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ABSTRACT

The use of robots in hostile environments significantly in-
creases the likelihood of failures in the robot’s subsystems. Exist-
ing techniques for developing failure tolerant robots rely on effec-
tive failure detection and identification. Since failure identifica-
tion is itself a difficult process that may not always be successful,
it is important to consider the behavior of the robot prior to iden-
tification of a fault, or even the possibility of failures remaining
unidentified. This work proposes control strategies that improve
local measures of failure tolerance for kinematically redundant
robots experiencing unidentified locked-joint failures. Measures
to evaluate the fault tolerance capability of the various schemes
are presented and the performance of the proposed schemes are
demonstrated with an example.

I. INTRODUCTION

Robots are being increasingly used to replace
humans for applications in hazardous environments.
While failures are not uncommon in industrial
robots [1], the likelihood of failures is far greater when
robots are applied in harsh environments [2]. Since the
very nature of these environments does not allow imme-
diate human intervention for repair or recovery, the abil-
ity of a robot to cope with the failures becomes desir-
able. Common methods of making robots failure toler-
ant incorporate some form of redundancy in the design;
either through duplication of components [3] or through
kinematic redundancy [4,5]. Existing failure-tolerance
schemes, however, rely on successful failure detection
and identification; only after a failure is identified is
an appropriate failure recovery strategy initiated [6, 7).
Since failure identification is itself a difficult process
that may not always be successful [8], it is essential to
consider the possibility of delayed failure identification,
or even that of failures remaining unidentified, when de-
veloping any effective failure-tolerant control technique.

While there are several ways in which a robot may
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fail, one common failure mode is a “locked joint”, where
the affected joint’s velocity is identically zero. When
such a failure remains unidentified by the robot con-
troller, very large and often unpredictable deflections
of the robot end effector can result. Such behavior is
clearly unacceptable in cluttered environments due to
the increased probability of collisions, and also in the
case of teleoperated systems because of operator disori-
entation caused by the unexpected motions.

This work focuses on developing control strategies
that improve local measures of failure tolerance for kine-
matically redundant manipulators experiencing uniden-
tified locked-joint failures. A general class of tasks char-
acterized by sequences of point-to-point moves in task
space is considered.

II. MATHEMATICAL FRAMEWORK

The position and/or orientation (henceforth re-
ferred to as “position”) of the end effector of a manipu-
lator can be expressed in terms of its joint variables by
the kinematic equation

x = f(a), (1)

where x € IR™ is the position of the end effector,
q € IR" is the vector of joint variables, and m and
n the dimensions of the task space and joint space re-
spectively. Manipulators that have more degrees of free-
dom (DOFs) than required for a task, i.e., n > m, are
said to be redundant. The end-effector velocity is ex-
pressed in terms of the joint rates as

x = Jq, (2)

where J € IR™*™ is the manipulator Jacobian, x is the
end-effector velocity, and q is the joint velocity.

If perfect servo control of the joints is assumed,
then in a healthy manipulator the actual joint velocity
4. equals the commanded velocity q.. However, in the
event of a locked-joint failure of the i-th joint, the cor-
responding element of ¢, is identically zero. Then, the
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actual end-effector velocity is given by

Xa = Jqc, 3)
where *J is the post-failure Jacobian, given by
0 jis1 - Jn]. 4

A common method for generating q is the inverse
kinematic scheme

iJ___[jl ji—l

q=Gx%, (3)

where G is a generalized inverse of J satisfying the
Penrose condition JGJ = J. A frequently encoun-
tered generalized inverse is the pseudoinverse J*, which
yields the least squares minimum norm solution. For
full rank J, the pseudoinverse can be expressed as
J+ =JT(JJT) "

In this work a general class of tasks characterized
by sequences of point-to-point moves is considered. The
commanded end-effector velocity is simply straight line
motion towards the desired task position x4:

X = Ke(xd - xa)v (6)

where x, is the actual position of the end effector and
K. is a constant position error gain that is adjusted
when necessary to limit the commanded end-effector ve-
locity to a maximum allowable value.

In the event of a locked-joint failure, the actual end-
effector velocity in general will not be as commanded
by (6). In particular, if joint ¢ fails then the actual
end-effector velocity is given by

Xa = (JG) % = J (T4.), (M

where G is a generalized inverse of J. Thus x, will equal
X. only if the failed joint is not commanded to move so
that 7q. = ¢e-

With a focus on the local effects of failures, the er-
ror in the end-effector velocity is of primary concern.
This error can be measured in a number of different
ways. Two fundamental measures considered here are
the expected and the peak velocity errors. These er-
ror measures and techniques for their minimization are
discussed next.

III. MINIMIZING EXPECTED VELOCITY ERROR

If all joints fail with equal probability, then, for
an arbitrary commanded end-effector velocity x., the
expected error (E.) in the end-effector velocity due to
the failure of an arbitrary joint can be written as

1, 2
B = o 2kl ®)

For full-rank J a weighted generalized inverse J* is de-
fined as

JY =w-HgTgw-tgTy-, (9)
where W is a weighting matrix. Then, JJ* = I so that
% = Jqc. From (7) %, = *J§., so the expected error
can then be rewritten as

L iz (s
E. = = lliilPac)”. (10)
=1

From (10) it is seen that the expected error in the end-
effector velocity is equal to a weighted sum of the veloc-
ities of the different joints, a formulation that makes it
a natural candidate for minimization by a weighted in-
verse. A diagonal weighting matrix W, with the i-th di-
agonal entry assigned a value equal to the norm squared
of the associated column of the Jacobian, minimizes the
expected error E.. Weighting the joints in this manner
seeks to balance the contributions of the joints to the
end-effector motion so that the failure of any one joint
can result in an error no greater than that resulting
from the failure of any other joint.

IV. MINIMIZING PEAK VELOCITY ERROR

A. Introduction

While the minimization of the expected velocity
error through the use of a weighted inverse offers a sim-
ple and reasonably effective method of minimizing the
performance degradation due to the local effects of a
failure, it is possible to further enhance the post-failure
performance by making use of additional available in-
formation, and by optimizing a measure other than
the expected error. Since information about the com-
manded end-effector velocity is available to the robot
controller for on-line computation of joint rates, incor-
porating that knowledge in the computation of an opti-
mal inverse is naturally very effective. In addition, since
the worst-case error resulting from the failure of a joint
is often more critical than the “expected error”, it is
more meaningful to focus on the peak error. One error
measure that addresses both these issues is PKE(x.),
defined as

PKE(x.) = max || — (JJ#)k||, (11)
1

where J# is not necessarily a generalized inverse. It
is easily shown that PKE(x.) provides well-defined
bounds for other measures such as mean-squared error
for a given %, and the peak angular deviation between
% and %, [11). Since PKE(%.) in fact represents the
“peak error”, it also reflects the worst-case possible de-
viation of the end effector from the desired straight line
trajectory toward the target. Thus, guaranteeing an
appropriate bound on this measure is one way of also
ensuring global convergence.
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For these reasons, minimizing PKE(x.) is the pri-
mary focus of the rest of this work. This optimization
problem can be written as follows:

Problem: Minimize PKE(%.)

Given a manipulator at configuration q, with Jacobian
J, and desired end-effector velocity %x., compute an in-
verse J# such that

e The post-failure error, as measured by PKE(x.),
is minimized

e The pre-failure error is bounded by €p,e, the max-
imum allowable pre-failure error

The problem is formally stated as

Min. max; ||x. — (JJT#)x.|| over J#

S.t.  |I%e — (JJ#)ke|| < €pre

i=1,...,n,

(12)
The inequality condition in (12) implies that the pre-
failure performance of the manipulator may be inten-
tionally compromised in solving for the optimal J#,
thereby offering the potential of improving the post-

failure performance. Problem (12) can be reduced to -

the special case requiring uncompromised pre-failure
behavior simply by setting e,re to zero.

B. An LMI-Based Inverse: A Globally Optimal Ap-
proach to Minimizing Peak Velocity Error

Unlike the minimization of the expected error
where a closed-form solution could be derived, an an-
alytical solution to Problem (12) is not easily defined;
it must thus be numerically solved. Linear matrix in-
equality (LMI) based convex optimization techniques
can be used to obtain a globally optimal solution to
the problem. Using simple mathematical manipulation,
Problem (12) can be rewritten as

Min. 4 over J#
v I xL(I =2 JJ#)T
S.t. (I = TT#)%, ¢ yI >0,
€pre 1 xT(I - JJ#)T 50
I -JJI*)xk, €pre I ‘
(13)

The inequalities in (13) are linear matrix inequalities,
with each inequality denoting the required positive-
definiteness of the matrix on the left-hand side.

It turns out that the optimization problem (13)
falls into a general class of LMI-based convex optimiza-
tion problems. There exist very effective and power-
ful algorithms for numerically computing solutions to
such problems that achieve a global optimum in poly-
nomial time, with non-heuristic stopping criteria [12].
Moreover, software packages for solving LMI-based op-
timization problems are readily available [12]. With the
desired optimization problem formulated in the LMI

framework as in (13), any of the available software tools
can be used to solve for the optimal failure-tolerant in-
verse as defined here.

C. A Damped Least-Squares Based Inverse: An Alter-
native Approach to Minimizing Peak Velocity Error

While the LMI-based method yields a globally opti-
mal solution to Problem (12), the time required to com-
pute a solution with currently available tools may make
it undesirable for some applications. One approach
to reducing the amount of computation required is to
settle for a close-to-optimal solution that can be com-
puted much faster. This may be done by restricting the
structure of J#, as done here by using a damped least-
squares inverse [13-15]. In particular, we rewrite (12)
in terms of the damped least-squares inverse J* as

Min. over A

S.t.

max; ||x. — (JJN)x.|| i=1,...,n,
e = (JT)kell < epres
(14)

where J* = JT(JJT + A?I)~! (assuming A? # 0 when
J is rank deficient).

The inequality constraint of (14) simply represents
a bound on the end-effector velocity error of the healthy
manipulator. Since this error is in fact a monotonic
function of the damping factor [16], this constraint de-
fines an upper bound, Ay, on the damping factor A.

Problem (14) requires the minimization of a maxi-
mum of n functions, i.e., a minimaz problem. While its
solution using classical descent techniques is difficult, a
numerical technique is proposed here that is guaranteed
to find the optimal solution to within a pre-specified
tolerance. This technique is inspired by the bisection
method presented in [17].

Let *e), define the error in the end-effector velocity
due to the failure of joint : when using the damped
least-squares inverse J*, i.e.,

ey = %, — (JIM)%c. (15)
Then, for ¥ > 0, v # |||, and a matrix *M, defined
as
iM, =

*xTRL(JITY ~ JJT
,Y(iJJT)TR—l(iJJT)

Lxc(xT R 1% - 1)xT
(JITYT R 1% kT — JJT |’
where R = (x.xT — v2I), we have,

 Theorem 1: (a) Let v < ||’ex|| for some A2, Then
I*eallmin < 7 if and only if *M ., has positive real eigen-

values (i.e., at least one). (b) The positive real eigenval-
ues of Myjie,y _  are exactly the values of A? for which

IPexll = ll*exllmin-

Theorem 1 implies that if an error estimate 7 is
known to lie below the peak of an error function, i.e.,

869



|l’exll, then based on the eigenvalues of the correspond-
ing *M., it can be determined if the estimate lies above
or below the minimum of the function. This idea is com-
bined with a standard bisection procedure to determine
the minimum of a single, or a set of error functions. The
failure of an arbitrary joint can be considered by simply
considering the worst-case error defined as

wc — : 1
" erlluin = min (maxesll ). (16)
The details of the algorithm are presented in [11].

V. MEASURES OF PERFORMANCE

The ten measures of performance used in this study
are summarized in Table V. While some of these mea-
sures have been incorporated from previous work on
performance evaluation of teleoperated systems [18-22],
additional measures focusing specifically on failure re-
lated performance issues are also proposed. One way
of graphically representing all of these measures at the
same time is illustrated in Fig. 2, where each measure,
normalized by its maximum value over all the different
cases (tasks/control schemes) being compared, is repre-
sented as a shaded fraction of a 1/10th-area sector of
a circle of unit radius. Based on this representation, a
cumulative performance measure (CPM) is defined as

10
M,' ™
oPM=3 oty () @D

The CPM denotes the total shaded-area of the unit cir-
cle.

VI. A 5-DOF SPATIAL POSITIONING EXAMPLE

The control strategies developed in the previous
sections were compared using the performance mea-
sures defined in Section V. A Puma 550 robot with
a 0.56 m wrist offset was used to perform spatial po-
sitioning tasks, resulting in two degrees of redundancy
(see Fig. 3).

To study “typical” behavior encountered with fail-
ures, a set of randomly generated cases was considered.
Specifically, one thousand point-to-point motion tasks
were generated, each specified by the initial configura-
tion and final end-effector position of the robot. The
failure of joint 2 was assumed in each of these cases
and the desired task positions were chosen to be reach-
able after the failure. The distance between the initial
and desired task-positions was in the range 1.0-1.1 m.
In each of these tasks the robot was commanded to
move directly toward the target with a maximum al-
lowable end-effector velocity of ||X¢|lmax = 0.05 m/cyc
until the task was completed. (The joint-rate norm was

TABLE 1
Performance measures.

Measure Description

My Task Completion Time (cycles) (TCTcyc): Com-
puted in terms of the number of controller cy-
cles rather than in elapsed time. Allows control
schemes to be evaluated independent of the un-
derlying computational cost.
M2 Task Completion Time (seconds) (TCTgecs): A
measure of the elapsed time.
M3 Total Path Length (TPL): The total length of the
end-effector trajectory.
My Peak  Trajectory  Deviation  (Magnitude)
(PTDmag): The maximum displacement of the
end effector from the desired straight-line trajec-
tory, measured over the entire task.
Ms Peak Trajectory Deviation (Angle) (PTDang):
The maximum angular deviation of the end ef-
fector from the desired straight-line trajectory,
measured from the initial end-effector position,

over the entire task
Mse Peak End-Effector Velocity Error (Magnitude)
(PVEmag): The peak magnitude of the difference
in the commanded end-effector velocity xc; and
its actual value %o, measured over the the entire

L

M7 Aale;;; End-Effector Velocity Error (Magnitude)
(MVEmag): The mean magnitude of the differ-
ence in the commanded end-effector velocity xc
and its actual value Xa, computed over the entire
task

Ms Peak End-Effector Velocity Error (Angle)
(PVEang): The peak angular deviation between
the commanded end-effector velocity xc and its
actual value x,, measured over the the entire

task,

Mg Mean End-Effector Velocity Error (Angle)
(MVEang): The mean angular deviation between
the commanded end-effector velocity xc and its
actual value x,, computed over the entire task.
Mio Number of Trajectory Corrections (NTC): The
total number of corrections made by the opera-
tor/computer to compensate for any increase in
the position error of the end-effector.

also bounded by ||gc|lmax = 0.2 rad/cyc.) The tasks
were performed with and without failures, for each of
the following five control schemes discussed earlier:

1. Pseudoinverse
2. Weighted inverse

3. LMI-based inverse with no allowable pre-failure
€rror, i.e., €pre =0

4. LMI-based inverse with ey = 0.5 for a unit-norm
%, and

5. Damped least-squares inverse, also with epre = 0.5
for a unit-norm x..

Plotted in Fig. 1 are the PVEn,, values for each of
the four failure-tolerant schemes (shown in gray) along
with the PVE,; of the pseudoinverse (shown using
solid black curves), for failure conditions of all thousand
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Fig. 1. The PVEmag values of the various control schemes
plotted for the failure conditions of the one thousand randomly
generated tasks. The values for each of the four failure-tolerant
schemes are shown using gray plus signs, and those for the pseu-
doinverse are shown using solid black curves. The task used in
the illustrative example is indicated with a black plus sign.

tasks. The task indices plotted on the z-axes are sorted
based on the PVE,,,g of the pseudoinverse, so that in-
creasing distances along the abscissa indicate increasing
levels of performance degradation (in terms of PVEp,g)
experienced by the pseudoinverse. Based on this rep-
resentation, a failure-tolerant control scheme performs
better than the pseudoinverse for a task if the gray plus
sign corresponding to the task lies below the pseudoin-
verse curve. From the distribution of the gray plus signs
about the pseudoinverse curve in these plots it is seen
that the proposed schemes clearly outperform the pseu-
doinverse for tasks with high values of PVEy,,g, while
being only marginally inferior to the pseudoinverse for
tasks with low values of PVEp,... It is also seen that
while the tail end of the pseudoinverse curve rises very
sharply, implying rapidly deteriorating performance for
the corresponding tasks, the corresponding behavior of
the failure tolerant schemes is much better. The gap
at the tail of the pseudoinverse curve, representing the
range of tasks for which the pseudoinverse was not even
able to converge to the desired position, is almost absent
for the proposed inverses. In addition, the relatively flat
performance curves of the proposed inverses (especially
the LMI-based inverses), imply very consistent and pre-
dictable behavior. These characteristics of PVEnag for
the different schemes are representative of those for all
measures.

As an illustrative example, one case from the thou-
sand randomly generated cases for which the pseu-
doinverse demonstrated relatively poor behavior, is dis-
cussed next. This special case is characterized by
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Fig. 2. A graphical representation of the ten performance mea-
sures, plotted for the five different control schemes with and with-
out failures. The values of CPM, corresponding to the area of the
shaded region, are also shown.

an initial configuration of ¢ = [0 —7/2 0 0 0 0]T
(i.e., x; = [-0.99 0.15 0.41]7) and a final position of
xq = [—0.30 0.50 1.10]7. The corresponding values of
the performance measures, computed for each scheme,
are plotted in Fig. 2. This task is highlighted in Fig 1
with black plus signs.

From the performance plots in Fig. 2, it is seen that
overall the four proposed failure-tolerant control strate-
gies are able to cope with the failures far better than
the pseudoinverse.! The most significant performance
improvement in this example is observed for the trajec-
tory deviation measures. The superiority of the LMI-
based and the damped least-squares inverses over the
weighted inverse are observed for peak-error measures,
namely, PTDnag, PTDnag, PVEgag and PVE,,,. In
terms of the CPM the LMI-based inverse with ;e = 0.5
performs the best, closely followed by the damped least-
squares inverse.

Figs. 3-5 show the actual trajectories taken by the
robot for the following cases: pseudoinverse with fail-
ure (Fig. 3); LMI-based inverse with failure (Fig. 4);
and LMI-based inverse without failure (Fig. 5). The
manipulator exhibits considerable deviation from the
commanded straight-line when using the pseudoinverse.
The performance of the LMI-based inverse for the same
failure condition demonstrates a substantial reduction

!The MVEmag and PVEmag are not necessarily zero for a
healthy manipulator due to a bound on the physically allowable
joint velocity norm ||qc||. Since the pseudoinverse produces a
minimum norm solution, it suffers the least in terms of the end-
effector velocity magnitude errors, resulting from normalization
of joint rates, when they exceed ||qc|lmax.
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Fig. 3. A Puma 550 with an unidentified failure of Joint 2 per-
forming a spatial point-to-point motion task using pseudoinverse
control. The initial configuration and the desired task position
areq; = [0 —7/2000 0]7 (i.e., x; = [-0.99 0.15 0.41]T) and
x4 = [~0.30 0.50 1.10]7 respectively.
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Fig. 4. A Puma 550 with an unidentified failure of Joint 2
performing a spatial point-to-point motion task (as in Fig. 3)
using the LMI-based control inverse with epre = 0.5.

in the overall deviation from the desired trajectory,
while producing only a slight degradation in the per-
formance of the healthy manipulator.

VII. CONCLUSIONS

Three different failure-tolerant inverse kinematic
schemes were proposed for dealing with unidentified
locked-joint failures. All of them resulted in post-
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Fig. 5. A healthy Puma 550 performing a spatial point-to-point
motion task (as in Fig. 3) using the LMI-based control inverse
with €pre = 0.5.

failure performance that was superior to that of the
pseudoinverse. While the globally optimal LMI-based
inverse resulted in the best post-failure performance,
especially for worst-case scenarios, the damped least-
squares based inverse represented a good tradeoff be-
tween approximating optimal behavior with very lit-
tle computational expense. These inverses can also be
used to complement failure detection and identification
schemes in order to mitigate the effects of failures prior
to them being identified and appropriately handled.
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