System, Vol. 24, No. 1, pp. 65-81, 1996

Pergamon Copyright © 1996 Elsevier Science Ltd
0346-251X(95)00053-4 Printed in Great Britain. All rights reserved

0346-251X/96 $15.00 + 0.00

AN ALGORITHM FOR DOMAIN KNOWLEDGE BASE
ACQUISITION IN AN INTELLIGENT TUTORING SYSTEM:
JAPANESE TRANSLITERATION RULES*

YUN-SUN KANG and ANTHONY A. MACIEJEWSKI
School of Electrical Engineering, Purdue University, West Lafayette, IN 47907, U.S.A.

This article describes an algorithm for developing a domain knowledge base
that is used in a Japanese language intelligent tutoring system. The domain
knowledge represents a model of the expertise that a student must acquire in
order to be proficient at reading one of the distinct orthographies of Japanese,
known as katakana. Whereas the effort required to memorize the relatively
few katakana symbols and their associated pronunciations is not prohibitive, a
major difficulty in reading katakana is associated with the phonetic modifications
which occur when English words which are transliterated into katakana are
made to conform to the more restrictive rules of Japanese phonology. The
algorithm described here is able to generate a knowledge base of these phono-
logical transformation rules automatically, that is subsequently used to assess
a student’s proficiency and then appropriately individualize the student’s
instruction. Copyright © 1996 Elsevier Science Ltd

INTRODUCTION

Interest in Japanese language instruction has risen dramatically in recent years, particularly
for those Americans engaged in technical disciplines. However, the Japanese language is
generally regarded as one of the most difficult languages for English-speaking people to
learn. Whereas the number of individuals studying Japanese is increasing, there remains
an extremely high attrition rate, estimated by some to be as high as 80% (Mills et al.,
1988). Much of this difficulty can be associated with the Japanese writing system.
Japanese text consists of two distinct orthographies, a phonetic syllabary known as kana
and a set of logographic characters, originally derived from the Chinese, known as kanji.
The kana are divided into two phonetically equivalent but graphically distinct sets,
katakana and hiragana, both consisting of 46 symbols and two diacritic marks denoting
changes in pronunciation. The katakana are used primarily for writing words of foreign
origin that have been adapted to the Japanese phonetic system. Due to the limited number
of katakana, their relatively low visual complexity, and their systematic arrangement,

*This material is based upon work supported by the National Science Foundation under Grant No. INT-
8818039 and in part by the NEC Corporation and a Purdue University Global Initiative Grant.

65

66 YUN-SUN KANG and ANTHONY A. MACIEJEWSKI

memorizing their pronunciations does not represent a significant barrier to the student of
Japanese. If the student can also assimilate the phonological transformation that occurs, then
the effort required to learn katakana yields significant returns to readers of technical Japanese
because of the high incidence of terms derived from English and transliterated into katakana.

In this work, rules that clarify the phonological relationship between a katakana word
and its English origin word are generated. The entries in a katakana-to-English dictionary
(Kang and Maciejewski, 1992) are converted into their international phonetic alphabet
(IPA) equivalents and an algorithm is used to match phonemes and to generate rules for
phonemic modifications. This forms two rule bases, one for katakana to English and the
other for English to katakana, which represent a model of the skill that a student must
acquire in order to be proficient at reading katakana. This model is used by an intelligent
tutoring system developed previously (Maciejewski and Leung, 1992) which assists a student
who is learning to read technical Japanese. The remainder of this article is organized as
follows: in the next section, the structure of intelligent tutoring systems is overviewed by
comparing existing intelligent tutoring systems to the Japanese language intelligent tutor-
ing system. The third section provides a brief introduction to the katakana writing system
and to the rules of Japanese phonology. A data structure to represent a phonological
transformation rule is described in the following section. In section five, an algorithm for
generating a set of phonological transformation rules is described. An evaluation of
the resulting rule set is provided in the following section. Finally, the conclusions of this
work are presented in the last section.

OVERVIEW OF INTELLIGENT TUTORING SYSTEMS

Intelligent tutoring systems (ITSs) are computer programs that can individualize their
instruction based on inferences about a student’s knowledge. Whereas existing ITSs vary
in architecture, they typically consist of at least four basic components (Mandl and
Lesgold, 1988; Wenger, 1987): the expert knowledge module, the student model module,
the tutoring module and the user interface module. The expert knowledge module provides
the domain knowledge that the system intends to teach. The student model refers to the
dynamic representation of a student’s competence for the given domain. The tutoring
module is the part of the ITS that designs and regulates instructional interactions with
the student. Finally, the fourth component of ITSs is the user interface module, which
controls interactions between the system and the student. More details on ITS structure
and previously developed prototypes are available in Park et al, 1987, Polson and
Richardson, 1988, Rickel, 1989 and Yazdani, 1987.

The specific ITS being considered in this work is called the Nihongo Tutorial System
which was designed to assist English-speaking scientists and engineers acquire Japanese
reading proficiency in their technical area of expertise (Maciejewski and Leung, 1992).
The architecture of this system closely resembles the general structure of ITSs outlined
above. The domain knowledge database, which is the focus of this work, is prepared
by a software module called the Parse Tree Editor that processes technical journal
articles into instructional material by incorporating syntactic, semantic, phonetic and
morphological information into a representation known as an augmented parse tree. The

JAPANESE LANGUAGE INTELLIGENT TUTORING SYSTEM 67

= File Edit Dictionary Windows
Edit ®BE b1

Y
ffg;gg;meth %L
EETH#HL &4
CEE (3
B FE8E s
Rl t (€ He 53
yveTn

s=vt

M.
Pt

Search Dictionary

H 30 Radical Info
v=sg | Font >
TERhE N3 528 >

H—ROEMETFEEEY. Tk
FEREFEHE 0D,

iy
MU N

English

PR}
Lo

~ File Edit [EVNSEAEN Dictionary Windows

) Please enter a string of characters:
HANEEEDS |
Cancel |

Fig. 1. The user interface of the Nihongo Tutorial System. When the student does not comprehend a katakana
word, he can ask the system to search the on-line dictionaries. The tutorial system saves student’s queries and
uses them to build the student model.

student model is updated based on a student’s interactions with the system. The instruc-
tional interactions between the system and a student are regulated by the administrator
module which matches the student’s current level of Japanese proficiency and technical
area of interest with the available instructional material produced by the Parse Tree
Editor. The user interacts with the system through a graphical user interface to request
information about the current instructional text or to obtain examples of material on the
same or related concepts (see Fig. 1).

The expert knowledge module currently used by the Nihongo Tutorial System
is designed based on a rule-based representation. This type of knowledge representa-
tion is commonly used in algorithmically tractable domains such as mathematics, physics
and programming languages (Anderson, 1988), as well as in foreign language learning
(Swartz, 1992). The design of the expert knowledge module is closely related to other
components in an ITS, especially the student model module. The student model used
by the Nihongo Tutorial System falls into the general class of student models known
as “overlay” models (Carr and Goldstein, 1977). This commonly used type of model
considers the student’s knowledge to be a subset of the expert knowledge base. In
the case of the Nihongo Tutorial System the expert knowledge contains the Japanese charac-
ters, vocabulary and the syntactic, morphological, and phonological transformation rules
required to understand the Japanese text, along with a number that represents the

68 YUN-SUN KANG and ANTHONY A. MACIEJEWSKI

probability that the student understands that particular piece of knowledge. The remainder
of this work will only deal with the expert knowledge base associated with the phonolog-
ical transformation rules required to understand Japanese text written in katakana.

KATAKANA AND JAPANESE PHONOLOGY

The Japanese lexicon contains an extremely large number of words originating from foreign
languages. Whereas the proportion of words of Chinese origin in the lexicon is extremely
large due to the profound cultural influence of China, words of English origin have dominated
the class of loan words since the late 19th century: In a study of Japanese publications
performed between 1956 and 1964, over 80% of the foreign words originated from English
(Kokuritsu Kokugo Kenkyuujo, 1964). This process of adopting English words into the lexicon
is particularly common for relatively new or specialized terms arising in technical literature.
When adopting a word of foreign origin into Japanese, the original pronunciation of
that word is typically transliterated into katakana which graphically represents all of the
possible phonetic sequences in the Japanese language. It is this process of modifying
English phonetic sequences to conform to the rules of Japanese phonology which presents
English-speaking readers of katakana with difficulty in identifying a word’s meaning.
This is due to the fact that the rules of Japanese phonology are quite different from those
of English. In particular, Japanese has only five single vowel sounds /a i u e o/ in contrast

Table 1. Katakana characters and their phonetic representations in the IPA symbols: Basic syllables

7 A 7 il I
/af [if [/ [e/ [of
bl ¥ 7 T a
/ka/ [ki/ [ku/ [ke/ [ko/
v N 2 + Y/
[sa [[i/ [su/ - [se[[sof
y F v 5k
Jia) [Gi/ [t/ Jte| [tof
va = X A /
/na/ /ni/ /ou/ [ne/ [no/
N | 7 ~N

/ha/ JKi/ /) [he/ /ho
< 3 N X -

/ma/ /r;1/ /mu/ [me/ [mo/
+ e 3

/ia/ /iu/ /io/
J J)% % W)

[ral [t/ [ru/ [re[[rof
v
[wa/

JAPANESE LANGUAGE INTELLIGENT TUTORING SYSTEM 69

to the large number of vowel sounds in English. These vowels, when combined with the nine
Japanese consonants /k s t n h m j r w/ constitute 44 of the 46 basic sounds in Japanese
which are traditionally organized as shown in Table 1. The pronunciation of each katakana
character in the table is represented using the international phonetic alphabet (IPA) symbols.
Additional variations of these basic syllables are presented in Table 2.

From the above description of the katakana orthography, it is clear that certain inherent
limitations are imposed on phonetic sequences in the Japanese language. In particular,
Japanese does not allow any consonant clusters, except when a consonant is followed by

Table 2. Katakana characters and their phonetic representations in the IPA symbols: Additional variations of
the basic syllables

Modified syllables

4 X 7 ¥ g
/ea/ /gif [gu/ [ge/ /gof
VA ’

Z £ v
[za] [dsi/ [zu/ [ze/ [z0/
¥y F voF R
/de/ /Bi/ [zu/ [de/ [do/
N = AN T
/ba/ /bi/ [bu/ [be/ /bo/
N | =y 7° ~N iy

/pa/ [pi/ [pu/ [pe/ /po/

Consonants plus /ja/, /ju/, or /jo/

¥r¥ ¥z Fz |¥r Fa Fa=
[Ka/ [kia/ [io/ | [gia] [gjn/ /gio
Mg g2 3 N -2 ¥ a
[fa/ [fu/ [Jo/ | /dsa/ [du/ [dgo/
F¥ Fa F3
fa) ga/ [to]
— 1 — 3
/nja/ /nju/ /njo/ | E¥ Eax Ea
taz ta |/bja/ /bju/ /bjo/
/hja/ /hju/ /hjo/ | E¥ Yz Ea
S22 Sz |/pia/ /piu/ /pio/
/mja/ [mju/ /mjo/
Uy Yz VYUa
[ria/ [tju/ [1jo/

Mora consonants

v Vs
IN/[Q/

70 YUN-SUN KANG and ANTHONY A. MACIEJEWSKI

a glide! or preceded by a moraic? consonant (Vance, 1987). In addition, consonants may
not appear at the end of a sequence. These restrictions, together with the limited number
of Japanese vowel sounds, result in the vast majority of phonological modifications which
occur when transliterating an English word into katakana. By the same token, these result-
ing modifications are the source of difficulty for English-speaking readers of katakana.

It should also be noted that there are additional difficulties to comprehending katakana
unrelated to the phonological processes involved. In particular, whereas it is true that the
vast majority of loan words are created by the phonological process, foreign borrowings
may also be modified by changes in form due to simplification, semantics, or Japanese
coinage (Shibatani, 1990). For example, simplification frequently occurs with polysyllabic
words such as “television” and “word processor” which are shortened to the katakana
words terebi and waapuro, respectively. Changes in semantics have resulted in the
katakana word botan being used to designate a touch tone type of telephone, whereas its
phonetic origin is from the word button. Examples of coinage which result from combina-
tions of existing loan words include maikaa (derived from my + car) and maihoomu
(derived from my + home) which refer to privately owned cars and houses. All of these
processes contribute to a student’s difficulty in achieving reading proficiency in katakana;
however, this work focuses only on the phonological modifications.

THE STRUCTURE OF PHONOLOGICAL TRANSFORMATION RULES

The phonological transformation rules that are determined by the rule-based system
presented here consist of three elements: a source phoneme, a target phoneme and the
context. The source phonemes are those that are derived from the katakana string
(because this is the text that the student will be reading) and the target phonemes are
those that are derived from the English text. The following standard notation is used to
represent a phonological rule:

S T/C _GC,

where S is a phoneme of the source language, 7T is a phoneme of the target language, and
C, and C, represent the context in which S may be replaced by T. The symbols C, and C,
are either single phonemes or phonological categories such as vowels, consonants etc. Thus
this rule implies that if the string C,SC, occurs in the source language it may be transformed
into the string C,TC, in the target language. The phonological transformation rules are also
associated with the probability of how likely a phoneme in a source language is to be
transformed into a phoneme in a target language under a specific context. The probability
of a rule is computed by dividing the number of occurrences of a rule by the total number
of occurrences of all the rules that have the same source and the same context as that rule.

GENERATION OF PHONOLOGICAL TRANSFORMATION RULES

This section describes the algorithm designed to automatically determine a set of rules that
govern the specific phonetic changes that occur in English text when it is transliterated

JAPANESE LANGUAGE INTELLIGENT TUTORING SYSTEM 71

into katakana. These rules represent the domain knowledge that the tutoring system
must “learn” in order to provide efficient instruction. The process of rule generation is
divided into three phases:

Phase I: Direct matching without using an existing rule base

The inputs into Phase I are a string of katakana and the English text from which it was
derived. These two inputs are then converted into IPA symbols using Tables 1 and 2 for
the katakana and the UNIX version of Webster’s Seventh New Collegiate Dictionary
(Gove, 1963) for the English. Phonological rules of the type described above cannot be
directly generated from the IPA symbols of the raw input strings because there is not a
correspondence between the.ith phoneme of the source string and the ith phoneme of the
target string. This is primarily due to the different constraints on consonant clusters in
Japanese as compared to English. As mentioned previously, Japanese does not, in general,
allow consonant clusters whereas English allows initial consonant clusters of two or
three consonants, as in such words as “sky” and “spray”, and either two, three, or four
final consonants, as in “ask”, “elks” and “glimpsed” (Catford, 1988). To compensate for
these phonological differences, the sequence of IPA symbols for the English text string is
modified by inserting the symbol “*”, which has no pronunciation, between any consecutive
consonant phonemes and after sequences that end with a consonant. This modification
greatly improves the correspondence between phoneme symbols in the katakana string
with the symbols in the English string. However, it does create a difficulty with the mora
nasal consonant cluster that is allowed in Japanese. It has been observed that the mora
nasal /N/ when followed by a consonant corresponds to either /m/, /n/, or /11/ followed
by a consonant in English. Therefore, in order to provide uniform treatment of these
consonant clusters, the symbol “*” is also inserted into the katakana phoneme sequence
between the mora nasal and the following consonant.

In addition to consonant clusters, one must also consider how to deal with non-identical
vowel sequences in order to improve the correspondence between symbols in the source
string and the target string. In Japanese, it is not obvious when to consider the second
vowel of a sequence as a separate syllable as opposed to the second half of a diphthong.
This creates a difficulty when trying to match the English vowels. Therefore, the
approach adopted here is that all consecutive vowel sequences are treated as a single
unit. This is true even if it is known that the English vowel sequence represents two separate
syllables. Therefore, after the appropriate modification of the input strings by inserting
“*» symbols, the strings are divided into units which consist of either a single consonant,
a sequence of vowels or semi-vowels, or the symbol “*”. If the number of partitions in
the two strings are equal, then a set of phonological rules is generated.

The algorithm described above can be summarized by the following four steps:

(1) Convert the katakana input string and the English input string into IPA symbols.

(2) Modify the English IPA string by inserting a “*” symbol between any consecutive
consonant phonemes and after a final consonant. Modify the Japanese IPA string by
inserting a “*” symbol between the mora nasal /N/ and any following consonant.

(3) Divide both symbol strings into partitions which include either a single consonant, a
consecutive sequence of vowels and/or semi-vowels, or the symbol “*”.

72 YUN-SUN KANG and ANTHONY A. MACIEJEWSKI

(4) If the number of partitions in the source string is equal to that of the target string,
generate a phonological rule which defines the transformation of a source partition into
a target partition.

This process is illustrated in the following example, in which the, katakana word
“shisutemu” is compared with the word “system” from which it was derived:

AT A — /fisutemu/ - /f4,8,u,t;e,m,u/
system - /sistam/ - /8,1,8,*,t,0,m,*/

The following eight rules are generated:

J—s/# i i1/ s s—s/i_u u—*/s t
t—>t/u e e—>o/t m m—m/e u u—>*/m_#

where the symbol “#” denotes a word boundary. Note that the somewhat obvious rules
in which a phoneme is not changed are significant since the same phoneme may be
modified in a different context. Additional information regarding the relative probability
of occurrence for rules in an identical context is also maintained.

The next example illustrates how the vowel sequences are handled. Consider the
katakana word “iesu” which was derived from the English word “yes”:

4 TR - /iesu/ - /ie,s,u/
yes - fjes/ - /je,s,*/.

The following three rules are generated:
ie—je/#_s s—s/e_u u—>*/s_#.

The sequence of semi-vowels and/or vowels is not divided in the Phase I process. A rule
that consists of multiple phonemes is decomposed into two different rules by Phase III
which will be discussed later.> Finally, there are also cases in which the numbers of par-
titions in the source and target strings are not equal as shown in the following example
using the katakana word “ringu’:

U4 N /riNgu/ - /t,,N,*,g,u/
ring - /a1y/ - /1,1,1],%/.

The number of partitions were not equal in approximately 8% of the 850 example entries.
When this occurs in Phase I, no phonological rules are generated and the modified
phoneme string obtained from Step 2 of Phase I is used in a different technique called
Phase II.

Phage II: Matching using an existing rule base
The dictionary entries that do not have an equal number of partitions during Phase I
need to be processed using a different algorithm. Phase II is performed by using the rule

JAPANESE LANGUAGE INTELLIGENT TUTORING SYSTEM 73

1 |1 g | *

Fig. 2. An example of a dictionary entry that does not have the same number of partitions after applying Phase

L Applying three of the previously generated phonological transformation rules to the modified phoneme

strings obtained from Step 2 of Phase I (shown in solid lines) allows Phase II to identify the new rule
Ng—1/i_u which is shown in dotted line.

base generated from the 92% of the entries that are successfully partitioned in Phase 1.
Before the algorithm applied in Phase II is described in detail, a simple example is con-
sidered. Because the partitioning technique does not provide a correlation between a
katakana word and its English origin word, what one needs to do is to try and get some
information about what pieces of those words are matched by either looking for the
same phoneme or by applying a rule in the rule base. When the katakana word “ringu” is
compared with the English word “ring”, there are three phonological rules that match
the input phoneme strings which are shown in solid lines in Figure 2. In this case, it is
quite clear that the Japanese phonemes /Ng/ match the English phoneme /1j/, which is
depicted in dotted lines. However, in most cases, many rules match input phoneme
strings, and some matched rules can result in generating incorrect phonological rules. It
is therefore necessary for the algorithm to be intelligent enough to make sure that only
correct rules are produced.

The main idea of Phase II is to use the most likely phonological transformation rules
generated from Phase I and to compare unmatched phonemes in the source and target
inputs to generate additional phonological rules. In order to determine which rule is the
most likely, the rule base generated from Phase I is used to consider a tree of all possible
phoneme matches. The tree consists of nodes that contain either a phonological rule or a
single phoneme and arcs that connect the nodes. The most likely tree is then constructed
using an A* algorithm (Nilsson, 1982). This procedure is now considered in more detail.

First, the rule base is scanned for all rules with the context and the source phoneme that
match any of the phonemes in the source input. There may be no rules that match some
phonemes and others may be matched by multiple rules. For those rules that match the
source string, the target string is then searched for the target phoneme. The target input
may contain the target phoneme in several locations. Each of them is used as a different
node in the tree. In addition to the rules that match the input phoneme strings, each
phoneme of the source input is also used as a node in the tree. These nodes represent the
source of potential new phonological transformation rules if they are included in the
most likely tree. Two different types of nodes are thus created: one type that contains
a phoneme and the other type that contains a phonological transformation rule.
A search begins by expanding the start node of the tree, i.e. generating a node

74 YUN-SUN KANG and ANTHONY A. MACIEJEWSKI

consisting of the first phoneme of the source input as well as all of the rules that match
that phoneme as successor nodes. The search sequentially continues by using the following
phonemes of the source input until the last phoneme or the matched rule including that
phoneme is expanded. The portions of the tree that contain the most likely rules are then
generated by using the A* algorithm. In the A* algorithm all of the remaining possible
search paths are stored in the list in each step, and the paths are kept in order based on
the heuristic information that determines which gath is the most promising. This infor-
mation is represented by the evaluation function

Sn) = g(n) + h(n) (M

where g(n) is the cost of the path in the tree from the start node s to the current node n
and A(n) is an estimate of A*(n) which is the cost of the maximal cost path from » to a
goal node. The arc cost associated with a node that contains a matched rule is assigned to
be the probability of that rule occurring, and the arc associated with a node that contains
just a phoneme is assigned a value of zero. The heuristic function used in this work
is defined as the largest path cost of the rules that are possible successor nodes of the node
n, i.e. the rules that match the phonemes following node n. Using this definition it is clear
that 4 is an upper bound on A*, which satisfies the condition for the A* algorithm.

The performance of this algorithm is improved by incorporating basic assumptions of the
transliteration process into the heuristic function /(). For example, one knows that the
katakana characters that are generated by the transliteration process must be in the same order
as the characters in the original English word. Therefore, in order for a node that contains
a rule to be actually generated, the target phoneme of any of its ancestor rule nodes must
precede the target phoneme of the node in the target input. This information is also used for
implementing the heuristic function in the A* algorithm. One additional detail that must
be included in this A* search algorithm is that one does not allow a path that would cause
a phoneme in the target string not to correspond with any phoneme in the source string. This
technique greatly reduces the number of possibly incorrect rules that could be generated.

The following example illustrates how the A* algorithm just discussed is applied to the
dictionary entry “architecture” which is transliterated into the katakana word
“aakitekucha” (see Fig. 3). A search begins by expanding the start node. There is only
one rule that matches the first phoneme of the source string as listed in Fig. 3(a).
Consequently, two nodes are generated as successor nodes of the start node as depicted
in Fig. 3(b). Note that a node in a circle denotes a phoneme from the source input string
and a node in a box represents a phonological rule that is matched with the input
strings. After the start node is expanded, the values of the functions g and 4 are computed
for each node, which are listed in the table in Fig. 3(b). Because node la contains a
phonological rule, it has a larger value of g. However, its value of 4 is zero because there
are no rules that can be a successor of node la. Consequently, node 1b has a larger value
of £ so this node is selected for expansion. By the same technique, the search continues
(as shown in Fig. 3(c) and (d)) until the node that contains the last phoneme of the
source string is expanded. The complete search tree is depicted in Fig. 4(a). During the
search, if any node that contains a rule violates the sequential transliteration condition,
the node is pruned from the tree, which is denoted in Fig. 4(a) by a shaded box. After

JAPANESE LANGUAGE INTELLIGENT TUTORING SYSTEM 75

(a) Rules from existing rule base that match both source and target phonemes for the
transformation /alkitekutfa/ — /atkotekifa/

Number Rulef Probability
1 al — 2 /[(Cl|#)Cl#) 100.0
2 k — k /(VI#)-(V]) 100.0
3 t = t /(VI#-V 100.0
4 e — e [(C#)-C 100.0
5 k — k /(VI#-(VH) 100.0
6 u — * [/C/(Cl#) 100.0
7 f —- 45.8
8 a — a 0.7
9 a — 93 [(Cl#)Cl#) 100.0

tThe rule format A — B/C;-C, implies that the string C1 AC, may be replaced by C1BC>. All lower
case letters in the table represent themselves. The upper case letters and special characters have
the following meanings: C: any consonant, V: any vowel, #: sequence boundary, *: null character,
(z1|z2) : either z; or z2. Note also that the phonemes /al/ and /{f/ are counted as a single phoneme.

(b) The first step (c) The second step (d) The third step

s (start node)

Node la 1b Node 1la 2a 2b 2c Node 1la 2b 2 3
g(n) 1000 0.0 g(n) 100.0 100.0 100.0 0.0 g(n) 100.0 100.0 0.0 100.0
h(n) 0.0 6458 h(n) 0.0 5458 2458 5458 h(n) 0.0 2458 545.8 545.8

f(n) = g(n)+ h(n) 100.0 645.8 f(n) 100.0 645.8 345.8 545.8 f(n) 100.0 345.8 5458 645.8

Fig. 3. An illustration of the rule generation algorithm used in Phase II for the example katakana word
“aakitekucha” which was transliterated from the word architecture. The table in (a) shows a list of all rules
from the existing rule base (generated in Phase I) that are due to matching phonemes in the source and target
inputs. Note that multiple rules are matched with the same source input phoneme (such as rules 8 and 9) and
that the target input contains the same target phoneme in different locations (for example, the phoneme /k/
when using rules 2 and 5). The figures in (b) through (d) show the portions of a tree that are generated by the
A* algorithm for the example from the first step to the third step in Phase II. The tables in (b) through (d) list
the values of the evaluation function f{) for all possible nodes to be expanded from each step. The node on
the list having the largest value of the evaluation function f(r) is selected for expansion (shown in boldface).
Note that the evaluation function f{n) is calculated by adding up the values of g(n) and f{n) where the value of
g(n) is computed by summing the arc costs encountered while tracing the parent nodes from the node # to the
start node s and the heuristic information A(n) is defined as the largest total of probabilities of the matched
rules that can be a successor node of the node 7.

the path from the start node to the goal node is found, additional phonological transfor-
mation rules are generated by comparing the phonemes from source and target inputs
that are not matched by any rule in the path of a tree as shown in Fig. 4(b). The procedure of
Phase II can be summarized as follows:

76 YUN-SUN KANG and ANTHONY A. MACIEJEWSKI

ar | k | i k|lulld}]a

A VAW

*1k

(®)

Fig. 4. An example of generating phonological rules in Phase II. The figure in (a) shows the configuration of

the complete tree for the IPA strings /a:kitekufa/ and /axketekfs/ in Phase II where a node in a circle denotes

a phoneme from the source input and a node in a box represents a phonological rule that is matched with the

input strings (shown in solid lines in (b)). During the search, if any node that contains a rule violates the se-

quential transliteration condition, the node is pruned from the tree, which is denoted by a shaded box. Using

six of the phonological transformation rules allows Phase II to identify the new rules ar—ai1/# k, i-»a/k_t,
and, a—a/{_# which are shown in dotted lines in (b).

(1) Using the katakana and English IPA strings modified from Step 2 in Phase I as the
source and target inputs, scan the rule base for all rules that match any of the
phonemes in the source input. For those rules that match a phoneme in the source
string, the target string is then searched for the target phoneme.

(2) Construct the tree by using the A* algorithm where an arc for a node that contains a
phonological rule is assigned the cost that is equal to the probability of that rule occurring.

JAPANESE LANGUAGE INTELLIGENT TUTORING SYSTEM 77

(3) Generate a phonological transformation rule by comparing the phoneme sequences in
the source and target inputs that are not matched by any rule from the start node to
the goal node in the path of the tree. :

The rules generated in Phases I and II are then further processed in Phase III:

Phase III: Rule decomposition

Multiple phoneme rules that are generated in Phase I and Phase II are considered for
decomposition into several single phoneme rules in Phase III of the rule base acquisition
algorithm. In Phase I these multiple phonemes occur due to the fact that a sequence of
semi-vowels and/or vowels is not divided into partitions because of insufficient information
about Japanese diphthongs. These multiple phoneme sequences may therefore be a part
of the source or target of a rule. In Phase II, rules are generated by comparing phonemes
of the source and target strings which are not matched by any rule generated in Phase 1.
In this case, the source and target of a rule may also be a sequence of any phonemes,
because in the worst case it is possible that no rule matches the input phoneme strings.
These multiple phoneme rules are candidates for decomposition into rules where either
the source or the target has a single phoneme. In order to prevent any incorrect rule
from being generated in this process, the rule decomposition process is divided into three
steps using progressively weaker restrictions in each step.

In the first step, if a multiple phoneme rule can be decomposed into existing single
phoneme rules, the rule is replaced by the existing rules. For example, if there are rules
“i—j” and “e—e” in the rule base, the rule “ie—je/#_s” is replaced by the two rules
“i—j/#_e” and “e—e/i_s”. Any multiple phoneme rule that fails to be decomposed into
existing single phoneme rules is considered in the second step. In this step the source and
target of a multiple phoneme rule are regarded as input phoneme strings, and are com-
pared using the same technique used in Phase II except that the context for a rule in the
rule base is not checked. Step 2 also continues the restriction that the generation of a
silent rule is prohibited, which greatly helps prevent any incorrect rule from being gener-
ated. In contrast, during the third step silent rules are allowed. Otherwise the procedure
of the third step is identical to that of the second step. The rule decomposition process
can be summarized as follows:

Decompose multiple phoneme rules under the following conditions:

(1) if there exist single phoneme rules that can exactly replace the multiple phoneme rule
(2) using the A* algorithm and the heuristic information defined in Phase II
(3) using the same technique as Step 2, but allowing a silent rule.

The following examples present the successful completion of the rule decomposition
process. When the rule base has the rules “i—I” and “a—9”, the rule “ia—Is” is
decomposed into the existing rules in the first step. Figure 5 illustrates how the rule
“aljal—ala” is decomposed into three different rules using all the steps in the rule
decomposition process. Because the rule cannot be decomposed into existing single
phoneme rules, the first step does not decompose the rule any further. In the next step,
the rule base is scanned and a rule matches the source and target of the rule. The rule

78 YUN-SUN KANG and ANTHONY A. MACIEJEWSKI
Phase [

NAX— = /haijjar/ = /h, aijaz/
higher = /hale/ = /h,ale/

Phase III: Rule Decomposition

step 1: Not decomposed

step 2: The phonological rule aijal—ala. is decomposed into the two rules ai—al and jal—»a.

Fig. 5. An example of three progressively less restrictive steps used in Phase III to decompose the multiple
phoneme rules. The phoneme sequence “al” is typically regarded as a single phoneme.

“aijal—als” is decomposed into the two rules “ai—al” and “jaI—e”. The rule “ai—al”
is not decomposed any more since the English phoneme sequence “al” is typically
regarded as a single phoneme and “ai” consists of phonemes that belong to the same
category. The rule “jal—a” is also not decomposed because a silent rule is prohibited.
Finally, the rule “jal—2” is decomposed into the two rules “j—*” and “al—e” in
Step 3.

RESULTS

This article has described an algorithm used to generate a domain knowledge base auto-
matically, which is used for a model of the skill that a student must acquire in order to

JAPANESE LANGUAGE INTELLIGENT TUTORING SYSTEM 79

be proficient at reading katakana. The algorithm was tested on 850 entries from a
katakana-to-English dictionary generated previously (Kang and Maciejewski, 1992).
When their IPA strings were divided in order to balance the number of syllables in both
the Japanese and English entries in Phase 1, approximately 92% of the 850 entries of the
dictionary had the same number of partitions and were correctly matched. The comparison of
the divided phoneme strings generated a set of 180 phonological rules. The remaining 8%
of the dictionary entries were analysed using the algorithm in Phase II by using the rule
base generated in Phase I. When these 70 entries were tested in Phase II, only one incor-
rect phonological rule was generated, which occurred in the following case: the katakana
word “haiaraki” vs its English origin word “hierarchy”.* The use of the A* algorithm
with the defined heuristic information resulted in"a 71% reduction on average in the
number of nodes generated when compared to the breadth-first search algorithm, which
consequently made the Phase II algorithm run 20 times faster. The 204 rules generated in
Phases I and II were modified by Phase III. Approximately 40% of the rules had a multiple
phoneme source or target. These multiple phoneme rules were decomposed into several
single phoneme rules using the existing rules. In order to prevent any incorrect rule from
being generated, this process was divided into three steps using progressively less restric-
tive conditions in each step. The complete resulting rule base consisted of 146 rules
(Kang and Maciejewski, 1992), a sampling of which are listed in Table 3.

To verify that this rule base represents an accurate model of the knowledge required to
read katakana, it was evaluated on test data consisting of 2234 katakana words and their

Table 3. Examples of the phonological rules created by matching the IPA equivalent of the katakana word with
that of its English origin

Data Example

Rule* Probability Number of Katakana English IPA (JAP) IPA (ENG)

(%) occurrences word word
w 63 5 V=TV sequence Jitk()ensu sikwens
a—d 36 156 F 4TI digital didgitaru dIdzotal
a—o 24 103 aryta—% computer koNpju ita kompjut &
a—e 34 145 £I3Ivo ceramic seramiQku so 1emlk
a;j—o 69 43 H—=) thermal saymaru 62mol
bov 34 44 IAYIvA valve barubu valv
d5—z 19 10 EY— busy bidsiz blzi
e—93 28 58 RE Xk document dokjumeNto dakjom ant
h—f 21 -8 Ea—X fuse hjuizu fjuz
i—o 18 63 HY—' 2 service saibisu SOV 8
i-I 48 165 vy resistor redgisuta 1lzIst >
0—* 50 208 F—iR—FK keyboard kirbo :do kibo1d(*)
0—9 20 81 wiay session seQJoN sefon
o—a 15 64 A RS D process purosesu prases
r—l 57 270 54 v line raiN laln
s—0 4 11 Ly X length reNgusu le}6
J—s 47 33 L NN system fisutemu sIstom
-t 42 14 Fa—7 tube furbu tjub
u—* 91 609 Fxv7 check feQku fek(*)

*The context for these rules is not shown here for the sake of clarity.

80 YUN-SUN KANG and ANTHONY A. MACIEJEWSKI

English origins collected from the CD-ROM version of the Sci Terms Dictionary
(Ministry of Education, Science, and Culture of Japan, 1988). When their IPA strings
were compared by considering all of the possible transformations, the knowledge base
identified 98.2% of the required transformation rules so that approximately 90.4% of the
katakana phoneme strings were successfully transformed into the same IPA string of the
corresponding English origin. The remaining 9.6% of the dictionary entries were anal-
ysed, and it was found that 89.8% of the entries not successfully transformed were due to
the absence of only one phonological rule required for complete transliteration, where
64.4% of these missing rules were vowel rules. This is not surprising because there is a
very poor correspondence between Japanese and English vowels due to the existence of
only five vowel phonemes in Japanese. In fact, it has been previously shown that
infrequently occurring vowel transformation rules have little or no effect on a student’s
ability to comprehend katakana (Maciejewski and Kang, 1994). Therefore, the know-
ledge base of phonological transformation rules generated here can be effectively used to
enable the tutoring system to assess a student’s proficiency and to individualize their
instruction.

CONCLUSIONS

The goal of this work was the development of a domain knowledge base that could be
used in a Japanese language ITS. The domain knowledge represents a model of the
expertise that a student must acquire in order to be proficient at reading one of the distinct
orthographies of Japanese, known as katakana. It was shown that the algorithm pre-
sented here was able to generate a knowledge base of the phonological transformation
rules automatically, which represent a model of the inverse transformation from Japanese
phonology back to the original English pronunciation. The knowledge base was subse-
quently used to generate overlay student models for an ITS and to analyse the effects of
rule frequency on student acquisition rules (Maciejewski and Kang, 1994).

NOTES

'A transitional sound made as the vocal organs move towards or away from an articulation.
2A minimal unit of rhythmical time equivalent to a short syllable.
3The phonological rule ie —/# _s will be decomposed into i—j/#_e and e—e/i_s by Phase IIL.

*When the katakana and English IPA strings modified from Step 2 in Phase I, i.e., /haiaraiki/ and /haiorar*ki/,
were matched, the phoneme /ai/ was incorrectly associated with /aior/, and the phoneme /ay with “*”. |

REFERENCES

ANDERSON, J. R. (1988) The expert module. In Polson, M. C. and Richardson, J. J. (eds), Foundations of
Intelligent Tutoring Systems, pp. 21-53. Hillsdale, NJ: Lawrence Erlbaum Associates.

CARR, B. and GOLDSTEIN, 1. (1977) Overlays: A Theory of Modeling for Computer Aided Instruction.
Cambridge, MA: MIT, Artificial Intelligence Laboratory.

CATFORD, J. C. (1988) A Practical Introduction to Phonetics. New York, NY: Oxford University Press.

GOVE, P. B. (ed.) (1963) Webster’s Seventh New Collegiate Dictionary. Springfield, MA: G. and C. Meriam
Company.

JAPANESE LANGUAGE INTELLIGENT TUTORING SYSTEM 81

KANG, Y.-S. and MACIEJEWSKI, A. A. (1992) Data on English to Japanese transliteration of technical
terminology. Technical Report TR-EE 92-34, Purdue University, West Lafayette, IN, USA.

KOKURITSU KOKUGO KENKYUUJO (1964) Gendai-zasshi 90shu no yoogo yooji (3). Number 25.
MACIEJEWSKI, A. A, and KANG, Y.-S. (1994) A student model of katakana reading proficiency for a
Japanese language intelligent tutoring system. JEEE Trans Syst Man Cybern SMC-24, 1347-1357.
MACIEJEWSKI, A. A. and LEUNG, N. K. (1992) The Nihongo Tutorial System: An intelligent tutoring
system for technical Japanese language instruction. J Comp Assist Lang Learn and Instruct Consort 9, 5-25.
MANDL, H. and LESGOLD, A. (eds) (1988) Learning Issues for Intelligent Tutoring Systems. New York, NY:
Springer-Verlag.

MILLS, D. O.,, SAMUELS, R. J. and SHERWOOD, S. L. (1988) Technical Japanese for scientists and
engineers: Curricular options. Technical Report MITJSTP WP 88-02, MIT, Cambridge, MA.

MINISTRY OF EDUCATION, SCIENCE AND CULTURE, Japan (ed.) (1988) Japanese Scientific Terms.
Ministry of Education, Science, and Culture of Japan.

NILSSON, N. J. (1982) Principles of Artificial Intelligence. New York, NY: Springer-Verlag.

PARK, O.-C., PEREZ, R. S. and SEIDEL, R. J. (1987) Intelligent CAI: Old wine in new bottles, or a new
vintage? In Kearsley, G. (ed.), Artificial Intelligence and Instruction, pp. 11-45. Reading, MA: Addison Wesley.
POLSON, M. C. and RICHARDSON, 7. J. (eds) (1988) Foundations of Intelligent Tutoring Systems. Hillsdale,
NJ: Lawrence Erlbaum Associates.

RICKEL, J. W. (1989) Intelligent computer-aided instruction: A survey organized around system components.
IEEE Trans Syst Man Cybern SMC-19, 40-57.

SHIBATANI, M. (1990) The Languages of Japan. New York, NY: Cambridge University Press.

SWARTZ, M. L. (1992) Issues for tutoring knowledge in foreign language intelligent tutoring systems. In

Swartz, M. L. & Yazdani, M. (eds), Intelligent Tutoring Systems for Foreign Language Learning, pp. 219-233.
Berlin: Springer-Verlag.)

VANCE, J. T. (1987) An introduction to Japanese Phonology. Albany, NY: State University of New York
Press.

WENGER, E. (1987) Artificial Intelligence and Tutoring Systems. Los Altos, CA: Morgan Kaufmann.

YAZDANI, M. (1987) Intelligent tutoring system, An overview. In Lawler, R. W. and Yazdani, M. (eds),
Artificial Intelligence and Education (Vol. 1), pp. 183-201. Norwood, NJ: Ablex.

