A Heuristic Approach to Resource Allocation in the Emerging Smart Grid

Motivation

- **Physical**
 - according to the United States Department of Energy, growth in the peak demand for energy has exceeded transmission growth by 25% each year
 - given current trends, peak energy demands will exceed available transmission capability
 - can deal with this by creating distributed generation or by negative generation in the form of curtailing load
- **Economical**
 - a small reduction in consumption during peak times can lead to a substantial price savings

Problem Statement

- **Given**
 - information about a set of customer schedulable loads
 - spot market pricing (forecast)
- **Constraints**
 - customer asset availability
 - asset constraints
 - network constraints
 - system constraints
- **Objective**
 - using perceived correlation between aggregator profit and the peak to move the peak loads
 - find a customer incentive vector and schedule loads to maximize aggregator profit
 - aggregator incomes (selling negative load, \(S \) and selling electricity to customer, \(S \)) minus costs (buying from spot market, \(B \))

System Model

- **Enablers**
 - cyber-physical systems
 - dynamic pricing of electricity
 - control/communication infrastructure
 - end user willingness
- **Aggregator**
 - proposed entity in a deregulated market structure
 - to lower the peak, the aggregator has a set of participating customers and information about their schedulable loads
 - offers the end user the chance to engage in the spot market
- **Customer**
 - has a set of schedulable loads (e.g., smart appliances, PHEVs)
 - by offering their loads, the customer may pay less for electricity (the customer incentive vector instead of dynamic pricing)

Results and Future Work

- **Results**
 - preliminary results obtained using a genetic algorithm
 - 56,000 loads over 5,555 households
 - final objective value of $36,474.91 (one day)
- **Future Steps**
 - design, implement, and analyze other heuristics
 - explore scalability of the heuristics
 - explore spatial stochasticity of PHEVs and other uncertainties
 - interaction with power systems software
 - parallelize on Cray HPC System

Smart Grid Resource Allocation

- **Objective**
 - \(N \): income received for selling negative load
 - \(S \): income received for selling electricity to customer
 - \(B \): cost of buying spot market electricity
 - \(P \): aggregator profit (objective)

\[
P = N + S - B
\]

Citation: