed into multiple
subtasks and the data dependencies among them are known
and are represented by a directed acyclic graph. If intermachine
data transfers are data dependent, then some set of expected
data transfers must be assumed. The estimated expected
execution time for each subtask on each machine is assumed
to be known a priori. The assumption of the availability of
expected subtask execution time for each type of machine is
typically made for the current state-of-the-art in HC systems
when studying the matching and scheduling problem (e.g.,
[Fre94, GhY93, ShW96, SiY96]). Finding the estimated
expected execution times for subtasks is another research
problem, which is outside the scope of this paper. Approaches
for doing this estimation based on task profiling and analytical
benchmarking are surveyed in [SiA96]. The HC system is
assumed to have operating system support for executing each
subtask on the machine it is assigned and for performing
intermachine data transfers as scheduled by this genetic-
algorithm-based approach.

In the type of HC system considered here, an application
task is decomposed into a set of subtasks S. Define ISI to be the

FIG. 1. An example DAG.

number of subtasks in the set S and s; to be the ith subtask.
Then S = {s;, 0 < i < 1S1}. An HC environment consists of a
set of machines M. Define IM| to be the number of machines
in the set M and m; to be the jth machine. Then M = {m;, 0
< j < IM1}. The estimated expected execution time of subtask
s; on machine m; is Ty, where 0 < i < ISl and 0 <j < IMI.
The global data items (gdis), i.e., data items that need to be
transferred between subtasks, form a set G. Define IGl to be
the number of items in the set G and gdi, to be the kth global
data item. Then G = {gdi,, 0 < k < IGl}.

It is assumed that for each global data item, there is a
single subtask that produces it (producer) and there are some
subtasks that need this data item (consumers). The task is
represented by a directed acyclic graph (DAG). Each edge goes
from a producer to a consumer and is labeled by the global
data item that is transferred. Figure 1 shows an example DAG.

The following further assumptions are made for the prob-
lem. One is the exclusive use of the HC environment for the
application. The genetic-algorithm-based matcher/scheduler is
in control of the HC machine suite. Another is nonpreemptive
subtask execution. Also, all input data items of a subtask must
be received before its execution can begin, and none of its out-
put data items is available until the execution of this subtask
is finished. If a data conditional is based on input data, it is
assumed to be contained inside a subtask. A loop that uses an
input data item to determine one or both of its bounds is also
assumed to be contained inside a subtask. These restrictions
help make the matching and scheduling problem more man-
ageable and solving this problem under these assumptions is a
significant step forward for solving the general matching and
scheduling problem.

3. GENETIC ALGORITHMS

Genetic algorithms (GAs) are a promising heuristic ap-
proach to finding near-optimal solutions in large search spaces
[Dav91l, Gol89, Hol75]. There are a great variety of ap-
proaches to GAs; many are surveyed in [StP94, RiT94]. The
following is a brief overview of GAs to provide background
for the description of the proposed approach.

The first step necessary to employ a GA is to encode any
possible solution to the optimization problem as a set of strings

10 ’ WANG ET AL.

(chromosome). Each chromosome represents one solution to
the problem, and a set of chromosomes is referred to as a
population. The next step is to derive an initial population.
A random set of chromosomes is often used as the initial
population. Some specified chromosomes can also be included.
This initial population is the first generation from which the
evolution starts.

The third step is to evaluate the quality of each chromosome.
Each chromosome is associated with a fitness value, which is
in this case the completion time of the solution (matching and
scheduling) represented by this chromosome (i.e., the expected
execution time of the application task if the matching and
scheduling specified by this chromosome were used). Thus, in
this research a smaller fitness value represents a better solution.
The objective of the GA search is to find a chromosome that
has the optimal (smallest) fitness value. The selection process
is the next step. In this step, each chromosome is eliminated
or duplicated (one or more times) based on its relative quality.
The population size is typically kept constant.

Selection is followed by the crossover step. With some prob-
ability, some pairs of chromosomes are selected from the cur-
rent population and some of their corresponding components
are exchanged to form two valid chromosomes, which may or
may not already be in the current population. After crossover,
each string in the population may be mutated with some prob-
ability. The mutation process transforms a chromosome into
another valid one that may or miay not already be in the cur-
rent population. The new population is then evaluated. If the
stopping criteria have not been met, the new population goes
through another cycle (iteration) of selection, crossover, mu-
tation, and evaluation. These cycles continue until one of the
stopping criteria is met.

In summary, the following are the steps that are taken to
implement a GA for a given optimization problem: (1) an
encoding, (2) an initial population, (3) an evaluation using a
particular fitness function, (4) a selection mechanism, (5) a
crossover mechanism, (6) a mutation mechanism, and (7) a
set of stopping criteria. These steps of a typical GA are shown
in Fig. 2.

Details of the steps for the implementation of the GA-based
heuristic for HC will be discussed in the following sections.
For some parameters of this GA, such as population size,
values were selected based on information in the literature.

GA_matching_scheduling () {
initial population generation;

evaluation;
while (stopping criteria not met){
selection;
crossover;
mutation;
evaluation;
}

output the best solution found;

FIG. 2. The steps in a typical GA.

For other parameters, such as the probability of performing a
mutation operation, experiments were conducted (Section 10).

4. CHROMOSOME REPRESENTATION

In this GA-based approach, each chromosome consists of
two parts: the matching string and the scheduling string. Let
mat be the matching string, which is a vector of length IS,
such that mat(i) = j, where 0 < i < ISl and 0 < j < IM[; ie,
subtask s, is assigned to machine m;.

The scheduling string is a topological sort [CoL92] of the
DAG, i.e., a total ordering of the nodes (subtasks) in the DAG
that obeys the precedence constraints. Define ss to be the
scheduling string, which is a vector of length ISI, such that
ss(k) = i, where 0 < i, k < ISl, and each s; appears only
once in the vector, i.e., subtask s; is the kth subtask in the
scheduling string. Because it is a topological sort, if ss(k) is a
consumer of a global data item produced by ss(j), then j < k.
The scheduling string gives an ordering of the subtasks that is
used by the evaluation step.

Then in this GA-based approach, a chromosome is repre-
sented by a two-tuple (mat, ss). Thus, a chromosome repre-
sents the subtask-to-machine assignments (matching) and the
execution ordering of the subtasks assigned to the same ma-
chine. The scheduling of the global data item transfers and the
relative ordering of subtasks assigned to different machines
are determined by the evaluation step. Figure 3 illustrates two
different chromosomes for the DAG in Fig. 1, for IS| = 6, IMI
=3, and IGl = 5.

FIG. 3. Two chromosomes from the DAG in Fig. 1.

TASK MATCHING AND SCHEDULING 11

5. INITIAL POPULATION GENERATION

In the initial population generation step, a predefined
number of chromosomes are generated, the collection of which
form the initial population. When generating a chromosome,
a new matching string is obtained by randomly assigning each
subtask to a machine. To form a scheduling string, the DAG
is first topologically sorted to form a basis scheduling string.
Then, for each chromosome in the initial population, this basis
string is mutated a random number of times (between one and
the number of subtasks) using the scheduling string mutation
operator (defined in Section 8) to generate the ss vector (which
is a valid topological sort of the given DAG). Furthermore, it
is common in GA applications to incorporate solutions from
some nonevolutionary heuristics into the initial population,
which may reduce the time needed for finding a satisfactory
solution [Dav91]. In this GA-based approach, along with those
chromosomes representing randomly generated solutions, the
initial population also includes a chromosome that represents
the solution from a nonevolutionary baseline heuristic. Details
of this heuristic will be discussed in Section 10.

Each newly generated chromosome is checked against those
previously generated. If a new chromosome is identical to any
of the existing ones, it is discarded and the process of chromo-
some generation is repeated until a unique new chromosome
is obtained. The reason why identical chromosomes are not al-
lowed in the initial generation is that they could possibly drive
the whole population to a premature convergence, i.e., the state
where all chromosomes in a population have the same fitness
value. It can be shown that for this GA-based approach, there
is a nonzero probability that a chromosome can be generated
to represent any possible solution to the matching and sched-
uling problem using the crossover and the mutation operators.
The crossover and the mutation operators will be discussed
later in Sections 7 and 8, respectively.

6. SELECTION

In this step, the chromosomes in the population are first
ordered (ranked) by their fitness values from the best to
the worst. Those having the same fitness value are ranked
arbitrarily among themselves. Then a rank-based roulette
wheel selection scheme can be used to implement the selection
step [Hol75, SrP94]. In the rank-based selection scheme, each
chromosome is allocated a sector on a roulette wheel. Let
P denote the population size and A; denote the angle of the
sector allocated to the ith ranked chromosome. The Oth ranked
chromosome is the fittest and has the sector with the largest
angle A ;; whereas the (P — 1)th ranked chromosome is the least
fit and has the sector with the smallest angle A p_;. The ratio of
the sector angles between two adjacently ranked chromosomes
isaconstant R =A,/A,,,, where 0 <i < P — 1. If the 360 degrees
of the wheel are normalized to one, then

A;=RF1x 1-=R)/(1 —RP),

where R>1,0<i<P,and0<A;< 1.

The selection step generates P random numbers, ranging
from zero to one. Each number falls in a sector on the roulette
wheel and a copy of the owner chromosome of this sector is
included in the next generation. Because a better solution has
a larger sector angle than that of a worse solution, there is
a higher probability that (one or more) copies of this better
solution will be included in the next generation. In this way,
the population for the next generation is determined. Thus, the
population size is always P, and it is possible to have multiple
copies of the same chromosome.

Alternatively, a value-based roulette wheel selection scheme
can be used to implement a proportionate selection [SrP94].
Let f; be the fitness value of the ith chromosome and f,,,. be the
average fitness value of the current population. In this selection
scheme, the ith chromosome (0 < i < P) is allocated a sector
on the roulette wheel, the angle of which, A,, is proportional
to f,ve/f; (assuming that the best chromosome has the smallest
fitness value, which is the case for this research). The most
appropriate selection scheme for this research was chosen
experimentally. Details on the experiments can be found in
Section 10 and [Wan97].

This GA-based approach also incorporates elitism [Rud94].
At the end of each iteration, the best chromosome is always
compared with an elite chromosome, a copy of which is stored
separately from the population. If the best chromosome is
better than the elite chromosome, a copy of it becomes the
elite chromosome. If the best chromosome is not as good as
the elite chromosome, a copy of the elite chromosome replaces
the worst chromosome in the population. Elitism is important
because it guarantees that the quality of the best solutions
found over generations is monotonically increasing.

7. CROSSOVER OPERATORS

Different crossover operators are developed for scheduling
strings and matching strings. The crossover operator for
the scheduling strings randomly chooses some pairs of the
scheduling strings. For each pair, it randomly generates a cut-
off point, which divides the scheduling strings of the pair into
top and bottom parts. Then, the subtasks in each bottom part
are reordered. The new ordering of the subtasks in one bottom
part is the relative positions of these subtasks in the other
original scheduling string in the pair, thus guaranteeing that the
newly generated scheduling strings are valid schedules. Figure
4 demonstrates such a scheduling string crossover process.

The crossover operator for the matching strings randomly
chooses some pairs of the matching strings. For each pair, it
randomly generates a cut-off point to divide both matching
strings of the pair into two parts. Then the machine assign-
ments of the bottom parts are exchanged.

The probability for performing crossovers was determined
by experimentation. This is discussed in Section 10.

8. MUTATION OPERATORS

Different mutation operators are developed for scheduling
strings and matching strings. The scheduling string mutation

12 : WANG ET AL.

top gdi,
scheduling Q
-~ string 4di
crossover 0
—_—
gdi, gdi,
bottom @
gdi,

FIG. 4. A scheduling string crossover example.

operator randomly chooses some scheduling strings. Then for
each chosen scheduling string, it randomly selects a victim
subtask. The valid range of the victim subtask is the set of
the positions in the scheduling string at which this victim
subtask can be placed without violating any data dependency
constraints. Specifically, the valid range is after all source
subtasks of the victim subtask and before any destination
subtask of the victim subtask. After a victim subtask is chosen,
it is moved randomly to another position in the scheduling
string within its valid range. Figure 5 shows an example of
this mutation process.

The matching string mutation operator randomly chooses
some matching strings. On each chosen matching string, it
randomly selects a subtask/machine pair. Then the machine
assignment for the selected pair is changed randomly to
another machine.

The probability for performing mutations was determined
by experimentation. This is discussed in Section 10.

-

scheduling
string mutation
—_—

range
rSy

FIG. 5. A scheduling string mutation example. Only edges to and from the
victim subtask s, are shown. Before the mutation, s, is between s, and s..
After the mutation, it is moved to between s, and s,.

9. EVALUATION

The final step of a GA iteration is the evaluation of the
fitness value of each chromosome. In this GA-based approach,
the chromosome structure is independent of any particular
communication subsystem. Only the evaluation step needs
the communication characteristics of the given HC system
to schedule the data transfers. To test the effectiveness of
this GA-based approach, an example communication system
was chosen. This GA-based approach can be used with
any communication system that obeys the assumptions in
Section 2.

To demonstrate the evaluation process, an example commu-
nication subsystem, which is modeled after a HiPPI LAN with
a central crossbar switch [HoT89, ToR93], is assumed to con-
nect a suite of machines. Each machine in the HC suite has
one input data link and one output data link. All these links
are connected to a central crossbar switch. Figure 6 shows
an HC system consisting of four machines that are intercon-
nected by such a crossbar switch. If a subtask needs a global
data item that is produced or consumed earlier by a different
subtask on the same machine, the communication time for this
item is zero. Otherwise, the communication time is obtained
by dividing the size of the global data item by the smaller
bandwidth of the output link of the source machine and the
input link of the destination machine. In this research, it is
assumed that for a given machine, the bandwidths of the in-
put link and the output link are equal to each other. It is also
assumed that the crossbar switch has a higher bandwidth than
that of each link. The communication latency between any pair
of machines is assumed to be the same. Data transfers are nei-
ther preemptive nor multiplexed. Once a data transfer path is
established, it cannot be relinquished until the data item (e.g.,
gdi,) scheduled to be transferred over this path is received by
the destination machine. Multiple data transfers over the same
path have to be serialized.

crossbar switch
output links input links
My m m, My
| Lt

FIG. 6. An example HC system with four machines and a central crossbar
switched network. Each machine has one output data link to and one input
data link from the crossbar switch. Blackened squares in the switch correspond
to active connections.

TASK MATCHING AND SCHEDULING 13

@ my my

Ol
@) 12 | GGl
gdi, ¢/ gdi,

P L T

(@) (b) (©

FIG. 7. An example showing the scheduling order for the input gdis of one
subtask: (a) the example scheduling string; (b) the situation when the source
subtasks of the input gdis are assigned to the same machine; (c) the situation
when the source subtasks of the input gdis are assigned to different machines.

mg my m,

In this step, for each chromosome the final order of exe-
cution of the subtasks and the intermachine data transfers are
determined. The evaluation procedure considers the subtasks
in the order they appear on the scheduling string. Subtasks
assigned to the same machine are executed exactly in the or-
der specified by the scheduling string. For subtasks assigned
to different machines, the actual execution order may deviate
from that specified by the scheduling string due to factors such
as input-data availability and machine availability. This is ex-
plained below.

Before a subtask can be scheduled, all of its input global
data items must be received. For each subtask, its input data
items are considered by the evaluation procedure in the order
of their producers’ relative positions in the scheduling string.
The reason for this ordering is to better utilize the overlap
of subtask executions and intermachine data communications.
The following example illustrates this idea. Let ss(0) = O,
ss(1) = 1, and ss(2) = 2, as shown in Fig. 7a. Let s, need two
gdis, gdi, and gdi;, from s, and s;, respectively. Depending
on the subtask to machine assignments, the data transfers
of gdi, and gdi; could be either local within a machine or
across machines. If at least one data transfer is local, then the
scheduling is trivial because it is assumed that local transfers
within a machine take negligible time. However, there exist
two situations where both data transfers are across machines
so that they need to be ordered.

Situation 1. Let s, and s, be assigned to the same machine
my and s, be assigned to another machine m,, as shown in Fig.
7b. In this situation, because s, is to be executed before s,
gdi, is available before gdi; becomes available on machine
my. Thus, it is better to schedule the gdi, transfer before the
gdi; transfer.

Situation 2. Let the three subtasks s, s, and s, be assigned
to three different machines m,, m;, and m,, as shown in Fig.
7c. In this situation, if there is a data dependency from s to s,
then s finishes its execution before s, could start its execution.
Therefore, gdi, is available before gdi; becomes available.
Hence, it is better to schedule the gdi, transfer before the gdi,
transfer. If there are no data dependencies from s, to s, the
gdi, transfer will still be scheduled before the gdi; transfer.

While this may not be the best scheduling order for these
gdis, the reverse order may be considered by other scheduling
strings, i.e., there may be some other chromosome(s) that have
ss(0) = 1 and ss(1) = 0. When such a chromosome is evaluated,
the gdi; transfer will be scheduled before the gdi, transfer.
Therefore, it is possible for all input gdi scheduling orderings
for gdi, and gdi; to be examined.

In Fig. 8, a simple example is shown to illustrate the
evaluation for a given chromosome. In this example (as well as
some others given later), because there are only two machines,
the source and destination machines for the gdi transfers are
implicit. The ordering for the evaluation of subtasks and gdi
transfers is: so, gdig, §,, gdiy, sy, gdiy, gdis, s3. If a gdi
consumer subtask is on the same machine as the producer or
as a previous consumer of that gdi, no data transfer is required,
as is the case for gdi; and gdi; in this example.

Data forwarding is another important feature of this evalu-
ation process. For each input data item to be considered, the
evaluation process chooses the source subtask from among the
producer of this data item and all the consumers that have re-
ceived this data item. These consumers are forwarders. The

mat
50-0
s:’. 0 adio] 1
501 gdir} 3
5310 gdip| 2
gdig| 1
(d)
transfers
My |
So 52
51
53

(b)

So| S1|52]| %3
mol 51 9|4]2

mi9 |3 |6|3

© ©

FIG. 8. An example showing the evaluation step: (a) the chromosome;
(b) the subtask execution ordering on each machine given by (a); (c) the
estimated subtask execution times; (d) the gdi intermachine transfer times
(transfers between subtasks assigned to the same machine take zero time);
and (e) the subtask execution and data transfer timings, where the completion
time for this chromosome is 16.

14 WANG ET AL.

S0 So 89

53

(b)

mom | myma|m omy

gdig| 2 1 2

gdiy[4 2 | 4

()

So| 51| 52| 3
myl 5| 8|85
my| 7 10| 4 | 8
mai @[6|10} 4

(d)

time| . | transfers transfers

()

FIG. 9. A data forwarding example: (a) the chromosome; (b) the subtask execution ordering on each machine; (c) the gdi transfer times; (d) the estimated
subtask execution times; and (e) the subtask execution and data transfer times using data forwarding.

one (either the producer or a forwarder) from which the desti-
nation subtask will receive the data item at the earliest possible
time is chosen. Figure 9 shows an example of data forwarding.
In this example, global data item gdi, is forwarded to subtask
s, from a consumer subtask s, instead of from the producer
subtask s,. The resulting completion time is 14. If data for-
warding is disabled for this example (i.e., global data item
gdi, must be sent from subtask s, to subtask s;), the comple-
tion time would be 16 (when subtask s, sends gdi, to subtask
s, before sending gdi; to subtask s3) or 19 (when subtask s,
sends gdi, to subtask s, before sending gdi, to subtask s).
After the source subtask is chosen, the data transfer for
the input data item is scheduled. A transfer starts at the
earliest point in time from when the path from the source
machine to the destination machine is free for a period at least
equal to the needed transfer time. This (possibly) out-of-order
scheduling of the input item data transfers utilizes previously
idle bandwidths of the communication links and thus could
make some input data items available to some subtasks earlier
than otherwise from the in-order scheduling. As a result, some
subtasks could start their execution earlier, which would in turn
decrease the overall task completion time. This is referred to
as out-of-order scheduling of data transfers because the data
transfers do not occur in the order in which they are considered
(i.e., the in-order schedule). Figures 10 and 11 show the
in-order scheduling and the out-of-order scheduling for the
same chromosome, respectively. In the in-order scheduling,
the transfer of gdi; is scheduled before the transfer of gdi,
because subtask s,’s input data transfers are considered before

those of subtask s4. In this example, the out-of-order schedule
does decrease the total execution time of the given task.

When two chromosomes have different matching strings,
they are different solutions because the subtask-to-machine
assignments are different. However, two chromosomes that
have the same matching string but different scheduling strings
may or may not represent the same solution. This is because
the scheduling string information is used in two cases: (1)
for scheduling subtasks that have been assigned to the same
machine and (2) for scheduling data transfers. Two different
scheduling strings could result in the same ordering for (1)
and (2).

After a chromosome is evaluated, it is associated with a
fitness value, which is the time when the last subtask finishes
its execution. That is, the fitness value of a chromosome is
then the overall execution time of the task, given the matching
and scheduling decision specified by this chromosome and by
the evaluation process.

In summary, this evaluation mechanism considers subtasks
in the order in which they appear in the scheduling string.
For a subtask that requires some gdis from other machines,
the gdi transfer whose producer subtask appears earliest in
the scheduling string is scheduled first. When scheduling a
gdi transfer, both the producing and the forwarding subtasks
are considered. The source subtask that lets this consumer
subtask receive this gdi at the earliest possible time is chosen to
send the gdi. The out-of-order scheduling of the gdi transfers
over a path could further reduce the completion time of the
application.

TASK MATCHING AND SCHEDULING 15

mat ss ;
gdlo 2
i°fg (%9 odi, | 1
51:1 gdlo gdla 5
52:1 G gdiy | 4
3'
(d)
gdi,
® © transfers
gdiz gdi,
(a)
Mg | M
So | S2
Sy | S3

(b)

So| $1|52 | §3
miy3|s5| 5|7
m|lg|6| 2|3

(©

(e)

FIG. 10. An example showing the in-order scheduling of a chromosome:
(a) the chromosome; (b) the subtask execution ordering on each machine; (c)
the estimated subtask execution times; (d) the gdi transfer times (transfers
between subtasks assigned to the same machine take zero time); and (e) the
subtask execution and data transfer timings using in-order transfers (the gdi;
transfer occurs before the gdi, transfer), where the completion time is 17.

transfers

FIG. 11. An example showing the out-of-order scheduling, where the
chromosome and other statistics are the same as in Fig. 10. The completion
time is 14.

10. EXPERIMENTAL RESULTS

To measure the performance of this GA-based approach,
randomly generated scenarios were used, where each scenario
corresponded to a DAG, the associated subtask execution
times, the sizes of the associated global data items, and
the communication link bandwidths of the machines. The
scenarios were generated for different numbers of subtasks
and different numbers of machines, as specified below. The
estimated expected execution time for each subtask on each
machine, the number of global data items, the size of each
global data item, and the bandwidth of each input link of each
machine were randomly generated with uniform probability
over some predefined ranges. For each machine, the bandwidth
of the output link is made equal to that of the input link. The
producer and consumers of each global data item were also
generated randomly. The scenario generation used a |Gl x IS|
dependency matrix to guarantee that the precedence constraints
from data dependencies were acyclic. Each row of this matrix
specified the data dependencies of the corresponding global
data item. In each row, the producer must appear to the left of
all of its consumers.

These randomly generated scenarios were used for three
reasons: (1) it is desirable to obtain data that demonstrate the
effectiveness of the approach over a broad range of conditions,
(2) a generally accepted set of HC benchmark tasks does not
exist, and (3) it is not clear what characteristics a “typical”
HC task would exhibit [WaA96]. Determining a representative
set of HC task benchmarks remains a current and unresolved
challenge for the scientific community in this research area.

In this research, small-scale and larger scenarios were used
to quantify the performance of this GA-based approach. The
scenarios were grouped into three categories, namely tasks
with light, moderate, and heavy communication loads. A
lightly communicating task has its number of global data items
in the range of 0 < 1Gl < (1/3)IS]; a moderately communicating
task has its number of global data items in the range of
A8 £ IGI < (2/3)I8]; and a heavily communicating task
has its number of global data items in the range of (2/3)ISI
< |Gl < ISl. The ranges of the global data item sizes and
the estimated subtask execution times were both from 1 to
1000. For these scenarios, the bandwidths of the input and
output links were randomly generated, ranging from 0.5 to
1.5. Hence, the communication times in these scenarios were
source and destination machine dependent.

For each scenario, there were many GA runs, each of which
was a GA search for the best solution to this scenario, starting
from a different initial population. The probability of crossover
was the same for the matching string and the scheduling string.
The probability of mutation was also the same for the matching
string and the scheduling string. The stopping criteria were (1)
the number of iterations had reached 1000, (2) the population
had converged (i.e., all the chromosomes had the same fitness
value), or (3) the currently best solution had not improved
over the last 150 iterations. All the GA runs discussed in this

16 WANG ET AL.

section had stopped when the best solutions were not improved
after 150 iterations.

The GA-based approach was first applied to 20 small-scale
scenarios that involved up to ten subtasks, three machines, and
seven global data items. The GA runs for small-scale scenarios
had the following parameters. The probabilities for scheduling
string crossovers, matching string crossovers, scheduling string
mutations, and matching string mutations were chosen to be
0.4, 0.4, 0.1, 0.1, respectively. The GA population size, P, for
small-scale scenarios was chosen to be 50. For these scenarios,
the rank-based roulette wheel selection scheme was used.
The angle ratio of the sectors on the roulette wheel for two
adjacently ranked chromosomes, R, was chosen to be 1 + 1/P.
By using this simple formula, the angle ratio between the slots
of the best and median chromosomes for P = 50 (and also for
P = 200 for larger scenarios discussed later in this section)
was very close to the optimal empirical ratio value of 1.5 in
[Whi89].

The results from a small-scale scenario were used here
to illustrate the search process. This scenario had IS = 7,
M| = 3, and |Gl = 6. The DAG, the estimated execution times,
and the transfer times of the global data items are shown in
Figs. 12a—-12c, respectively. The total numbers of possible
different matching strings and different valid scheduling strings
(i.e., topological sorts of the DAG) were 37 = 2187 and 16,
respectively. Thus, the total search space had 2187 x 16 =
34,992 possible chromosomes.

5000
£
I}1]]
L
2000 .F’a" ‘l
1000 T 15
mat (a) SS
5000 ' ll
: I
o
[))
o
2000
1000 o 10 15
mat
(C) SS
5000 ‘ !“’
=
: |
[
N
2000 I l 1
1000 TR
mat (e) SS

Moy MfMp| M4My)
480| 321 | 489
1244 818 |1244
62| 41 | 62
830| 545 | 830
387 255 | 387
999| 656 | 999

gdig
gdi,
gdi,
gdis
gdiy
gdig

(@) ©

So| S| S2| S3 | S4] S5 | Se
molg72|251|542| 40|742| 970|457
m, 898|624 1786 | 737|247| 749|451
m,|708|778| 23|258|535|776| 15

(b)

FIG. 12. A small-scale simulation scenario: (a) the DAG, (b) the estimated
execution times, and (c) the transfer times of the global data items.

Figure 13 depicts the evolution process of one GA run on
this scenario. In each subfigure, the ss axis is the scheduling
string axis and the mat axis is the matching string axis. The
16 different scheduling strings on the ss axis are numbered
from 1 to 16. The 2187 different matchings on the mat axis
are numbered from 1 to 2187. If there is a chromosome at a
point (mat, ss), then there is a vertical pole at (mat, ss). The
height of a pole represents the quality of the chromosome.
The greater the height of the pole, the better a chromosome

L

5000

height

0
2000
1000 . 10 15
mat (b) SS
5000 ‘ l
: |
o
: 'l l |
2000
1000 g 10 15
mat (d) SsS
5000 !‘ ‘ '
3 !
o
[
2 |
2000
1000 z 10 15
mat) sSS

FIG. 13. Evolution of a GA run for the scenario in Fig. 12: (a) at iteration 0, (b) at iteration 40, (c) at iteration 80, (d) at iteration 120, (e) at iteration 160,
and (f) at iteration 203 (when the search stopped). Height is a positive constant minus the task execution time associated with (mat, ss).

TASK MATCHING AND SCHEDULING 17

(solution) is. Multiple identical chromosomes at the same point
are not differentiated. Figures 13a—13f show the distributions
of the distinct chromosomes at iterations 0, 40, 80, 120, 160,
and 203, respectively. This GA run stopped at iteration 203.
This GA-based approach found multiple best solutions that
have the same completion time, as shown in Fig. 13f.

Exhaustive searches were performed to find the optimal
solutions for the small-scale scenarios. For each of the small-
scale scenarios that were conducted, the GA-based approach
found one or more optimal solutions that had the same
completion time, verified by the best solution(s) found by the
exhaustive search. The GA search for a small-scale scenario
that had ten subtasks, three machines, and seven global data
items took about 1 min to find multiple optimal solutions on
a Sun Sparc5 workstation while the exhaustive search took
about 8 h to find these optimal solutions.

The performance of this GA-based approach was also
examined using larger scenarios with up to 100 subtasks and
20 machines. These larger scenarios were generated using the
same procedure as for generating the small scenarios. The GA
population size for larger scenarios was chosen to be 200.

Larger scenarios are intractable problems. It is currently
impractical to directly compare the quality of the solutions
found by the GA-based approach for these larger scenarios
with those found by exhaustive searches. It is also difficult to
compare the performance of different HC task matching and
scheduling approaches due to the different HC system models
used. Examples of such differences are given in the next
section. However, the model used in [IvO95] is similar to the
one being used in this research work. Hence, the performance
of the GA-based approach on larger scenarios was compared
with the nonevolutionary levelized min-time (LMT) heuristic
proposed in [IvO95].

The LMT heuristic first levelizes the subtasks in the
following way. The subtasks that have no input global data
items are at the highest level. Each of the remaining subtasks
is at one level below the lowest producer of its global data
items. The subtasks at the highest level are to be considered
first. The LMT heuristic averages the estimated execution
times for each subtask across all machines. At each level, a
level-average execution time, i.e., the average of the machine-
average execution times of all subtasks at this level, is also
computed. If there are some levels between a subtask and its
closest child subtask, the level-average execution time of each
middle level is subtracted from the machine-average execution
time of this subtask. The adjusted machine-average execution
times of the subtasks are used to determine the priorities of the
subtasks within each level; i.e., a subtask with a larger average
is to be considered earlier at its level. If the number of subtasks
at a level is greater than the number of machines in the HC
suite, the subtasks with smaller averages are merged so that as
the result, the number of the combined subtasks at each level
equals the number of machines available. When a subtask is
being considered, it is assigned to the fastest machine available
from those machines that have not yet been assigned any

[

subtasks from the same level. Then, it is scheduled using the
scheduling principles discussed in Section 9.

Another nonevolutionary heuristic, the baseline (BL), was
developed as part of this GA research and the solution it found
was incorporated into the initial population. Similar to the
LMT heuristic, the baseline heuristic first levelizes the subtasks
based upon their data dependencies. Then all subtasks are
ordered such that a subtask at a higher level comes before one
at a lower level. The subtasks in the same level are arranged in
descending order of their numbers of output global data items
(ties are broken arbitrarily). The subtasks are then scheduled
in this order. Let the ith subtask in this order be o;, where 0 <
i < |ISI. First, subtask o is assigned to a machine that gives the
shortest completion time for o). Then, the heuristic evaluates
IM| assignments for o, each time assigning o, to a different
machine, with the previously decided machine assignment of
og left unchanged. The subtask o, is finally assigned to a
machine that gives the shortest overall completion time for
both o, and o,. The baseline heuristic continues to evaluate
the remaining subtasks in their order to be considered. When
scheduling subtask o;, IMl possible machine assignments are
evaluated, each time with the previously decided machine
assignments of subtasks o; (0 <j < i) left unchanged. Subtask
o, is finally assigned to a machine that gives the shortest overall
completion time of subtasks o through o;. The total number
of evaluations is thus IS| x IMl|, and only i subtasks (out of
IS1) are considered when performing evaluations for the Ml
machine assignments for subtask o;.

Compared with the LMT and baseline nonevolutionary
heuristics, the execution time of the GA-based approach was
much greater, but it found much better solutions. This is
appropriate for off-line matching and scheduling, rather than
for real-time use (although in some applications, off-line
precomputed GA mapping can be used on-line in real time
[BuR97]).

To determine the best GA parameters for solving larger HC
matching and scheduling problems, 50 larger scenarios were
randomly generated in each communication category. Each of
these scenarios contained 50 subtasks and five machines. For
each scenario, 400 GA runs were conducted, half of which
used the rank-based roulette selection scheme and the other
half used the value-based roulette selection scheme. The 200
GA runs using the same selection scheme on each scenario
had the following combinations of crossover probability and
mutation probability. The crossover probability ranged from
0.1 to 1.0 in steps of 0.1, and the mutation probability ranged
from 0.04 to 0.40 in steps of 0.04 and from 0.4 to 1.0 in
steps of 0.1. Let the relative solution quality be the task
completion time of the solution found by the LMT heuristic
divided by that found by the approach being investigated. A
greater value of the relative solution quality means that the
approach being investigated finds a better solution to the HC
matching and scheduling problem (i.e., with a shorter overall
completion time for the application task represented by the

18 WANG ET AL.

DAG). With each crossover and mutation probability pair and
for each communication load, the average relative solution
quality of the 50 GA runs, each on a different scenario, was
computed. The following is a brief discussion and comparison
of the rank-based and the value-based selection schemes, based
on the experimental data obtained. Three-dimensional mesh
and two-dimensional contour plots were used to analyze the
experimental data. A detailed discussion and comparisons can
be found in [Wan97].

Table I lists the best and worst average relative solution
quality and the associated probabilities for each communica-
tion load with each selection scheme. The data in the table
illustrates that the best solution found with the rank-based se-
lection scheme was always better than that found with the
value-based selection scheme in each communication load cat-
egory. An analysis of the GA runs showed that the value-based
selection scheme tended to improve the average fitness value
of the population faster than the fitness value of the currently
best chromosome. This caused the slot angle for the best chro-
mosome in the population to decrease, thus reducing its pos-
sibility of selection in the search for better solutions.

For both selection schemes and each communication load
category, a region of good performance could be identified for
a range of crossover and mutation probabilities. The variation
in the quality of solutions in each region of good performance
was less than 33% of that over the entire range of crossover
and mutation probabilities. In every case, this region of good
performance also included the best relative solution quality.

From Table I, it could be seen that the regions of good
performance generally consisted of moderate to high crossover
probability and low to moderate mutation probability. The
values of the crossover and mutation probabilities in these
regions are consistent with the results from the GA literature,
which show that crossover is GA’s major operator and
mutation plays a secondary role in GA searches [Dav9l,
Gol89, StP94].

With the rank-based selection scheme the regions of
good performance were larger than those with the value-
based selection scheme. Hence, the rank-based selection
scheme was less sensitive to crossover and mutation
probability selections to achieve good performance, whereas
with the value-based selection scheme, one had to be careful
in choosing crossover and mutation probabilities for the GA
to find good solutions to the HC matching and scheduling
problem.

Because the rank-based selection found better solutions and
it was less sensitive to probability selections for good perfor-
mance, it was chosen to be used for the larger scenarios. The
crossover and mutation probabilities, as listed in Table I, with
which the best relative solution quality had been achieved,
were used in each corresponding communication load cate-
gory. When matching and scheduling real tasks, the commu-
nication load can be determined by computing the ratio of the
number of global data items to the number of subtasks. Once
the communication load category is known, a probability pair
from the corresponding region of good performance can be
used.

TABLE I
Best and Worst Relative Solution Quality Found by the Rank-Based and Value-Based Selection
Schemes with Associated Probabilities in Each Communication Load Category

Comm. load Selection scheme Best Worst Region of good performance
Light Rank-based Quality = 2.9138 Quality = 2.4692 Quality = 2.7876 to 2.9138
Poover = 0.4 Pover = 0.5 Piover = 0.4 t0 1.0
P = 040 P =100 P .= 0.20 to 0.40
Light Value-based Quality = 2.7328 Quality = 2.2968 Quality = 2.6085 to 2.7328
Pyover = 0.9 Prover = 1.0 Pyyer = 0.6 10 0.9
P =016 P = 0.90 Pu=0.12 to 0.24
Moderate Rank-based Quality = 2.7451 Quality = 2.1520 Quality = 2.5501 to 2.7451
Pover = 0.5 Pover = 0.7 Poover = 0.3 10 1.0
P_..=036 P = 1.00 P o = 0.20 to 0.50
Moderate Value-based Quality = 2.4424 Quality = 1.9615 Quality = 2.2958 to 2.4424
Poover = 0.9 Piover = 1.0 Poover =0.51t0 1.0
Po=012 P = 1.00 P = 0.04 to 0.24
Heavy Rank-based Quality = 2.3245 Quality = 1.7644 Quality = 2.1568 to 2.3245
Poover = 1.0 Poover = 0.1 Pover = 0.6 t0 1.0
P =020 P = 1.00 P = 0.16 to 0.40
Heavy Value-based Quality = 2.0883 Quality = 1.6598 Quality = 1.9582 to 2.0883
Pover = 0.6 Pyover = 1.0 Poover = 0.5 t0 1.0
P =020 P = 1.00 P =0.16 to 0.24

Note. For each communication load category with each selection scheme, the rectangular region of good performance with the boundary crossover and
mutation probabilities are listed. The best and worst relative solution quality within each region are also shown. In the table, Py, is the crossover
probability and P, is the mutation probability.

TASK MATCHING AND SCHEDULING 19

On Sun Sparc5 workstations, for these larger scenarios, both
the LMT heuristic and the baseline heuristic took no more than
1 min of CPU time to execute. The average CPU execution
time of the GA-based approach on these scenarios ranged from
less than 1 min for the smallest scenarios (i.e., five subtasks,
two machines, and light communication load) to about 3% h
for the largest scenarios (i.e., 100 subtasks, 20 machines, and
heavy communication load). Recall that it is assumed that this
GA-based approach will be used for application tasks that are
large production jobs such that the one time investment of this
high execution time is justified.

The performance of the GA-based approach was also
compared with that of a random search. For each iteration of
the random search, a chromosome was randomly generated.
This chromosome was evaluated and the fitness value was
compared with the saved best fitness value. If the fitness value
of the current chromosome was better than the saved best
value, it became the saved best fitness value. For each scenario,
the random search iterated for the same length of time as that
taken by the GA-based approach on the same scenario.

Figure 14 shows the performance comparisons between
the LMT heuristic and the GA-based approach for lightly
communicating larger scenarios. In the figure, the horizontal
axes are the number of subtasks in log scale. The vertical axes
are the relative solution quality of the GA-based approach.
The relative solution quality of the baseline (BL) heuristic and
the random search is also shown in this figure. Each point

_‘?3"(GA, +BL
S o LMT, xRan
(o
c
22}
2
o
(7]
[}
=
R
e
10 100
number of subtasks (log scale)
(@) M =2
£~3l* GA, +BL
S jo LMT, x Ran
o
c
g2 -
=2
& -
o . - 7 > "
= - - -
i1l og-F-——-0-<--0----¢
k2 Ny X
9 -
10 100
number of subtasks (log scale)
(c) IM =10

in the figure is the average of 50 independent scenarios. The
performance comparisons among the GA-based approach, the
LMT heuristic, the baseline heuristic, and the random search
for moderately communicating and heavily communicating
larger scenarios are shown in Figs. 15 and 16, respectively.

In all cases, the GA-based approach presented here out-
performed these other two heuristics and the random search.
The improvement of the GA-based approach over the others
showed an overall trend to increase as the number of subtasks
increased. The exact shape of the GA-based-approach perfor-
mance curves is not as significant as the overall trends because
the curves are for a heuristic operating on randomly generated
data, resulting in some varied performance even when aver-
aged over 50 scenarios for each data point.

11. RELATED WORK

Different approaches to the HC matching and scheduling
problem are difficult to compare. One of the reasons is that
the HC models used vary from one approach to another.
Furthermore, as discussed in Section 10, established test
benchmarks do not exist at this time.

The most related research using GAs for HC includes
[ShW96, SiY96, TiP96]. Our research significantly differs
from the above approaches in terms of the HC models
assumed. The following is a brief discussion of the related
research work.

gSL& GA, +BL
E o LMT, x Ran
o
c
22
=
2
()]
2
=1
(4
10 100
number of subtasks (log scale)
(b) IM =5
,§‘3§GA, +BL
S o LMT, x Ran
o
=3
g2
p=}
5 -4
8 X
£ ord
g x
100
number of subtasks (log scale)

(d) IM] =20

FIG. 14. Performance comparisons of the GA-based approach relative to the LMT heuristic for lightly communicating larger scenarios in (a) a two-machine
suite, (b) a five-machine suite, (c) a ten-machine suite, and (d) a 20-machine suite. The relative performance of the baseline heuristic and the random search

are also shown.

20

FIG. 15. Performance comparisons of the GA-based approach relative to the LMT heuristic for moderately communicating larger scenarios in (a) a two-
machine suite, (b) a five-machine suite, (c) a ten-machine suite, and (d) a 20-machine suite.The relative performance of the baseline heuristic and the random

search are also shown.

FIG. 16. Performance comparisons of the GA-based approach relative to the LMT heuristic for heavily communicating larger scenarios in (a) a two-machine
suite, (b) a five-machine suite, (c) a ten-machine suite, and (d) a 20-machine suite. The relative performance of the baseline heuristic and the random search

are also shown.

relative solution quality

relative solution qual

relative solution quality
N

WANG ET AL.
SI;(GA, +BL §3L< GA, +BL
o LMT, x Ran S o LMT, x Ran

g

2 5 2
8| % - e
2 . -

1 1 @=:-w~:--—e—;,—»f—’5———-e
[

10 100 10 100
number of subtasks (log scale) number of subtasks (log scale)
(a) M =2 (b) IM =5
3L< GA, +BL £3Ls GA, +BL
O LMT, x Ran S o LMT, x Ran

o
c

2 22
3
]
e g

1 it E1 FoooF === s o
[L. =XT

M= —— N
10 100 10 100
number of subtasks (log scale) number of subtasks (log scale)
(c) IM =10 (d) IM =20

3|=« GA, +BL
o LMT, x Ran

1
10 100
number of subtasks (log scale)
(a) [M] =2
23 GA, + BL
S o LMT, x Ran
o
c
£2
=
a X
g -
1 sz oo oo oE g
[S =X
10’ 100

number of subtasks (log scale)

(c) M =10

relative solution quality
- N

3

N

-

relative solution qual

(%]

L(GA, +BL
o LMT, x Ran

- %
P i PN it ~4
=R IO ———— o--—-¢
10 100
number of subtasks (log scale)
(b) M =5
LE GA, +BL
o LMT, x Ran

PP
===yl TS ——g
Yemmmge -7

10 100
number of subtasks (log scale)
(d) IM] =20

TASK MATCHING AND SCHEDULING 21

In [SiY96], a GA-based approach was proposed, in which
the matcher/scheduler can utilize an unlimited number of
machines as needed. In our proposed approach, however,
an HC suite of a fixed number of machines is assumed.
Another difference between these two approaches is that in
[SiY96] a machine can send and receive data to and from
an unlimited number of different machines concurrently. In
our proposed approach, it is assumed that each machine has
a single input link and a single output link such that all the
input communications to one machine have to be serialized and
all the output communications from one machine have to be
serialized. A third difference between these two approaches is
that in [SiY96] data can only be obtained from the original
producer. In our proposed approach, however, data can be
obtained either from the producer or from another subtask that
has received the data. This is the data forwarding situation
that was discussed in more detail in Section 9. Unlike the
chromosome structure used in our proposed approach, which
represents both matching and scheduling decisions, in [SiY96],
a chromosome structure that only has the matching decision
was used. Because of the assumptions made in [SiY96],
for each matching decision an optimal scheduling can be
computed.

Although a fully connected interconnection network is
assumed in both [ShW96] and our proposed approach, in
[ShW96] each machine can send to and receive from an
unlimited number of different machines concurrently. Data
forwarding is not utilized in [ShW96]. A simulated annealing
technique was used in [ShW96] to do the chromosome
selection. Similar to [SiY96], a chromosome structure that
only has the matching decision was also used in [ShW96].
A nonrecursive algorithm was used in [ShW96] to determine
a scheduling for each matching decision.

A GA-based approach in [TiP96] was used to design
application-specific multiprocessor systems. Different from the
goal set for this research, which is to minimize the total
execution time, [TiP96] considered both the execution time
and the system cost for a given application. In our approach,
however, it is assumed that a machine suite is given, and the
only goal is to minimize the completion time of the application.

12. CONCLUSION

A novel genetic-algorithm-based approach for task match-
ing and scheduling in HC environments was presented. This
GA-based approach can be used in a variety of HC environ-
ments because it does not rely on any specific communication
subsystem models. It is applicable to the static scheduling of
production jobs and can be readily used for scheduling mul-
tiple independent tasks (and their subtasks) collectively. For
small-scale scenarios, the proposed approach found optimal
solutions. For larger scenarios, it outperformed two nonevolu-
tionary heuristics and a random search.

There are a number of ways this GA-based approach for
HC task matching and scheduling may be built upon for future
research. These include extending this approach to allow mul-
tiple producers for each of the global data items, parallelizing
the GA-based approach, developing evaluation procedures for

other communication subsystems, and considering loop and
data-conditional constructs that involve multiple subtasks.

In summary, a novel GA design was developed for use in
HC. This GA design has been shown to be a viable approach
to the important problems of matching and scheduling in an
HC environment.

ACKNOWLEDGMENTS

The authors thank M. Maheswaran, J. M. Siegel, M. D. Theys, and S. Wang
for their valuable comments. A preliminary version of portions of this work
was presented at the 5th Heterogeneous Computing Workshop (HCW’96).

REFERENCES

[AhD96] Ahmad, I., and Dhodhi, M. K. Multiprocessor scheduling in a
genetic paradigm. Parallel Comput. 22, 3 (Mar. 1996), 395-406.

[BeS94] Benten, M. S. T., and Sait, S. M. Genetic scheduling of task graphs.
Internat. J. Electron. T7, 4 (Apr. 1994), 401-405.

[BuR97] Budenske, J. R., Ramanujan, R. S., and Siegel, H. J. On-line use of
off-line derived mappings for iterative automatic target recognition
tasks and a particular class of hardware platforms. Proc. 1997
Heterogeneous Computing Workshop (HCW’97). IEEE Computer
Society, Geneva, Switzerland, 1997, pp. 96-110.

[ChL88] Chen, C. L., Lee, C. S. G.,, and Hou, E. S. H. Efficient
scheduling algorithms for robot inverse dynamic computation on a
multiprocessor system. IEEE Trans. Systems Man Cybernet. 18, 5
(Sept.—Oct. 1988), 729-743.

[CoL92] Cormen, T. H., Leiserson, C. E., and Rivest, R. L. Introduction to
Algorithms. MIT Press, Cambridge, MA, 1992.

[Dav91] Davis, L. (Ed.). Handbook of Genetic Algorithms. Van Nostrand—
Reinhold, New York, 1991.

[EsS94] Eshaghian, M. M., and Shaaban, M. E. Cluster-M programming
paradigm. Internat. J. High Speed Comput. 6, 2 (Feb. 1994), 287—
309.

[Fer89] Fernandez-Baca, D. Allocating modules to processors in a dis-
tributed system. IEEE Trans. Softare Engrg. SE-15, 11 (Nov. 1989),
1427-1436.

[Fre89] Freund, R. F. Optimal selection theory for superconcurrency. Proc.
Supercomputing *89. IEEE Computer Society, Reno, NV, 1989, pp.
699-703.

[Fre94] Freund, R. F. The challenges of heterogeneous computing. Parallel
Systems Fair at the 8th International Parallel Processing Symp.
IEEE Computer Society, Cancun, Mexico, 1994, pp. 84-91.

[FrS93] Freund, R. F,, and Siegel, H. J. Heterogeneous processing. I[EEE
Comput. 26, 6 (June 1993), 13-17.

[GhY93] Ghafoor, A., and Yang, J. Distributed heterogeneous supercomput-
ing management system. IEEE Comput. 26, 6 (June 1993), 78—86.

[Gol89] Goldberg, D. E. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison—Wesley, Reading, MA, 1989.

[HoA94] Hou, E. S. H., Ansari, N., and Ren, H. Genetic algorithm for
multiprocessor scheduling. IEEE Trans. Parallel Distrib. Systems
5, 2(Feb. 1994), 113-120.

[Hol75] Holland, J. H. Adaptation in Natural and Artificial Systems. Univ.
of Michigan Press, Ann Arbor, 1975.

[HoT89] Hoebelheinrich, R., and Thomsen, R. Multiple crossbar network
integrated supercomputing framework. Proc. Supercomputing ’89.
IEEE Computer Society and ACM SIGARCH, Reno, NV, 1989,
pp. 713-720.

[IvO95] Iverson, M. A., Ozguner, F., and Follen, G. J. Parallelizing
existing applications in a distributed heterogeneous environment.

22 WANG ET AL.

Proc. 1995 Heterogeneous Computing Workshop (HCW’95). IEEE
Computer Society, Santa Barbara, CA, 1995, pp. 93-100.
Khokhar, A., Prasanna, V. K., Shaaban, M., and Wang, C. L.
Heterogeneous computing: Challenges and opportunities. /EEE
Comput. 26, 6 (June 1993), 18-27.

Muntz, R. R., and Coffman, E. G. Optimal preemptive scheduling
on two-processor systems. IEEE Trans. Comput. C-18, 11 (Nov.
1969), 1014-1020.

Narahari, B., Youssef, A., and Choi, H. A. Matching and
scheduling in a generalized optimal selection theory. Proc. 1994
Heterogeneous Computing Workshop (HCW’94). IEEE Computer
Society, Cancun, Mexico, 1994, pp. 3-8.

Ribeiro Filho, J. L., and Treleaven, P. C. Genetic-algorithm
programming environments. IEEE Comput. 27, 6 (June 1994), 28—
43.

Rudolph, G. Convergence analysis of canonical genetic algorithms.
IEEE Trans. Neural Networks 5, 1 (Jan. 1994), 96-101.

Shroff, P., Watson, D. W., Flann, N. S., and Freund, R. F. Ge-
netic simulated annealing for scheduling data-dependent tasks in
heterogeneous environments. Proc. 1996 Heterogeneous Comput-
ing Workshop (HCW’96). IEEE Computer Society, Honolulu, HI,
April 1996, pp. 98—-104.

Siegel, H. J., Antonio, J. K., Metzger, R. C., Tan, M., and Li, Y.
A. Heterogeneous computing. In Zomaya, A. Y. (Ed.). Parallel and
Distributed Computing Handbook. McGraw-Hill, New York, 1996,
pp. 725-761.

Singh, H., and Youssef, A. Mapping and scheduling heterogeneous
task graphs using genetic algorithms. Proc. 1996 Heterogeneous
Computing Workshop (HCW’96). IEEE Computer Society, Hon-
olulu, HI, April 1996, pp. 86-97.

Srinivas, M., and Patnaik, L. M. Genetic algorithms: A survey.
IEEE Comput. 27, 6 (June 1994), 17-26.

Sunderam, V. S. Design issues in heterogeneous network comput-
ing. Proc. Workshop on Heterogeneous Processing. IEEE Computer
Society, Beverly Hills, CA, March 1992, pp. 101-112.

Tan, M., Antonio, J. K., Siegel, H. J., and Li, Y. A. Scheduling
and data relocation for sequentially executed subtasks in a hetero-
geneous computing system. Proc. 1995 Heterogeneous Computing
Workshop (HCW’95). IEEE Computer Society, Santa Barbara, CA,
April 1995, pp. 109-120.

Tirat-Gefen, Y. G., and Parker, A. C. MEGA: An approach
to system-level design of application-specific heterogeneous
multiprocessors. Proc. 1996 Heterogeneous Computing Workshop
(HCW’96). IEEE Computer Society, Honolulu, HI, April 1996,
pp. 105-117.

Tolmie, D., and Renwick, J. HiPPI: Simplicity yields success. IEEE
Network 7, 1 (Jan. 1993), 28-32.

Watson, D. W., Antonio, J. K., Siegel, H. J., and Atallah,
M. J. Static program decomposition among machines in an
SIMD/SPMD heterogeneous environment with nonconstant mode
switching costs. Proc. 1994 Heterogeneous Computing Workshop
(HCW’94). IEEE Computer Society, Cancun, Mexico, April 1994,
pp. 58-65.

Watson, D. W., Antonio, J. K., Siegel, H. J., Gupta, R., and Atallah,
M. J. Static matching of ordered program segments to dedicated
machines in a heterogeneous computing environment. Proc. 1996
Heterogeneous Computing Workshop (HCW’96). IEEE Computer
Society, Honolulu, HI, April 1996, pp. 24-37.

Wang, L. A genetic-algorithm-based approach for subtask matching
and scheduling in heterogeneous computing environments and a
comparative study on parallel genetic algorithms. Ph.D. thesis,

[KhP93]

[MuC69]

[NaY94]

[RiT94]

[Rud94]

[ShWw96]

[SiA96]

[SiY96]

[SrP94]

[Sun92]

[TaA95]

[TiP96]

[ToR93]

[WaA94]

[WaA96]

[Wan97]

Received February 1, 1997, received July 15, 1997; revised August 25, 1997

School of Electrical and Computer Engineering, Purdue University,
1997.

[WeW94] Weems, C. C., Weaver, G. E., and Dropsho, S. G. Linguistic
support for heterogeneous parallel processing: A survey and
an approach. Proc. 1994 Heterogeneous Computing Workshop
(HCW’94). IEEE Computer Society, Cancun, Mexico, April 1994,
pp. 81-88.

Whitley, D. The GENITOR algorithm and selection pressure:
Why rank-based allocation of reproductive trials is best. Proc.

1989 International Conference on Genetic Algorithms. Morgan
‘Kaufmann, San Mateo, CA, June 1989, pp. 116-121.

[Whi89]

LEE WANG received a B.S.E.E. degree from Tsinghua University, Beijing,
China; an M.S. degree in physics from Bowling Green State University,
Bowling Green, Ohio, USA; and a Ph.D. degree in electrical and computer
engineering from Purdue University, West Lafayette, Indiana, USA, in
1990, 1992, and 1997, respectively. He worked as a research engineer for
Architecture Technology Corporation during the summer of 1996. In June
1997, Dr. Wang joined Microsoft Corporation in Redmond, Washington, USA.
His research interests include task matching and scheduling in heterogeneous
computing environments, parallel languages and compilers, reconfigurable
parallel computing systems, data parallel algorithms, distributed operating
systems, and multimedia technology development. Dr. Wang has authored or
coauthored one journal paper, six conference papers, two book chapters, and
one language user’s manual.

HOWARD JAY SIEGEL received B.S.E.E. and B.S. Management degrees
from MIT (1972), and the M.A. (1974), M.S.E. (1974), and Ph.D. (1977)
degrees in computer science from Princeton University. He is a Professor
in the School of Electrical and Computer Engineering at Purdue University.
His research interests include heterogeneous computing, parallel processing,
interconnection networks, and the design and use of the PASM reconfigurable
parallel machine. He is an IEEE Fellow (1990) and an ACM Fellow (1998),
has coauthored more than 240 technical papers, was a Coeditor-in-Chief of
the Journal of Parallel and Distributed Computing, served on the editorial
boards of the IEEE Transactions on Parallel and Distributed Systems and the
IEEE Transactions on Computers, and is a member of the Steering Committee
of the annual Heterogeneous Computing Workshop sponsored by the IEEE
Computer Society.

VWANI P. ROYCHOWDHURY received the B.Tech. degree from the
Indian Institute of Technology, Kanpur, India, and the Ph.D. degree from
Stanford University, Stanford, CA, in 1982 and 1989, respectively, all in
FElectrical Engineering. He is currently a professor in the Department of
Electrical Engineering at the University of California, Los Angeles. From
August 1991 to June 1996, he was a faculty member at the School of Electrical
and Computer Engineering at Purdue University. His research interests
include parallel algorithms and architectures, design and analysis of neural
networks, application of computational principles to nanoelectronics, special
purpose computing arrays, VLSI design, and fault-tolerant computation.
He has coauthored several books including “Discrete Neural Computation:
A Theoretical Foundation” (Prentice-Hall, Englewood Cliffs, NJ, 1995)
and “Theoretical Advances in Neural Computation and Learning” (Kluwer
Academic, Dordrecht, 1994).

ANTHONY A. MACIEJEWSKI received the B.S.E.E., M.S., and Ph.D.
degrees in electrical engineering from The Ohio State University, Columbus,
OH, in 1982, 1984, and 1987, respectively. In 1985-1986 he was an American
Electronics Association Japan Research Fellow at the Hitachi Central Research
Laboratory in Tokyo, Japan. Since 1988 he has been with the School of
Electrical and Computer Engineering at Purdue University, West Lafayette,
Indiana, where he is currently an Associate Professor. His primary research
interests center on the simulation and control of kinematically redundant
robotic systems.

