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A B S T R A C T

It has been shown that one can guarantee a reachable workspace for a kinematically redundant
robot after an arbitrary locked-joint failure if one artificially restricts the range of its joints prior
to the failure. This work presents an algorithm for computing the optimal kinematic parameters
and artificial joint limits for a robot to maximize this so-called ‘‘failure-tolerant workspace’’.
The proposed technique employs a genetic algorithm that incorporates a novel method for
selecting an initial population that results in fast convergence to high-quality solutions. The
algorithm is illustrated on multiple examples of kinematically redundant robots and is shown
to be computationally tractable even for robots that perform tasks in 6D workspaces.

. Introduction

Kinematically redundant robots can complete a specific task even after a joint failure has occurred, due to the extra degrees of
reedom (DOF) that are in addition to the minimum required to perform a specified task. This advantage is important for robots
hat are employed in applications where performing routine maintenance and/or repair is not possible, for example, in hazardous
nd remote environments. Example applications include nuclear reactors [1,2], space exploration [3], and deep-sea exploration [4].
revious studies have used fault trees to assess a robot’s reliability [5,6] and other work has been focused on implementing tolerance
o failures including fault diagnosis [7], detection [8], and identification [9,10]. The locked-joint failure is the most common model
sed for these previous studies. This is because a joint is locked due to the failure itself or because fail-safe brakes are employed,
.g., to deal with free-swinging joint failures where the torque of the actuator is lost [11].

The various techniques used for designing failure-tolerant robots can be characterized based on whether they use local or global
easures of how much a robot’s dexterity is affected by a failure. The local measures are frequently quantified by the singular values

f the Jacobian matrix at a specific robot configuration. Optimizing these values have been used in both the design and control
f failure-tolerant robots [12–15]. The global measures are those that are not configuration dependent, e.g., the total reachable
orkspace of a robot. In previous work, the failure-tolerant workspace (𝑭 ) has been defined as the guaranteed reachable workspace
oth before and after an arbitrary locked-joint failure [16,17].

One way to guarantee the existence of 𝑭 is by increasing the degree of redundancy (DOR) by two for each potential joint
ailure. This high degree of redundancy is required because of the worst-case scenario where a joint failure is at a configuration that
liminates two degrees of freedom [18]. Later studies have shown that one can guarantee the existence of 𝑭 for a robot with only
ne DOR by restricting the joints limits prior to a failure, i.e., so-called ‘‘artificial joint limits’’ that are software joint limits imposed
o restrict joint motion to be within specified range [19]. These artificial limits are imposed to prevent the robot from failing in a
orst-case configuration and are released after the occurrence of an arbitrary locked-joint failure.
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A number of optimization techniques have been discussed to maximize 𝑭 for planar workspaces. A brute force technique has
been used to determine artificial joint limits that are constrained to be symmetrical around zero for planar 3R and 4R robots [20].
Another study has presented a gradient ascent method to compute the optimal link lengths and artificial joint limits that maximize
𝑭 by computing the symbolic expressions for the area of 𝑭 and its gradient [21]. In 6D workspaces (3D position and 3D
orientation), the coordinate ascent method has been used to optimize only the artificial joint limits for a particular robot, i.e., the
kinematic parameters of the robot are constant [22]. Therefore, the solution space is bounded by 2𝜋 for each of the artificial joint
limits and so the size of 𝑭 is periodic with a period of 2𝜋.

None of the above optimization techniques for maximizing 𝑭 are applicable for determining the optimal kinematic parameters
for robots that are to perform 6D tasks. This is due to the dramatically higher number of variables, that both increases the
computational cost and the likelihood of convergence to local maxima. In this work, a technique based on Genetic Algorithms
(GA) is proposed to design optimally fault-tolerant kinematically redundant robots, i.e, an optimal set of kinematic parameters
and artificial joint limits, for any number of degrees of freedom and workspace dimensions. The advantages of using a GA-based
approach is that it is more likely to converge to a globally optimal solution and, if appropriately implemented, to converge faster
when parallelism is exploited. However, to achieve these advantages one must develop a method to appropriately select the pool
of initial candidate solutions.

The remaining sections are presented in the following manner. The required background on computing the failure-tolerant
workspace is reviewed in the next section. In Section 3, we first formally define the optimization problem. We then present our
GA-based technique for determining an optimal solution, including our novel approach for generating an effective initial population.
We illustrate the procedure using a 4 DOF spatial positioning robot. The effectiveness of our technique is shown in Section 4, where
we provide three kinematic designs for robots that are optimally fault tolerant. These designs, as well as the optimal artificial joint
limits, are given for tasks in a variety of workspaces including the fully general 6D spatial case. Finally, the conclusions are in
Section 5.

2. Background on computing failure-tolerant workspace1

2.1. Overview

The definition of the failure-tolerant workspace, 𝑭 , as previously discussed in [17,21,22], is summarized in this section. In
those works, artificial limits were applied on the joints before a failure, which were then released after a failure of one of the joints
was identified. Applying artificial limits will typically decrease the pre-failure workspace, however, if chosen appropriately, they
guarantee a post-failure workspace. As in previous work, we assume that the robot is kinematically redundant, i.e., 𝑛 > 𝑚 where 𝑛
is the number of the joints, 𝑚 is the workspace dimension, DOR = 𝑛 − 𝑚, and the physical limits of joint 𝑖 are from −2𝜋 to 2𝜋.

2.2. Definition of failure-tolerant workspace

The forward kinematic function, denoted 𝐟 , maps the joint space,  ⊂ R𝑛, to the workspace, denoted  ⊂ R𝑚. Let the 𝑛-
dimensional vector 𝜽 represent the joint angles in the joint space, i.e., 𝜽 ∈  , and the 𝑚-dimensional vector 𝐱 represent the robot’s
end-effector position and/or orientation in the workspace, i.e., 𝐱 ∈  . Therefore, the forward kinematic equation is given by

𝐱 = 𝐟 (𝜽). (1)

Prior to failure, the lower 𝑎𝑖 and upper 𝑎𝑖 artificial joint limits are the joint 𝑖 restrictions where 𝑎𝑖 and 𝑎𝑖 ∈ [−2𝜋, 2𝜋], and
𝑖 = {1, 2,… , 𝑛}. The pre-failure configuration space, denoted 𝑨, is the joint space before joint failure, i.e., 𝑨 = 𝐴1 ×⋯×𝐴𝑛 where
𝐴𝑖 = [𝑎𝑖, 𝑎𝑖] is the range of joint angles between 𝑎𝑖 and 𝑎𝑖. The pre-failure workspace, denoted 𝟎, is the reachable workspace
btained by mapping 𝑨 into the workspace,

𝟎 = 𝐟 (𝑨) = {𝐱 = 𝐟 (𝜽) ∣ 𝜽 ∈ 𝑨}. (2)

After joint 𝑖 fails and is locked at 𝜃𝑖 = 𝑞𝑖 where 𝑎𝑖 ≤ 𝑞𝑖 ≤ 𝑎𝑖, the artificial limits are released on the remaining working joints.
This results in the reduced configuration space that is a hyperplane at 𝜃𝑖 = 𝑞𝑖 in the configuration space ,

𝑖(𝑞𝑖) = {𝜽 ∈  ∣ 𝜃𝑖 = 𝑞𝑖}. (3)

The guaranteed reachable workspace after joint 𝑖 fails at 𝑞𝑖 between 𝑎𝑖 ≤ 𝑞𝑖 ≤ 𝑎𝑖 is the post-failure workspace, denoted  𝒊, and is
iven by

 𝒊 =
⋂

𝑎𝑖≤𝑞𝑖≤𝑎𝑖

𝐟 (𝑖(𝑞𝑖)). (4)

The guaranteed reachable workspace both before and after an arbitrary single locked-joint failure is the failure-tolerant workspace,

𝑭 =
⋂

𝑖∈𝐅∪{0}
 𝒊, (5)

where 𝐅 ⊂ {1, 2,… , 𝑛} is the failure index for the joints that are prone to failures.

1 Section II is very similar to those in [21,22], and is included here to provide the background to make this paper self-contained.
2
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2.3. Identification of the failure-tolerant workspace

Previous work [17] has identified two conditions for determining if a workspace location 𝐱 belongs to 𝑭 . The pre-image of 𝐱,
denoted 𝐟−1(𝐱), that is given by

𝐟−1(𝐱) = {𝜽 ∈  ∣ 𝐟 (𝜽) = 𝐱} (6)

s used to formulate both conditions. Condition 1 is that 𝐱 be reachable prior to a failure, i.e., 𝐱 ∈ 𝟎, so that

𝐴 ∩ 𝐟−1(𝐱) ≠ ∅. (7)

he above condition states that there must be an intersection between the pre-failure configuration space, 𝐴, and the pre-image
of 𝐱, 𝐟−1(𝐱), for at least one configuration. Condition 2 is that 𝐱 is reachable after a failure, i.e., 𝐱 ∈  𝒊 for 𝑖 ∈ 𝐅, so that

𝐴𝑖 ⊂ 𝑃𝑖[𝐟−1(𝐱)] (8)

here 𝑃𝑖 is the projection onto the 𝑖th joint axis, i.e., the range of 𝜃𝑖 for all 𝜽 that satisfy 𝐱 = 𝐟 (𝜽). Condition 2 means that after joint
is locked at 𝜃𝑖 = 𝑞𝑖 where 𝑎𝑖 ≤ 𝑞𝑖 ≤ 𝑎𝑖, the workspace point 𝐱 can still be reached because 𝑞𝑖 is contained in the 𝑖th component of

𝐟−1(𝐱). If both conditions are satisfied for 𝐱, then 𝐱 ∈ 𝑭 .
Fortunately, it is relatively straightforward to identify all potential boundaries of 𝑭 . The potential boundaries of 𝟎 are located

at 𝐟 (𝜽) where the configuration 𝜽 ∈ 𝑨 is a kinematic singularity or when one or more joints are at an artificial joint limit, i.e., 𝜃𝑖 = 𝑎𝑖
or 𝜃𝑖 = 𝑎𝑖. The potential boundaries of  𝒊 are the workspace locations where the end effector is on the verge of violating condition
. This can occur in two ways, i.e., either the projection of the pre-image for this workspace location becomes disjoint within 𝐴𝑖
r it fails to contain an endpoint of 𝐴𝑖. The first way will occur at 𝐟 (𝜽) where 𝜽 ∈ 𝑖 (𝑞𝑖) is a kinematic singularity. The second
ituation can be identified by computing the null vector associated with the robot’s Jacobian. In particular, let 𝐧(𝜽) represent the
ull vector of the robot at configuration 𝜽 and 𝐧𝑖 be the 𝑖th element of 𝐧. Then the potential boundaries of  𝒊 occur when 𝑛𝑖 = 0
nd 𝜃𝑖 = 𝑎𝑖 or 𝑎𝑖. Once all potential boundaries of 𝟎 and all  𝒊’s are determined, one can use the two conditions to identify the
oundaries of 𝑭 [17].

.4. Estimation of failure-tolerant workspace size

Using the two conditions from the previous section, one can use the technique that is described in [22] to estimate the volume
f the failure-tolerant workspace. Assume that joint 1, i.e., the base joint, is a revolute joint.2 The pre-image of a workspace point 𝐱,

i.e., the set of configurations that correspond to 𝐱, is given by (6). If one rotates 𝐱 about the rotation axis of joint 1 by 𝛽 ∈ [−𝜋, 𝜋],
hen the pre-image of the rotated 𝐱, denoted 𝐱′, is computed by evaluating (6) for 𝐱′ where 𝐱′ = 𝑹𝑧𝐱, and

𝑹𝑧 =
⎡

⎢

⎢

⎣

cos(𝛽) − sin(𝛽) 0
sin(𝛽) cos(𝛽) 0
0 0 1

⎤

⎥

⎥

⎦

. (9)

he pre-image of 𝐱′ is identical to that of 𝐱 except that every configuration’s joint one value is related by 𝜃′1 = 𝜃1 + 𝛽. This simple
elationship means that one does not have to compute the pre-images for the entire workspace, i.e., one of the dimensions can be
asily inferred.

The general approach for estimating the volume of a 3D spatial workspace is to first discretize a half plane into square grids,
here the normal of the half-plane is perpendicular to the rotation axis of joint 1. One then needs to compute a 3D volume element
y determining the rotation angle range, denoted [𝛽

𝐹
, 𝛽𝐹 ], of a grid center, denoted 𝐜𝑔 , about the rotational axis of joint 1. The

rotation angle range of 𝐜𝑔 is defined as the range where the rotated 𝐜𝑔 belongs to 𝑭 , i.e., when the pre-image of the rotated 𝐜𝑔
satisfies conditions 1 and 2 from Section 2.3.

Thus, the integration of the grid area over its rotation angle range is the failure-tolerant 3D volume element,

𝑣𝐹 ≈ ∫

𝛽𝐹

𝛽
𝐹

𝑟 𝛥𝑔 𝑑𝛽𝐹 , (10)

where 𝑟 is the shortest distance from the grid center, 𝐜𝑔 , to the axis of joint 1, and 𝛥𝑔 is the grid area.
It is important to note that the pre-image of a grid center may consist of a union of disjoint self-motion manifolds (SMM). The

anges of [𝛽
𝐹
, 𝛽𝐹 ] for these disjoint SMMs may, or may not, overlap. If two ranges overlap, then they are replaced with the union

f those two ranges, until no overlapping ranges remain. Let 𝐁 denote the set of non-overlapping ranges of [𝛽
𝐹
, 𝛽𝐹 ] for a given

rid center. Therefore, to compute the volume associated with a grid center one must compute (10) for each range in 𝐁. Thus, the
ummation of all the volumes for all grids is the failure-tolerant workspace volume, denoted 𝐹 , i.e.,

𝐹 ≈
𝑁𝑐𝑔
∑

𝑖=1

|𝐁|
∑

𝑗=1
𝑣𝐹 (𝑖, 𝑗), (11)

2 If the first joint is prismatic, an analogous procedure can be performed.
3
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where 𝑁𝑐𝑔 is the number of reachable grid centers.
For a 6D hypervolume element, one can apply the Monte-Carlo integration technique described in [14,23] using uniform random

sampling of orientations at a workspace point to estimate the failure-tolerant orientation volume, denoted 𝐹𝑜 ,

𝐹𝑜 ≈
𝑁𝐹
𝑁𝑜

𝜋2 (12)

where 𝑁𝐹 is the number of failure-tolerant orientations, 𝑁𝑜 is total number of randomly selected orientations, and 𝜋2 is the maximum
orientation volume. Then, by adding (12) to the integrand of (10), a 6D hypervolume element is given by

𝑣𝐹 ≈ ∫

𝛽𝐹

𝛽
𝐹

(𝑟 𝛥𝑔)
(

𝑁𝐹
𝑁𝑜

𝜋2
)

𝑑𝛽𝐹 . (13)

where the rotation angle range, [𝛽
𝐹
, 𝛽𝐹 ], is determined by the range where 𝑁𝐹 is constant. The entire 6D hypervolume of the

failure-tolerant workspace is estimated by computing (11) using (13).
One can also use (11) to estimate the volume or hypervolume of the original workspace, denoted 𝟎𝐦𝐚𝐱

, which is the robot’s
orkspace with no restrictions applied on the robot’s joints. For tasks defined as position-only, Eq. (10) is evaluated with integration

imits of −𝜋 to 𝜋. If the task is defined by position and orientation, then (13) is evaluated with integration limits of −𝜋 to 𝜋 and
𝐹 is replaced by the number of reachable orientations, denoted 𝑁𝑜max

.
Let the unit of measure for the failure-tolerant workspace size be denoted 𝐹 and the original workspace size be denoted 0max

.
his general measure may represent any combination of linear and rotational components, e.g., the failure-tolerant workspace size
or planar robots that perform a task defined as a 2D position or 2D position with orientation, or for spatial robots that perform
asks that are 3D position or 3D position with 3D orientation. In cases where 𝐹 and 0max

are combinations of different units,
e.g., meters and radians for position and orientation, a suitable normalization factor should be employed to make sure that 𝐹 and
0max

are meaningful measures.

3. Method

3.1. Definition of the problem

The goal of this work is to determine the kinematic design and artificial joint limits for a redundant robot that maximizes the
size of its failure-tolerant workspace. The kinematic design of an 𝑛 DOF robot can be defined by the Denavit and Hartenberg (DH)
arameters for each joint 𝑖, i.e., the link twist, 𝛼𝑖, the link length, 𝑙𝑖, the joint offset, 𝑑𝑖, and the joint angle, 𝜃𝑖. In this work, we
imit the range of these parameters to the following values: −𝜋∕2 ≤ 𝛼𝑖 ≤ 𝜋∕2, 0 ≤ 𝑙𝑖 ≤ 1, −1 ≥ 𝑑𝑖 ≥ 1, −2𝜋 ≤ 𝜃𝑖 ≤ 2𝜋.

In addition to the kinematic parameters, one needs to determine the set of artificial joint limits, denoted 𝑨, that consists of the
lower and upper limits of joint 𝑖, i.e., 𝑨 = {𝑎1, 𝑎1, 𝑎2, 𝑎2,… , 𝑎𝑛, 𝑎𝑛}, where 𝑎𝑖 ≤ 𝜃𝑖 ≤ 𝑎𝑖. Because 𝐹 is rotationally invariant to 𝜃1,
only the size of the interval 𝐴1 = [𝑎1, 𝑎1] is relevant. Therefore, the constraint that 𝑎1 = −𝑎1 is imposed to reduce the number of
variables in the optimization.

To provide a fair comparison between the kinematic designs for robots of vastly different sizes, one would normalize 𝐹
by the workspace size of the robot without any joint limits, i.e., 0max

. Therefore, the optimization problem for maximizing the
failure-tolerant workspace size can be formulated as:

maximize
𝑙𝑖 , 𝑑𝑖 , 𝛼𝑖 ,𝑨

𝐹
0max

. (14)

or cases when a specific robot is given, i.e., the DH parameters are constant, the optimization problem (14) can be solved for 𝑨
s the only decision variable.

.2. Genetic algorithm

.2.1. Overview
In this section we describe a genetic algorithm that is used to solve the optimization problem given in (14). Genetic algorithms

re a global optimization technique where chromosomes are used to encode the decision variables and the operations of crossover
nd mutation are used to iteratively search the entire solution space. Each iteration creates a new population of chromosomes and
s referred to as a generation. The stochastic selection of chromosomes for crossover is used to improve the likelihood that new
enerations will include better solutions. The preservation of the fittest chromosomes from the previous generation, referred to as
litism, guarantees that solution quality is monotonically increasing. The convergence of GAs will typically be improved by seeding
he initial population with chromosomes that have high fitness values.

In this section we illustrate the implementation of our specific GA using a simple 4 DOF robot that is designed to perform 3D
patial positioning tasks. Each chromosome consists of the decision variables, where each gene represents one of the kinematic
arameters or artificial joint limits. For spatial robots the number of decision variables is 5𝑛−1, so that for our illustrative example
here are nineteen variables. The eight kinematic parameters of 𝑙𝑖s and 𝑑𝑖s where 𝑖 = {1, 2, 3, 4} are given in meters. The remaining
leven variables, i.e., the 𝛼𝑖s and the artificial joint limits are given in degrees. The size of the population for a GA is frequently
roportional to the number of decision variables, e.g., × 20, so that for the 4 DOF robot the population size has been chosen to be
4

80.
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3.2.2. Initial population
The first step in executing a GA is to determine an initial population. Frequently, chromosomes are generated at random, however,

t is likely that random chromosomes will have very low (or zero) fitness values. Therefore, it is common to ‘‘seed’’ the initial
opulation with chromosomes that are selected by an appropriately chosen heuristic to have relatively high fitness values. To
etermine these seed chromosomes for the optimization problem described by (14) one can first randomly select the genes that
orrespond to feasible kinematic parameters and then compute the genes that represent good artificial joint limits for the resulting
obot using a heuristic.

In the 4 DOF spatial robot case, the selection of kinematic parameters must result in a robot that is physically able to perform a
ask in a 3D positioning workspace. Therefore, the rotation axes of the four joints must not be nearly parallel and the values of the
𝑖s and 𝑑𝑖s must not be too small so that the robot has a reasonably sized workspace. After the kinematic parameters of the robot are
elected, the artificial joint limits, 𝑨, for that robot can be selected so that they satisfy (8) for at least some points in the workspace
s follows.

One should first randomly select a reachable workspace point that is not close to a workspace boundary and then guarantee
hat it satisfies both conditions for being in 𝑭 by appropriately selecting the artificial joint limits. This can be done by computing
he critical points on a self-motion manifold (SMM), i.e., a manifold consisting of all joint values that correspond to the robot’s
nd effector being at the selected workspace point. The artificial joint limits, 𝑎𝑖 and 𝑎𝑖, are then set to the values of these critical

points, which are the minimum and maximum values of 𝜃𝑖 over the entire SMM. Frequently, a workspace point will have multiple
isjoint SMMs so one should select the one that gives the largest ranges for 𝑨. In addition, by avoiding points near a workspace
oundary, this approach avoids SMMs that are very small in size. The proposed technique for computing 𝑎𝑖s and 𝑎𝑖s guarantees

that the selected chromosomes will have non-zero fitness values, i.e., 𝐹
0max

> 0. Fig. 1(a) shows the improvement in the fitness
alues of selected chromosomes by comparing the histograms of chromosomes that are selected randomly to those selected with the
roposed heuristic. In that figure, 87% of the randomly selected chromosomes resulted in a zero fitness value, with the maximum
itness value being less than 2.6%. In addition to resulting in no chromosomes with zero fitness, the proposed heuristic results in
itness values up to 𝐹

0max
≈ 9%. In practice, roughly 75% of the initial population should be selected using the proposed heuristic

with the remaining 25% selected at random. This ratio was determined from initial studies on low-dimensional robots and is done
to prevent premature convergence to locally optimal solutions. After the initial population is generated, one can compute the next
new generation of chromosomes as presented in the following section.

3.2.3. Generating a new population
The new generation of chromosomes are potential optimal chromosomes of decision variables, i.e., the kinematic parameters

and artificial joint limits. A new generation is computed from the current generation in the following manner. First, the top 5%
of the fittest chromosomes in the current generation are included in the next generation in order to implement elitism. Then, the
remaining 95% are generated by selecting two parents using stochastic selection and applying two-point crossover to generate two
children, both of which are included in the new population. Next, 15% of these children are selected for possible mutation. Each
gene of these children has a 0.01 probability of being mutated. If selected for mutation, the value of this gene is replaced with a
random value from the range of the variable as defined in Section 3.1. The values of the parameters used here come from initial
studies on low-dimensional robots.

3.2.4. Case study of a 4 DOF spatial positioning robot
We illustrate the proposed GA by computing the kinematic parameters and artificial joint limits for a simple 4 DOF spatial

positioning robot that maximizes 𝐹 ∕0max
. The technique described in Section 2.4 is used to estimate the fitness function. Eq. (11)

is used to compute both 𝐹 and 0max
using a grid side length that is 4% of the maximum reach of the robot. This maximum reach

is different for each chromosome because of the different kinematic parameters.
We first illustrate the importance of seeding the initial population with chromosomes that have nonzero fitness values. Fig. 1(b)

shows the different rates of convergence between a completely random initial population and those that are seeded with selected
chromosomes. The evolution of the GA using a random initial population is shown in red, illustrating a much lower starting fitness
value and converging to a lower final fitness value when compared to the seeded initial population shown in blue. This holds true
for all examples shown later in Section 4. For the 4 DOF case, seeded populations converged to a final solution after 100 generations
whereas random populations required twice as many generations. After convergence, one can run a local optimization technique,
such as coordinate ascent [22], to improve the final design.

The results from the optimization shown in Fig. 1, i.e., the DH parameters and 𝑨, are given in Table 1 and illustrated in Fig. 2.
The robot is shown in two different configurations, i.e., stretched out in (a) and with its joints at the middle of the artificial joint
limits in (b). The resulting fault-tolerant workspace 𝑭 is shown in (c) along with the robots original workspace 𝟎𝐦𝐚𝐱

in (d). The
optimization criterion, i.e., the ratio of the size of these two workspaces 𝐹 ∕0max

, is equal to 19.2%. To provide some context, one
can compare the 𝐹 ∕0max

value of this optimized robot to that of traditional designs. For example, it is not uncommon for robots
to have an 𝐹 ∕0max

= 0. In particular, this is true for anthropomorphic robot designs because 𝐹 = 0 due to the elbow joint being
failure intolerant [24]. Even robot designs optimized for local fault-tolerance, do not have large values for 𝐹 ∕0max

. For example,
when one computes the optimal 𝑨 for the previously designed 4 DOF spatial positioning robot in [25], 𝐹 ∕0max

is less than 2%.
In the next section, we show how increasing the DOR from 1 to 2 affects the size of the failure-tolerant workspace and how the
5

proposed GA technique is computationally tractable for designing 7 DOF robots that perform tasks in six-dimensional workspaces.
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Fig. 1. This figure illustrates the effectiveness of using seeded chromosomes over random chromosomes for the case of a 4 DOF spatial robot, i.e., robots with
DOR = 1. In (a) the histogram of 1000 randomly generated chromosomes is compared to 1000 selected chromosomes generated by the proposed technique.
Approximately 87% of the random chromosomes (shown in red) have an 𝐹 ∕0max

= 0 whereas all of the seeded chromosomes (shown in blue) are non-zero and
reach fitness values of nearly 9%. The impact of these selected chromosomes on the evolution of the GA is shown in (b), where for each generation the highest
fitness value is plotted. Both the final maximum fitness value and the rate of convergence are improved. The final corresponding robot design and its resulting
workspace are shown in Fig. 2 with the values of the DH parameters and 𝑨 given in Table 1. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 1
Optimal DH parameters and 𝑨 for a 4 DOF spatial positioning robot.

𝐿𝑖𝑛𝑘𝑖 𝛼𝑖 [degrees] 𝑙𝑖 [meters] 𝑑𝑖 [meters] 𝜃𝑖 [degrees]

𝑎𝑖 𝑎𝑖
1 85◦ 0.50 −0.29 −146◦ 146◦

2 −53◦ 0.48 0 −234◦ 10◦

3 −89◦ 0.76 0.05 −115◦ 132◦

4 68◦ 0.95 1 −101◦ 118◦

4. Examples

4.1. Overview

In this section we use the proposed technique to design redundant robots that maximize the failure-tolerant workspace sizes.
We determine these robots for three illustrative examples as follows. The first example considers how increasing the DOR affects
the 𝑭 for planar robots that operate in a 3D workspace, i.e., 2D position and 1D orientation. We present two planar robots that
have been designed with 4 DOF and 5 DOF, i.e., DORs of 1 and 2. We then illustrate how increasing the DOR for the 4 DOF spatial
6
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Fig. 2. This figure shows the robot design and the corresponding workspaces that resulted from the GA optimization shown in Fig. 1. All position units used
in the subfigures are measured in meters. An isometric view of the designed robot where it is stretched out is shown in (a), and in a configuration where all
the joints are at the middle of their optimal artificial joint limits is shown in (b). The DH parameters and 𝑨 for this 4 DOF spatial positioning robot are given
in Table 1. Shown in (c) is 𝑭 using orthogonal cross sections to show more of the internal structure, where the volume is 𝐹 = 18.69 m3. For comparison,
the boundary of 𝟎𝐦𝐚𝐱

is overlayed in gray. All of 𝟎𝐦𝐚𝐱
is shown in (d), again using orthogonal cross sections, where 0max

= 97.38 m3. The optimal value of
𝐹 ∕0max

= 19.2%.

positioning robot described in the previous section affects its 𝑭 that is shown in Fig. 2. Lastly, we present the optimal design for
a 7 DOF spatial robot that performs tasks in a 6D spatial workspace (3D position and 3D orientation).

In all examples, the technique described in Section 2.4 is used to estimate the workspace sizes, 𝐹 and 0max
. We use the same

sampling resolution of the workspace that was used in previous work [22]. For the planar robots, we set 𝛥𝑔 to be equal to 4% of
the robot’s maximum reach, which results in 25 line segments over the length of the arm. We also select 25 orientation samples,
i.e., 𝑁𝑜 = 25, for the 1D orientation in the 3D planar case. In the 3D and 6D spatial workspaces, 𝛥𝑔 is the area of a square grid
where the length of a grid side is selected to be 4% of the robot’s maximum reach. We use 𝑁𝑜 = 200 to sample the 3D orientations
in the 6D workspace.

4.2. Planar positioning and orienting robot designs

Previous work [22] has determined the optimal artificial joint limits for equal link length planar robots. Here, we determine the
optimal kinematic parameters, i.e, the link lengths, denoted 𝑳 = {𝑙1, 𝑙2,… , 𝑙𝑛}, as well as the artificial joint limits, to illustrate how
much the size of the failure tolerant workspace can be improved. In order to have a fair comparison, we constrain the total length
of the arm to be the same as in the equal link length case.

For the 4 DOF planar robot case, the GA converged to a design where 𝐹 ∕0max
= 10.5% as shown in Fig. 3. The size of the

failure-tolerant workspace increased by 57% as compared to the previous equal link length result in [22]. Fig. 3 also shows that
some locations in the workspace have a reachable failure-tolerant orientation of 70% as compared to a maximum of 47% in the
equal link length example in [22].

When we increased the DOR to 2, i.e., 5 DOF planar robots, the GA converged to a design where 𝐹 ∕0max
reached 46% as shown

in Fig. 4. In comparison, the equal link length case in [22] has an 𝐹 ∕0max
value of 31%. It is interesting to note that an increase

in the DOR from 1 to 2 has dramatically increased the value of 𝐹 ∕0max
from 10.5% to 46% in the design of planar robots.

4.3. Spatial robot designs

We now look at how increasing the DOR of the 4 DOF spatial positioning robot designed in Section 3 (Table 1 and Fig. 2) affects
the failure tolerant workspace. Applying the GA for a 5 DOF spatial robot design, i.e., a robot with DOR of 2, resulted in the robot
given in Table 2 and shown in Fig. 5. This robot has an 𝐹 ∕0max

of 79% which is a dramatic increase over the 19.2% of the 4 DOF
robot. It is interesting to note that joints 1 and 2 are identical for the optimal 5 DOF robot, albeit with different artificial joint limits.
7
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Fig. 3. This figure shows the 3D planar workspace (2D position and 1D orientation) of an optimal 4 DOF planar robot design. All position units used in the
subfigures are measured in meters and the orientation angle in radians. The color at a workspace position indicates the percentage of orientations that are
achievable at that position. The 3D view in (a) shows the 2D position workspace and the orthogonal third axis is the orientation angle where 𝑭 is shown in
solid colors and the gray boundary is the outer boundary of 𝟎𝐦𝐚𝐱

. In (b) the top view of 𝑭 and 𝟎𝐦𝐚𝐱
are shown. The maximum value of 𝐹 ∕0max

= 10.5%
where 𝐹 = 26 m2 rad and 0max

= 245 m2 rad. The optimal robot’s kinematic parameters are 𝑳 = [1.14, 1.24, 1.14, 0.48] and 𝑨 = {−180◦, 180◦, 90◦, 143◦, 90◦,
143◦ −180◦, 180◦}.

Fig. 4. This figure shows the 3D planar workspace (2D position and 1D orientation) of an optimal 5 DOF planar robot design. All position units used in the
subfigures are measured in meters and the orientation angle in radians. The color at a workspace position indicates the percentage of orientations that are
achievable at that position. The 3D view in (a) shows the 2D position workspace and the orthogonal third axis is the orientation angle where 𝑭 is shown in
solid colors and the gray boundary is the outer boundary of 𝟎𝐦𝐚𝐱

. In (b) the top view of 𝑭 and 𝟎𝐦𝐚𝐱
are shown. The maximum value of 𝐹 ∕0max

= 46%
where 𝐹 = 67 m2 rad and 0max

= 145 m2 rad. The optimal robot’s kinematic parameters are 𝑳 = [0.4, 0.77, 1, 0.4, 0.77] and 𝑨 = {−180◦, 180◦ ,−180◦, 180◦ , 110◦,
115◦ ,−180◦, 180◦ ,−180◦, 180◦}.
8
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Fig. 5. This figure shows the optimal 5 DOF robot designed for 3D positioning along with the corresponding workspaces. All position units used in the subfigures
are measured in meters. An isometric view of the designed robot where it is stretched out is shown in (a), and in a configuration where all the joints are at the
middle of their optimal artificial joint limits is shown in (b). The DH parameters and 𝑨 for this 5 DOF spatial positioning robot are given in Table 2. Shown in
(c) is 𝑭 using orthogonal cross sections to show more of the internal structure, where the volume is 𝐹 = 16 m3. For comparison, the boundary of 𝟎𝐦𝐚𝐱

is
overlayed in gray. All of 𝟎𝐦𝐚𝐱

is shown in (d), again using orthogonal cross sections, where 0max
= 20.2 m3. The optimal value of 𝐹 ∕0max

= 79%.

Table 2
Optimal DH parameters and 𝑨 for a 5 DOF spatial positioning robot.

𝐿𝑖𝑛𝑘𝑖 𝛼𝑖 [degrees] 𝑙𝑖 [meters] 𝑑𝑖 [meters] 𝜃𝑖 [degrees]

𝑎𝑖 𝑎𝑖
1 0◦ 0 0 −42◦ 42◦

2 30◦ 0.65 1 20◦ 297◦

3 90◦ 0 −1 −80◦ 225◦

4 70◦ 0 0 140◦ 293◦

5 −80◦ 1 −0.5 0◦ 180◦

4.4. Spatial positioning and orienting robot designs

In our final example we illustrate that the proposed GA technique is computationally tractable for designing 7 DOF robots that
perform tasks in six-dimensional (positioning and orienting) workspaces. The optimal solution for the DH parameters and 𝑨 are
given in Table 3 and the resulting robot design, along with its workspaces, are shown in Fig. 6. The size of the failure-tolerant
workspace is 109 m3 rad3 out of a prefailure maximum workspace of 1217 m3 rad3, i.e., 𝐹 ∕0max

= 9%.
Table 4 shows the optimal normalized failure-tolerant workspace sizes, 𝐹 ∕0max

, that result from optimal robot designs,
i.e., optimal kinematic parameters and artificial joint limits. Cases 1–3 are for positioning workspaces where cases 4–6 are for
positioning and orientating workspaces. It should be noted that, in general, comparing cases 1–3 with 4–6 for the same DOR, the
normalized 𝐹 for positioning and orienting workspaces are much smaller than for purely positioning workspaces. Consider case
1 to be the base line case where the optimal 3R planar positioning robot has 1 DOR. If one increases the task space of case 1 by
1-dimension in positioning, as in case 2, then 𝐹 ∕0max

, is reduced to 19.2%, however, if it is increased by adding orientation, as in
case 4, then it is reduced significantly more to 10.5%. One can also see this same trend by comparing cases 3 and 5. Both cases have
the same 𝑚 and DOR but case 3, which has a purely positioning workspace, has a 𝐹 ∕0max

= 79% whereas case 5, which includes
orientation in its workspace, only has an𝐹 ∕0max

= 46%.
Another trend is that the value of 𝐹 ∕0max

decreases as one increases the dimension of the task space, 𝑚, if the DOR is held
constant. This is clear by comparing cases 1, 2, 4, and 6, each with DOR= 1. This is not surprising because one DOR is being
9
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Fig. 6. This figure shows the optimal 7 DOF robot designed for 6D positioning and orienting along with the corresponding workspaces. All position units used
in the subfigures are measured in meters. An isometric view of the designed robot where it is stretched out is shown in (a), and in a configuration where all
the joints are at the middle of their optimal artificial joint limits is shown in (b). The DH parameters and 𝑨 for this 7 DOF positioning and orienting robot
are given in Table 3. Shown in (c) is 𝑭 using orthogonal cross sections to show more of the internal structure, where the volume is 𝐹 = 109 m3 rad3. The
color at a workspace position indicates the percentage of orientations that are achievable at that position. For comparison, the boundary of 𝟎𝐦𝐚𝐱

is overlayed
in gray. All of 𝟎𝐦𝐚𝐱

is shown in (d), again using orthogonal cross sections, where 0max
= 1217 m3 rad3. The optimal value of 𝐹 ∕0max

= 9%.

Table 3
Optimal DH parameters and 𝑨 for a 7 DOF spatial positioning and orienting robot.

𝐿𝑖𝑛𝑘𝑖 𝛼𝑖 [degrees] 𝑙𝑖 [meters] 𝑑𝑖 [meters] 𝜃𝑖 [degrees]

𝑎𝑖 𝑎𝑖
1 −62◦ 0.4 −0.4 −107◦ 107◦

2 −79◦ 0.8 −0.6 −164◦ 141◦

3 90◦ 0.2 0.2 −132◦ 132◦

4 29◦ 1 0.6 −151◦ 102◦

5 81◦ 0.6 −0.8 −115◦ 149◦

6 −80◦ 0.4 0.2 −75◦ 129◦

7 −90◦ 0.2 0.8 16◦ 193◦

Table 4
Size of optimal normalized failure-tolerant workspaces.

Case number Workspace dimension [𝑚] DOF [𝑛] DOR [𝑚 − 𝑛] 𝐹 ∕0max
Position Orientation

1 2D – 3 1 33.3%a

2 3D – 4 1 19.2%
3 3D – 5 2 79%
4 2D 1D 4 1 10.5%
5 2D 1D 5 2 46%
6 3D 3D 7 1 9%

aCase 1 is the optimal normalized 𝐹 of a 3R planar positioning robot from [21].

distributed over a larger number of DOF. (If the DOR is held constant then the DOF increases as 𝑚 is increased.) However, the
amount of decrease in 𝐹 ∕0max

becomes smaller as 𝑚 increases, e.g., the drop from case 4 to case 6 is smaller than the drop from
case 1 to either case 2 or 4. Finally, it is important to note that increasing the DOR for the same 𝑚 will dramatically increase the
size of the normalized failure-tolerant workspace. This increase is more than a factor of four when comparing case 2 with 3 and
case 4 with 5.
10
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5. Conclusion

This work presented a technique to determine the kinematic design of a redundant robot that maximizes the size of its failure-
olerant workspace. The proposed technique is based on a genetic algorithm that optimizes both the Denavit and Hartenberg
arameters and artificial joint limits. The GA uses an efficient hybrid approach to estimate the sizes of workspaces. The efficient
erformance of the GA relies on a novel technique for identifying a good initial population, which results in faster convergence and
igher quality final solutions. This proposed technique is applicable to the design of any arbitrary redundant robot, regardless of
he number of degrees of freedom, and is computationally tractable even for robots that perform tasks in 6D workspaces. This is
ignificant because other techniques, i.e., gradient ascent and coordinate ascent optimization techniques [21,22], become infeasible
or higher degrees of freedom. It is shown that even a single degree of redundancy can guarantee a significant failure tolerant
orkspaces size. Furthermore, the addition of a second degree of redundancy dramatically increases the failure-tolerant workspace

ize by up to a factor of four. Finally, it is shown that the size of failure-tolerant workspaces where end-effector orientation control
s required are relatively smaller than for purely positioning tasks.
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