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ARTICLE INFO ABSTRACT

Keywords: It has been shown that one can guarantee a reachable workspace for a kinematically redundant
Kinematically redundant robots robot after an arbitrary locked-joint failure if one artificially restricts the range of its joints prior
Locked-joint failure to the failure. This work presents an algorithm for computing the optimal kinematic parameters

Failure-tolerant workspace

. . and artificial joint limits for a robot to maximize this so-called “failure-tolerant workspace”.
Failure-tolerant robot design

The proposed technique employs a genetic algorithm that incorporates a novel method for
selecting an initial population that results in fast convergence to high-quality solutions. The
algorithm is illustrated on multiple examples of kinematically redundant robots and is shown
to be computationally tractable even for robots that perform tasks in 6D workspaces.

1. Introduction

Kinematically redundant robots can complete a specific task even after a joint failure has occurred, due to the extra degrees of
freedom (DOF) that are in addition to the minimum required to perform a specified task. This advantage is important for robots
that are employed in applications where performing routine maintenance and/or repair is not possible, for example, in hazardous
and remote environments. Example applications include nuclear reactors [1,2], space exploration [3], and deep-sea exploration [4].
Previous studies have used fault trees to assess a robot’s reliability [5,6] and other work has been focused on implementing tolerance
to failures including fault diagnosis [7], detection [8], and identification [9,10]. The locked-joint failure is the most common model
used for these previous studies. This is because a joint is locked due to the failure itself or because fail-safe brakes are employed,
e.g., to deal with free-swinging joint failures where the torque of the actuator is lost [11].

The various techniques used for designing failure-tolerant robots can be characterized based on whether they use local or global
measures of how much a robot’s dexterity is affected by a failure. The local measures are frequently quantified by the singular values
of the Jacobian matrix at a specific robot configuration. Optimizing these values have been used in both the design and control
of failure-tolerant robots [12-15]. The global measures are those that are not configuration dependent, e.g., the total reachable
workspace of a robot. In previous work, the failure-tolerant workspace (W) has been defined as the guaranteed reachable workspace
both before and after an arbitrary locked-joint failure [16,17].

One way to guarantee the existence of Wy is by increasing the degree of redundancy (DOR) by two for each potential joint
failure. This high degree of redundancy is required because of the worst-case scenario where a joint failure is at a configuration that
eliminates two degrees of freedom [18]. Later studies have shown that one can guarantee the existence of Wp. for a robot with only
one DOR by restricting the joints limits prior to a failure, i.e., so-called “artificial joint limits” that are software joint limits imposed
to restrict joint motion to be within specified range [19]. These artificial limits are imposed to prevent the robot from failing in a
worst-case configuration and are released after the occurrence of an arbitrary locked-joint failure.
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A number of optimization techniques have been discussed to maximize Wy for planar workspaces. A brute force technique has
been used to determine artificial joint limits that are constrained to be symmetrical around zero for planar 3R and 4R robots [20].
Another study has presented a gradient ascent method to compute the optimal link lengths and artificial joint limits that maximize
Wg by computing the symbolic expressions for the area of Wy and its gradient [21]. In 6D workspaces (3D position and 3D
orientation), the coordinate ascent method has been used to optimize only the artificial joint limits for a particular robot, i.e., the
kinematic parameters of the robot are constant [22]. Therefore, the solution space is bounded by 2z for each of the artificial joint
limits and so the size of Wy is periodic with a period of 2.

None of the above optimization techniques for maximizing Wy are applicable for determining the optimal kinematic parameters
for robots that are to perform 6D tasks. This is due to the dramatically higher number of variables, that both increases the
computational cost and the likelihood of convergence to local maxima. In this work, a technique based on Genetic Algorithms
(GA) is proposed to design optimally fault-tolerant kinematically redundant robots, i.e, an optimal set of kinematic parameters
and artificial joint limits, for any number of degrees of freedom and workspace dimensions. The advantages of using a GA-based
approach is that it is more likely to converge to a globally optimal solution and, if appropriately implemented, to converge faster
when parallelism is exploited. However, to achieve these advantages one must develop a method to appropriately select the pool
of initial candidate solutions.

The remaining sections are presented in the following manner. The required background on computing the failure-tolerant
workspace is reviewed in the next section. In Section 3, we first formally define the optimization problem. We then present our
GA-based technique for determining an optimal solution, including our novel approach for generating an effective initial population.
We illustrate the procedure using a 4 DOF spatial positioning robot. The effectiveness of our technique is shown in Section 4, where
we provide three kinematic designs for robots that are optimally fault tolerant. These designs, as well as the optimal artificial joint
limits, are given for tasks in a variety of workspaces including the fully general 6D spatial case. Finally, the conclusions are in
Section 5.

2. Background on computing failure-tolerant workspace!
2.1. Overview

The definition of the failure-tolerant workspace, Wp, as previously discussed in [17,21,22], is summarized in this section. In
those works, artificial limits were applied on the joints before a failure, which were then released after a failure of one of the joints
was identified. Applying artificial limits will typically decrease the pre-failure workspace, however, if chosen appropriately, they
guarantee a post-failure workspace. As in previous work, we assume that the robot is kinematically redundant, i.e., n > m where n
is the number of the joints, m is the workspace dimension, DOR = n — m, and the physical limits of joint i are from -2z to 2z.

2.2. Definition of failure-tolerant workspace

The forward kinematic function, denoted f, maps the joint space, C c R", to the workspace, denoted W c R™. Let the n-
dimensional vector 0 represent the joint angles in the joint space, i.e., 8 € C , and the m-dimensional vector x represent the robot’s
end-effector position and/or orientation in the workspace, i.e., x € W . Therefore, the forward kinematic equation is given by

x = f£(6). (€D)

Prior to failure, the lower g, and upper g, artificial joint limits are the joint i restrictions where g, and a; € [-27, 27], and
i={1,2,...,n}. The pre-failure configuration space, denoted C, is the joint space before joint failure, i.e., C4 = A; X --- X A,, where
A; = [a;, a;] is the range of joint angles between g, and a;. The pre-failure workspace, denoted W,, is the reachable workspace
obtained by mapping C4 into the workspace,

Wy =£(Cy) = {x=1£(6)|0€Cul. )

After joint i fails and is locked at §; = ¢; where g, < ¢; < @, the artificial limits are released on the remaining working joints.
This results in the reduced configuration space that is a hyperplane at 6, = g; in the configuration space C,

iClq)={0€C|0,=q). ®
The guaranteed reachable workspace after joint i fails at g; between g, < ¢; <, is the post-failure workspace, denoted W;, and is
given by
w,= () tiC@). ©)
a;<q;<q;

The guaranteed reachable workspace both before and after an arbitrary single locked-joint failure is the failure-tolerant workspace,
we= (] W, (5)

i€Fu{0}

where F C {1,2,...,n} is the failure index for the joints that are prone to failures.

1 Section II is very similar to those in [21,22], and is included here to provide the background to make this paper self-contained.
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2.3. Identification of the failure-tolerant workspace

Previous work [17] has identified two conditions for determining if a workspace location x belongs to Wp. The pre-image of x,
denoted f~!(x), that is given by

flx) ={0eC|tO) =x} (6)
is used to formulate both conditions. Condition 1 is that x be reachable prior to a failure, i.e., x € W,, so that
Cintl(x) 4. 7)

The above condition states that there must be an intersection between the pre-failure configuration space, C 4, and the pre-image
of x, f~1(x), for at least one configuration. Condition 2 is that x is reachable after a failure, i.e., x € W, for i € F, so that

A; C P ()] ®

where P, is the projection onto the ith joint axis, i.e., the range of 0, for all 0 that satisfy x = £(9). Condition 2 means that after joint
i is locked at §; = g; where g, < ¢; < @;, the workspace point x can still be reached because ¢; is contained in the ith component of
f~1(x). If both conditions are satisfied for x, then x € Wp.

Fortunately, it is relatively straightforward to identify all potential boundaries of W . The potential boundaries of W, are located
at f(0) where the configuration 6 € C, is a kinematic singularity or when one or more joints are at an artificial joint limit, i.e., §; = g,
or 0; = a;. The potential boundaries of W; are the workspace locations where the end effector is on the verge of violating condition
2. This can occur in two ways, i.e., either the projection of the pre-image for this workspace location becomes disjoint within A,
or it fails to contain an endpoint of A;. The first way will occur at f(6) where 6 € ‘C (g;) is a kinematic singularity. The second
situation can be identified by computing the null vector associated with the robot’s Jacobian. In particular, let n(6) represent the
null vector of the robot at configuration € and n; be the ith element of n. Then the potential boundaries of W; occur when n; =0
and 6; = g, or g;. Once all potential boundaries of W, and all W,’s are determined, one can use the two conditions to identify the
boundaries of Wy [17].

2.4. Estimation of failure-tolerant workspace size

Using the two conditions from the previous section, one can use the technique that is described in [22] to estimate the volume
of the failure-tolerant workspace. Assume that joint 1, i.e., the base joint, is a revolute joint.> The pre-image of a workspace point x,
i.e., the set of configurations that correspond to x, is given by (6). If one rotates x about the rotation axis of joint 1 by g € [-z, #],
then the pre-image of the rotated x, denoted x’, is computed by evaluating (6) for x’ where x’ = R,x, and

cos(f) —sin(f) O
R, = | sin(p) cos(f) Of. ()]
0 0 1

The pre-image of x’ is identical to that of x except that every configuration’s joint one value is related by 6] = 8, + f. This simple
relationship means that one does not have to compute the pre-images for the entire workspace, i.e., one of the dimensions can be
easily inferred.

The general approach for estimating the volume of a 3D spatial workspace is to first discretize a half plane into square grids,
where the normal of the half-plane is perpendicular to the rotation axis of joint 1. One then needs to compute a 3D volume element
by determining the rotation angle range, denoted [EF,EF], of a grid center, denoted c,, about the rotational axis of joint 1. The
rotation angle range of ¢, is defined as the range where the rotated ¢, belongs to W, i.e., when the pre-image of the rotated ¢,
satisfies conditions 1 and 2 from Section 2.3.

Thus, the integration of the grid area over its rotation angle range is the failure-tolerant 3D volume element,

Br
UFz/ r Ag dpp, (10)
—F
where r is the shortest distance from the grid center, c,, to the axis of joint 1, and Ag is the grid area.

It is important to note that the pre-image of a grid center may consist of a union of disjoint self-motion manifolds (SMM). The
ranges of (8, Br] for these disjoint SMMs may, or may not, overlap. If two ranges overlap, then they are replaced with the union
of those two ranges, until no overlapping ranges remain. Let B denote the set of non-overlapping ranges of [ , f] for a given
grid center. Therefore, to compute the volume associated with a grid center one must compute (10) for each range in B. Thus, the
summation of all the volumes for all grids is the failure-tolerant workspace volume, denoted V., i.e.,

Neg B

Ver DY opl.)), an

i=1 j=1

2 If the first joint is prismatic, an analogous procedure can be performed.
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where N_ is the number of reachable grid centers.
For a 6D hypervolume element, one can apply the Monte-Carlo integration technique described in [14,23] using uniform random
sampling of orientations at a workspace point to estimate the failure-tolerant orientation volume, denoted Vi ,

Vp % —7 12)

where N is the number of failure-tolerant orientations, N, is total number of randomly selected orientations, and 72 is the maximum
orientation volume. Then, by adding (12) to the integrand of (10), a 6D hypervolume element is given by

Br
vp R / (r Ag) <%n2> dpfp. 13
EF o

where the rotation angle range, [EF,EF], is determined by the range where N is constant. The entire 6D hypervolume of the
failure-tolerant workspace is estimated by computing (11) using (13).

One can also use (11) to estimate the volume or hypervolume of the original workspace, denoted W, _, which is the robot’s
workspace with no restrictions applied on the robot’s joints. For tasks defined as position-only, Eq. (10) is evaluated with integration
limits of —z to x. If the task is defined by position and orientation, then (13) is evaluated with integration limits of —z to = and
Ny is replaced by the number of reachable orientations, denoted N,

Let the unit of measure for the failure-tolerant workspace size be "denoted S and the original workspace size be denoted S
This general measure may represent any combination of linear and rotational components, e.g., the failure-tolerant workspace size
for planar robots that perform a task defined as a 2D position or 2D position with orientation, or for spatial robots that perform
tasks that are 3D position or 3D position with 3D orientation. In cases where Sy and S,  are combinations of different units,
e.g., meters and radians for position and orientation, a suitable normalization factor should be employed to make sure that S, and
Sy are meaningful measures.

'max

3. Method
3.1. Definition of the problem

The goal of this work is to determine the kinematic design and artificial joint limits for a redundant robot that maximizes the
size of its failure-tolerant workspace. The kinematic design of an n DOF robot can be defined by the Denavit and Hartenberg (DH)
parameters for each joint i, i.e., the link twist, a;, the link length, /;, the joint offset, d;, and the joint angle, 6,. In this work, we
limit the range of these parameters to the following values: —z/2 <a; <7/2,0<1;<1,-1>d; > 1, -2z <6, < 2x.

In addition to the kinematic parameters, one needs to determine the set of artificial joint limits, denoted A, that consists of the
lower and upper limits of joint i, i.e., A = {a,,4a;,4,.4,...,4,.a,}, where g, < §; < a;. Because Sy is rotationally invariant to ¢;,
only the size of the interval A, = [a,,q,] is relevant. Therefore, the constraint that a, = —a, is imposed to reduce the number of
variables in the optimization.

To provide a fair comparison between the kinematic designs for robots of vastly different sizes, one would normalize S
by the workspace size of the robot without any joint limits, i.e., SOmar Therefore, the optimization problem for maximizing the
failure-tolerant workspace size can be formulated as:
Sr

maximize
lj,d;, a;, A

14
Omax

For cases when a specific robot is given, i.e., the DH parameters are constant, the optimization problem (14) can be solved for A
as the only decision variable.

3.2. Genetic algorithm

3.2.1. Overview

In this section we describe a genetic algorithm that is used to solve the optimization problem given in (14). Genetic algorithms
are a global optimization technique where chromosomes are used to encode the decision variables and the operations of crossover
and mutation are used to iteratively search the entire solution space. Each iteration creates a new population of chromosomes and
is referred to as a generation. The stochastic selection of chromosomes for crossover is used to improve the likelihood that new
generations will include better solutions. The preservation of the fittest chromosomes from the previous generation, referred to as
elitism, guarantees that solution quality is monotonically increasing. The convergence of GAs will typically be improved by seeding
the initial population with chromosomes that have high fitness values.

In this section we illustrate the implementation of our specific GA using a simple 4 DOF robot that is designed to perform 3D
spatial positioning tasks. Each chromosome consists of the decision variables, where each gene represents one of the kinematic
parameters or artificial joint limits. For spatial robots the number of decision variables is 5n — 1, so that for our illustrative example
there are nineteen variables. The eight kinematic parameters of /;s and d;s where i = {1,2,3,4} are given in meters. The remaining
eleven variables, i.e., the a;s and the artificial joint limits are given in degrees. The size of the population for a GA is frequently
proportional to the number of decision variables, e.g., x 20, so that for the 4 DOF robot the population size has been chosen to be
380.
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3.2.2. Initial population

The first step in executing a GA is to determine an initial population. Frequently, chromosomes are generated at random, however,
it is likely that random chromosomes will have very low (or zero) fitness values. Therefore, it is common to “seed” the initial
population with chromosomes that are selected by an appropriately chosen heuristic to have relatively high fitness values. To
determine these seed chromosomes for the optimization problem described by (14) one can first randomly select the genes that
correspond to feasible kinematic parameters and then compute the genes that represent good artificial joint limits for the resulting
robot using a heuristic.

In the 4 DOF spatial robot case, the selection of kinematic parameters must result in a robot that is physically able to perform a
task in a 3D positioning workspace. Therefore, the rotation axes of the four joints must not be nearly parallel and the values of the
I;s and d;s must not be too small so that the robot has a reasonably sized workspace. After the kinematic parameters of the robot are
selected, the artificial joint limits, A, for that robot can be selected so that they satisfy (8) for at least some points in the workspace
as follows.

One should first randomly select a reachable workspace point that is not close to a workspace boundary and then guarantee
that it satisfies both conditions for being in Wy by appropriately selecting the artificial joint limits. This can be done by computing
the critical points on a self-motion manifold (SMM), i.e., a manifold consisting of all joint values that correspond to the robot’s
end effector being at the selected workspace point. The artificial joint limits, a; and a;, are then set to the values of these critical
points, which are the minimum and maximum values of 6, over the entire SMM. Frequently, a workspace point will have multiple
disjoint SMMs so one should select the one that gives the largest ranges for A. In addition, by avoiding points near a workspace
boundary, this approach avoids SMMs that are very small in size. The proposed technique for computing a;s and g;s guarantees
that the selected chromosomes will have non-zero fitness values, i.e., S(]S_r > 0. Fig. 1(a) shows the improvement in the fitness
values of selected chromosomes by comparing the histograms of chromosomes that are selected randomly to those selected with the
proposed heuristic. In that figure, 87% of the randomly selected chromosomes resulted in a zero fitness value, with the maximum
fitness value being less than 2.6%. In addition to resulting in no chromosomes with zero fitness, the proposed heuristic results in
fitness values up to SjF ~ 9%. In practice, roughly 75% of the initial population should be selected using the proposed heuristic
with the remaining 25% selected at random. This ratio was determined from initial studies on low-dimensional robots and is done
to prevent premature convergence to locally optimal solutions. After the initial population is generated, one can compute the next
new generation of chromosomes as presented in the following section.

3.2.3. Generating a new population

The new generation of chromosomes are potential optimal chromosomes of decision variables, i.e., the kinematic parameters
and artificial joint limits. A new generation is computed from the current generation in the following manner. First, the top 5%
of the fittest chromosomes in the current generation are included in the next generation in order to implement elitism. Then, the
remaining 95% are generated by selecting two parents using stochastic selection and applying two-point crossover to generate two
children, both of which are included in the new population. Next, 15% of these children are selected for possible mutation. Each
gene of these children has a 0.01 probability of being mutated. If selected for mutation, the value of this gene is replaced with a
random value from the range of the variable as defined in Section 3.1. The values of the parameters used here come from initial
studies on low-dimensional robots.

3.2.4. Case study of a 4 DOF spatial positioning robot

We illustrate the proposed GA by computing the kinematic parameters and artificial joint limits for a simple 4 DOF spatial
positioning robot that maximizes Sp/S, . The technique described in Section 2.4 is used to estimate the fitness function. Eq. (11)
is used to compute both Sy and S, using a grid side length that is 4% of the maximum reach of the robot. This maximum reach
is different for each chromosome because of the different kinematic parameters.

We first illustrate the importance of seeding the initial population with chromosomes that have nonzero fitness values. Fig. 1(b)
shows the different rates of convergence between a completely random initial population and those that are seeded with selected
chromosomes. The evolution of the GA using a random initial population is shown in red, illustrating a much lower starting fitness
value and converging to a lower final fitness value when compared to the seeded initial population shown in blue. This holds true
for all examples shown later in Section 4. For the 4 DOF case, seeded populations converged to a final solution after 100 generations
whereas random populations required twice as many generations. After convergence, one can run a local optimization technique,
such as coordinate ascent [22], to improve the final design.

The results from the optimization shown in Fig. 1, i.e., the DH parameters and A, are given in Table 1 and illustrated in Fig. 2.
The robot is shown in two different configurations, i.e., stretched out in (a) and with its joints at the middle of the artificial joint
limits in (b). The resulting fault-tolerant workspace Wy is shown in (c) along with the robots original workspace Womax in (d). The
optimization criterion, i.e., the ratio of the size of these two workspaces Sp/S, , is equal to 19.2%. To provide some context, one
can compare the S¢ /S, value of this optimized robot to that of traditional designs. For example, it is not uncommon for robots
to have an Sp/S, = 0. In particular, this is true for anthropomorphic robot designs because Sy = 0 due to the elbow joint being
failure intolerant [24]. Even robot designs optimized for local fault-tolerance, do not have large values for S;/S, . For example,
when one computes the optimal A for the previously designed 4 DOF spatial positioning robot in [25], S;/S, is less than 2%.
In the next section, we show how increasing the DOR from 1 to 2 affects the size of the failure-tolerant workspace and how the
proposed GA technique is computationally tractable for designing 7 DOF robots that perform tasks in six-dimensional workspaces.
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Fig. 1. This figure illustrates the effectiveness of using seeded chromosomes over random chromosomes for the case of a 4 DOF spatial robot, i.e., robots with
DOR = 1. In (a) the histogram of 1000 randomly generated chromosomes is compared to 1000 selected chromosomes generated by the proposed technique.
Approximately 87% of the random chromosomes (shown in red) have an S;/S, =0 whereas all of the seeded chromosomes (shown in blue) are non-zero and
reach fitness values of nearly 9%. The impact of these selected chromosomes on the evolution of the GA is shown in (b), where for each generation the highest
fitness value is plotted. Both the final maximum fitness value and the rate of convergence are improved. The final corresponding robot design and its resulting
workspace are shown in Fig. 2 with the values of the DH parameters and A given in Table 1. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 1

Optimal DH parameters and A for a 4 DOF spatial positioning robot.
Link; a; [degrees] I; [meters] d; [meters] 0, [degrees]

4, a

1 85° 0.50 -0.29 -146° 146°
2 —53° 0.48 0 —-234° 10°
3 -89° 0.76 0.05 -115° 132°
4 68° 0.95 1 -101° 118°

4. Examples

4.1. Overview

In this section we use the proposed technique to design redundant robots that maximize the failure-tolerant workspace sizes.
We determine these robots for three illustrative examples as follows. The first example considers how increasing the DOR affects
the Wp for planar robots that operate in a 3D workspace, i.e., 2D position and 1D orientation. We present two planar robots that
have been designed with 4 DOF and 5 DOF, i.e., DORs of 1 and 2. We then illustrate how increasing the DOR for the 4 DOF spatial
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Fig. 2. This figure shows the robot design and the corresponding workspaces that resulted from the GA optimization shown in Fig. 1. All position units used
in the subfigures are measured in meters. An isometric view of the designed robot where it is stretched out is shown in (a), and in a configuration where all
the joints are at the middle of their optimal artificial joint limits is shown in (b). The DH parameters and A for this 4 DOF spatial positioning robot are given
in Table 1. Shown in (c) is Wy using orthogonal cross sections to show more of the internal structure, where the volume is S, = 18.69 m®. For comparison,
the boundary of W, is overlayed in gray. All of W, is shown in (d), again using orthogonal cross sections, where S, = 97.38 m?. The optimal value of
Sp/Sy,, =192%.

positioning robot described in the previous section affects its Wy that is shown in Fig. 2. Lastly, we present the optimal design for
a 7 DOF spatial robot that performs tasks in a 6D spatial workspace (3D position and 3D orientation).

In all examples, the technique described in Section 2.4 is used to estimate the workspace sizes, Sy and S, . We use the same
sampling resolution of the workspace that was used in previous work [22]. For the planar robots, we set 4g to be equal to 4% of
the robot’s maximum reach, which results in 25 line segments over the length of the arm. We also select 25 orientation samples,
i.e., N, = 25, for the 1D orientation in the 3D planar case. In the 3D and 6D spatial workspaces, Ag is the area of a square grid
where the length of a grid side is selected to be 4% of the robot’s maximum reach. We use N, = 200 to sample the 3D orientations
in the 6D workspace.

4.2. Planar positioning and orienting robot designs

Previous work [22] has determined the optimal artificial joint limits for equal link length planar robots. Here, we determine the
optimal kinematic parameters, i.e, the link lengths, denoted L = {/,/,,...,1,}, as well as the artificial joint limits, to illustrate how
much the size of the failure tolerant workspace can be improved. In order to have a fair comparison, we constrain the total length
of the arm to be the same as in the equal link length case.

For the 4 DOF planar robot case, the GA converged to a design where S;/S, = 10.5% as shown in Fig. 3. The size of the
failure-tolerant workspace increased by 57% as compared to the previous equal link length result in [22]. Fig. 3 also shows that
some locations in the workspace have a reachable failure-tolerant orientation of 70% as compared to a maximum of 47% in the
equal link length example in [22].

When we increased the DOR to 2, i.e., 5 DOF planar robots, the GA converged to a design where S/ S0pna reached 46% as shown
in Fig. 4. In comparison, the equal link length case in [22] has an S /S,  value of 31%. It is interesting to note that an increase
in the DOR from 1 to 2 has dramatically increased the value of Si/S,  from 10.5% to 46% in the design of planar robots.

4.3. Spatial robot designs

We now look at how increasing the DOR of the 4 DOF spatial positioning robot designed in Section 3 (Table 1 and Fig. 2) affects
the failure tolerant workspace. Applying the GA for a 5 DOF spatial robot design, i.e., a robot with DOR of 2, resulted in the robot
given in Table 2 and shown in Fig. 5. This robot has an Sp/S,  of 79% which is a dramatic increase over the 19.2% of the 4 DOF
robot. It is interesting to note that joints 1 and 2 are identical for the optimal 5 DOF robot, albeit with different artificial joint limits.
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Fig. 3. This figure shows the 3D planar workspace (2D position and 1D orientation) of an optimal 4 DOF planar robot design. All position units used in the
subfigures are measured in meters and the orientation angle in radians. The color at a workspace position indicates the percentage of orientations that are
achievable at that position. The 3D view in (a) shows the 2D position workspace and the orthogonal third axis is the orientation angle where W is shown in
solid colors and the gray boundary is the outer boundary of W,_ . In (b) the top view of Wy and W, _ are shown. The maximum value of S;/S; = 10.5%

where S = 26 m? rad and So,,, =245 m? rad. The optimal robot’s kinematic parameters are L = [1.14,1.24,1.14,0.48] and A = {-180°, 180°, 90°, 143°, 90°,
143° —180°, 180°}.
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Fig. 4. This figure shows the 3D planar workspace (2D position and 1D orientation) of an optimal 5 DOF planar robot design. All position units used in the
subfigures are measured in meters and the orientation angle in radians. The color at a workspace position indicates the percentage of orientations that are
achievable at that position. The 3D view in (a) shows the 2D position workspace and the orthogonal third axis is the orientation angle where Wy is shown in
solid colors and the gray boundary is the outer boundary of W, . In (b) the top view of Wy and W,  are shown. The maximum value of /S, = 46%
where S; = 67 m? rad and S, =145 m? rad. The optimal robot’s kinematic parameters are L = [0.4,0.77,1,0.4,0.77] and A = {-180°, 180°,—180°, 180°,110°,

115°,-180°, 180°,—180°, 180°}.
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Fig. 5. This figure shows the optimal 5 DOF robot designed for 3D positioning along with the corresponding workspaces. All position units used in the subfigures
are measured in meters. An isometric view of the designed robot where it is stretched out is shown in (a), and in a configuration where all the joints are at the
middle of their optimal artificial joint limits is shown in (b). The DH parameters and A for this 5 DOF spatial positioning robot are given in Table 2. Shown in
(c) is Wy using orthogonal cross sections to show more of the internal structure, where the volume is S, = 16 m?. For comparison, the boundary of W, 1s

overlayed in gray. All of W,  is shown in (d), again using orthogonal cross sections, where S, = 20.2 m’. The optimal value of S, /So,,. =19%.
Table 2
Optimal DH parameters and A for a 5 DOF spatial positioning robot.
Link; a; [degrees] 1; [meters] d; [meters] m
g 4
1 0° 0 0 —42° 42°
2 30° 0.65 1 20° 297°
3 90° 0 -1 —-80° 225°
4 70° 0 0 140° 293°
5 -80° 1 -0.5 0° 180°

4.4. Spatial positioning and orienting robot designs

In our final example we illustrate that the proposed GA technique is computationally tractable for designing 7 DOF robots that
perform tasks in six-dimensional (positioning and orienting) workspaces. The optimal solution for the DH parameters and A are
given in Table 3 and the resulting robot design, along with its workspaces, are shown in Fig. 6. The size of the failure-tolerant
workspace is 109 m? rad® out of a prefailure maximum workspace of 1217 m* rad’, i.e., Sp/S; = 9%.

Table 4 shows the optimal normalized failure-tolerant workspace sizes, Sp/S, . that result from optimal robot designs,
i.e., optimal kinematic parameters and artificial joint limits. Cases 1-3 are for positioning workspaces where cases 4-6 are for
positioning and orientating workspaces. It should be noted that, in general, comparing cases 1-3 with 4-6 for the same DOR, the
normalized Sy for positioning and orienting workspaces are much smaller than for purely positioning workspaces. Consider case
1 to be the base line case where the optimal 3R planar positioning robot has 1 DOR. If one increases the task space of case 1 by
1-dimension in positioning, as in case 2, then Sp /Somax’ is reduced to 19.2%, however, if it is increased by adding orientation, as in
case 4, then it is reduced significantly more to 10.5%. One can also see this same trend by comparing cases 3 and 5. Both cases have
the same m and DOR but case 3, which has a purely positioning workspace, has a Sp/S, = 79% whereas case 5, which includes
orientation in its workspace, only has anSp/S, = 46%.

Another trend is that the value of Sp/S,  decreases as one increases the dimension of the task space, m, if the DOR is held
constant. This is clear by comparing cases 1, 2, 4, and 6, each with DOR= 1. This is not surprising because one DOR is being
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Fig. 6. This figure shows the optimal 7 DOF robot designed for 6D positioning and orienting along with the corresponding workspaces. All position units used
in the subfigures are measured in meters. An isometric view of the designed robot where it is stretched out is shown in (a), and in a configuration where all
the joints are at the middle of their optimal artificial joint limits is shown in (b). The DH parameters and A for this 7 DOF positioning and orienting robot
are given in Table 3. Shown in (c) is Wy using orthogonal cross sections to show more of the internal structure, where the volume is S, = 109 m® rad®. The
color at a workspace position indicates the percentage of orientations that are achievable at that position. For comparison, the boundary of W,  is overlayed
in gray. All of W,  is shown in (d), again using orthogonal cross sections, where S, —=1217 m? rad’. The optimal value of Sy /S, = 9%.

Table 3
Optimal DH parameters and A for a 7 DOF spatial positioning and orienting robot.
Link; a; [degrees] I; [meters] d; [meters] 0 [degrees]
4 i
1 -62° 0.4 -0.4 -107° 107°
2 -79° 0.8 -0.6 -164° 141°
3 90° 0.2 0.2 -132° 132°
4 29° 1 0.6 -151° 102°
5 81° 0.6 -0.8 -115° 149°
6 -80° 0.4 0.2 -75° 129°
7 -90° 0.2 0.8 16° 193°
Table 4

Size of optimal normalized failure-tolerant workspaces.

Case number Workspace dimension [m]

DOF [n] DOR [m —n] Sk/S,

Position Orientation
1 2D - 3 1 33.3%"
2 3D - 4 1 19.2%
3 3D - 5 2 79%
4 2D 1D 4 1 10.5%
5 2D 1D 5 2 46%
6 3D 3D 7 1 9%

2Case 1 is the optimal normalized S, of a 3R planar positioning robot from [21].

distributed over a larger number of DOF. (If the DOR is held constant then the DOF increases as m is increased.) However, the
amount of decrease in Sg/S,  becomes smaller as m increases, e.g., the drop from case 4 to case 6 is smaller than the drop from
case 1 to either case 2 or 4. Finally, it is important to note that increasing the DOR for the same m will dramatically increase the
size of the normalized failure-tolerant workspace. This increase is more than a factor of four when comparing case 2 with 3 and
case 4 with 5.
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5. Conclusion

This work presented a technique to determine the kinematic design of a redundant robot that maximizes the size of its failure-
tolerant workspace. The proposed technique is based on a genetic algorithm that optimizes both the Denavit and Hartenberg
parameters and artificial joint limits. The GA uses an efficient hybrid approach to estimate the sizes of workspaces. The efficient
performance of the GA relies on a novel technique for identifying a good initial population, which results in faster convergence and
higher quality final solutions. This proposed technique is applicable to the design of any arbitrary redundant robot, regardless of
the number of degrees of freedom, and is computationally tractable even for robots that perform tasks in 6D workspaces. This is
significant because other techniques, i.e., gradient ascent and coordinate ascent optimization techniques [21,22], become infeasible
for higher degrees of freedom. It is shown that even a single degree of redundancy can guarantee a significant failure tolerant
workspaces size. Furthermore, the addition of a second degree of redundancy dramatically increases the failure-tolerant workspace
size by up to a factor of four. Finally, it is shown that the size of failure-tolerant workspaces where end-effector orientation control
is required are relatively smaller than for purely positioning tasks.
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