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ABSTRACT

We present a computationally efficient algorithm for the
eigenspace decomposition of correlated images. Qur approach
is motivated by the fact that for a planar rotation of a two-
dimensional image, analytical expressions can be given for the
eigendecomposition, based on the theory of circulant matrices.
These analytical expressions turn out to be good first approx-
imations of the eigendecomposition, even for three-dimensional
objects rotated about a single axis. We use this observation to
automatically determine the dimension of the subspace required
to represent an image with a guaranteed user-specified accuracy,
as well as to quickly compute a basis for the subspace. Exam-
ples show that.the algorithm performs very well on a range of
test images composed of three-dimensional objects rotated about
a single axis.

I. INTRODUCTION

One of the fundamental problems in computer
vision is the recognition and localization of three-
dimensional objects. Subspace methods represent one
computationally efficient approach for dealing with this
class of problems. Variously referred to as eigenspace
methods, principal component analysis methods, and
Karhunen-Loeve transformation methods {1}, these
have been used extensively in a variety of applications
such as face characterization [2] and recognition [3], lip-
reading [4, 5], object recognition, pose detection, visual
tracking, and inspection [6, 7, 8, 9]. All of these appli-
cations are based on taking advantage of the fact that
a set of highly correlated images can be approximately
represented by a small set of eigenimages. Once the set
of principal eigenimages is determined, online compu-
tation using these eigenimages can be performed very
efficiently. However, the offline calculation required
to determine both the appropriate number of eigen-
images as well as the eigenimages themselves can be
prohibitively expensive. This issue has been previously
addressed by three different approaches. One class of
techniques find the eigenimages iteratively. For exam-

This work was supported by the Sze Tsao Chang Memorial
Engineering Fund and by the Office of Naval Research under con-
tract no. N00014-97-1-0640.

0-7803-4465-0/98 $10.00 © 1998 IEEE

ple, the power method [10] and the conjugate gradient
algorithm [11, 12] calculate one eigenimage at a time,
while the block power method and Lanczos iteration [13]
calculate a set of eigenimages together. Another class
of techniques relies on updating a small set of eigenim-
ages by recursively adding one image at a time. In [14],
the number of eigenimages is fixed, while in [15], this
number is adjusted based on the content of the added
image. Another approach is based on structuring the
computations in order to efficiently perform the matrix
calculations involved [16]. The computational complex-
ity of this approach is essentially independent of the
number of desired eigenimages.

Our work addresses the computational expense of
computing the desired eigenimages in a fundamentally
different manner, resulting in considerable computa-
tional savings as compared to previous approaches. We
present a brief overview of subspace methods in the next
section, followed by the problem statement. In §III, we
use the theory of circulant matrices to derive an analyt-
ical expression for the eigendecomposition of images re-
sulting from planar rotations. In §IV, we illustrate that
these analytical expressions represent a good approxi-
mation for the eigendecomposition of images of three-
dimensional objects rotated about a single axis. We
use this observation as the core of an algorithm, out-
lined in §V, to quickly compute the desired portion of
the eigendecomposition based on a user-specified mea-
sure of accuracy. In §VI, we describe the performance
of the algorithm evaluated on twenty different three-
dimeunsional objects. The results of this evaluation ver-
ify the accuracy and computational efficacy of the pro-
posed technique.

II. PRELIMINARIES

An image is an h x v array of square pixels with
intensity values normalized between 0 and 1. Thus, an
image will be represented by a matrix X € [0,1]"*".
Since we will be considering sets of related images, it
will be convenient to represent an image equivalently
as a vector, obtained simply by “row-scanning”, i.e.,



concatenating the rows to obtain the image vector x of
length m = hv:
x = vec(X7T).

The image data matriz of a set of images X7, ...
an m X n matrix, denoted X, and defined as

, Xn 18

=[X1 -+ Xn],

with typically m > n.

The average image vector is denoted % and defined
as
+Xp) /7.

The corresponding average image data matriz, denoted
X, is

%= (x4

X =[x - %].

The matrix X — X, which we denote X, has the inter-
pretation of an unblased” image data matrix.

The singular value decomposition (SVD) of X is
given by .

X=0V7,
where U € R™™ and V € IR™" are orthogonal,
and & € R™ ", with & = [£; 0] K where ¥4 =
diag(61,...,0n), with 61 > 693 >--- >, >0,and 0 is
an n by m — n zero matrix. (When the singular values
&; are not ordered, we will refer to the decomposition
as an “unordered” SVD ) The SVD of X plays a central
role in several important imaging applications such as
image compression, pattern recognition and pose detec-
tion. The columns of U, denoted #;, ¢ = 1,...,m, are
referred to as the eigenimages of X; these can be inter-
preted as estimates of the eigenvectors of the covariance
matrix of the image vector. The eigenimages provide
an orthonormal basis for the columns of X, ordered in
terms of importance; the corresponding singular val-
ues measure how “aligned” the columns of X are, with
the associated eigenimage. The components of the ith
column of V measure how much each individual image
contributes to the ith eigenimage.

In practice, the singular vectors ; are not known
or computed exactly, and instead estimates qi, ..., qx
which form a k-dimensional basis are used. The accu-
racy of a practical implementation of subspace methods
then depends on three factors: the properties of X, the
dimension k, and the quality of the estimates q;. The
measure we will use for quantifying this accuracy is the
“energy recovery ratio”, denoted p, and defined as

iy llaf X2

p(X,a1,. ..
’ X112

,qE) =

b

where || - || denotes the Frobenius norm. Note that
if the q; are orthonormal, p < 1, and for any given
k achieves a maximum value of (21_10 ) (Er, 62)
when span(qa,...,qx) = span(dy,. .., Gx).

The principal calculation required with subspace
methods is the precomputatlon of estimates of the sin-
gular vectors Qy, . . ., iy of the m xn matrix X. Thisisa
very computationally expensive operation when m and
n are very large. Reducing this computational expense
by exploiting any correlation between image vectors has
been the subject of much previous work [10]-[16}. Our
solution to this problem uses a fundamentally different
approach that is considerably faster than these methods
when the image vectors are “correlated”, as in many
pose-detection problems. Our technique is motivated
by the observation that the SVD of X can be deter-
mined in a closed form when the images are derived by
a planar rotation of a single image about the surface
normal, thus resulting in X TX being circulant.! We
descrlbe this in the next section.

II1. PLANAR ROTATION

Consider an image data matrix where each x;41 is
obtained from x; by a planar rotation? of § = 2r/n.
Equivalently, x; and x; are related by a planar rotation
of |i — j]0. Consider

xTx; xTxy xTx,

r xIx; xIxe oo xTx,
XX = . . ; . . (1)

XZX1 XZ:XQ e x,q:xn

To within an accuracy imposed by the resolution, x7'x;
is a function of |i — j|. Thus, row i + 1 of XTX can be
obtained by a right-circular shift of row ¢ (the first row
is a right-circular shift of the last one). In other words,
XTX is a circulant matrix [18]. Much is known about
the properties of such matrices; in particular, closed-
form expressions can be given for their eigenvalues and
eigenvectors: The eigenvalues of X7 X are simply given
by the Discrete Fourier Transform of its first row, and
the eigenvectors given by the Fourier matrix F. That
is,

XTX = FAF* (2)
where, with w = e=72%/" and P(z) = 3.0 xT i1 2%,

A = diag (P(W°), P(w'),..., P™ 1)),  (3)

and
1 1 1 cee 1
1 w w? . wn!
1 1 w? wt w2n—1)
“Vn : : :
i wn.—l w2(;z~1) w(n.—1.)(n_1)

(4)

!This observation can be found in [17], which was published
while our work was under review.

2More precisely, the image 7 + 1 is obtained by rotating the
infinite-resolution image represented by the ith image, and then
sampling it.




It is easy to verify from (3) that the eigen-
values of XTX satisfy P(w') = P(w"™?) for { =
1,2,...,|(n—1)/2], and the corresponding eigenvec-
tors (i.e., columns of F') are complex conjugates of each
other. Therefore, a real eigendecomposition of XTX is
given by

XTX = HDH", (4)
where D equals the n x n matrix
diag (P(«°), P(w"), P(w'), P(w?),--),  (6)
and H consists of the first n columns of

\/i[Lf1 Rf, sfg Rfy Sf; ] =

V2
1
73 Co —$o0 Co —80
1
2 73 C1 —S1 C2 —$82
nios
; : : :
7z Cn-1 “Sn-1 Cy(n-1) ~52(n-1)

(7
where ¢, = cos(kf) and s = sin(k6). The above de-
velopment means that ¥ and V corresponding to an
unordered SVD of X can be computed in a closed form.
In particular, the square roots of the diagonal entries of
D are the singular values of X, and V = H. To compute
U, observe that UZ = X H, which can be computed ef-
ficiently using FFT techniques. In particular, if Y is a
matrix whose ith row is the FFT of the ith row of X,
then Y = \/nXF. The matrix X H can be formed from
the first n columns of ¥ as

/21
XH =4/—|—=y1 Ry2 Sy2 Ry; Sy;3 ... 8
n [ﬁbﬁ Y2 Y2 Rty Y3 (8)

The above development has focused on obtaining an
SVD of X. Note that the (unordered) SVD of X can
be immediately obtained from the (unordered) SVD of
X as follows:

X = x-X
= X—Ululvf

n
= E O‘illiVlT.
=2

In other words, for i = 1,...,n — 1, we have 6; = 0,11
(and similarly for @; and ¥;), with 6, = 0, 4, = uy,
and v, = vy.

This section has considered only planar rotations
of images. The next section considers how well these
results apply to images obtained from rotations in a
three-dimensional world.

axis of rolation

Fig. 1. The framework for obtaining images of a 3D object,
rotated about a single axis through the object. The camera view
vector makes an angle of o with the axis of rotation, with the
entire object always lying completely within the camera’s field of
view.

IV. OBJECTS ROTATED ABOUT A SINGLE AXIS

We now consider the case when the n images in the
image data matrix are obtained from three-dimensional
objects rotated about a single axis at increments of
2n/n. We will assume that the camera view vector
makes an angle of o with the axis of rotation, and that
the entire object is always within the field of view (see
Fig. 1).

Suppose that the axis of rotation and the camera
view vector are aligned (i.e., a = 0). Then, all of the
results of the previous section apply directly®. If a is
nonzero, then in general, the results of §IIT do not apply.
However, consider a planar object whose surface normal
is aligned with the axis of rotation. Then, the results
of §IIT apply independent of a. To see this, let x;(a)
denote the image vector of the object with camera view
angle o, and note that we have

xi(@)Tx;(a) = x;(0)Tx;(0) cosa + C(a),  (9)

where C(a) represents the contribution due to the back-
ground of the image. From the arguments in §III, it fol-
lows that x;(0)Tx;(0) is only a function of |i — j|, and
consequently, so is x;(a)Tx;(a).

Although the situation is much more complicated
for three-dimensional objects with nonzero view angles
(for example, due to curved surfaces and self-occlusion),
the analysis of §III often provides a good, approximate
method to quickly estimate the SVD. We demonstrate
this here with a simple example. (More realistic exam-
ples are considered in §VI.)

The object considered in the example is a cylin-
der that is half-black and half-white, split along the
longitudinal axis. If & = 0, i.e., when the cylinder
is viewed along the longitudinal axis so that it ap-
pears as a circle, the results of §III apply and there-
fore the right singular vectors are pure sinusoids. When
a # 0, the results of §III do not apply (see Fig. 2 for

3This assumes that all the light sources rotate with the object,
or equivalently the camera rotates and everything else is station-
ary. We will also assume that the camera is far enough away that
perspective effects can be neglected.
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Fig. 2. This figure shows the eigendecomposition of the image

matrix X obtained from rotating a half black, half white cylinder,
with a view angle of & = 60°. The first row shows nine of the 90
images of the image data matrix X. The second row shows the
first seven eigenimages (left singular vectors of X) using the same
gray scale encoding, with white denoting the maximum positive
pixel value and black denoting the maximum negative value. The
third row shows the first seven right singular vectors of X. From
the fourth row, where the FF'T magnitudes of these right singular
vectors are shown, it is apparent that though the right singular
vectors of X are not pure sinusoids, their spectra are concentrated
in a narrow band around frequencies that are harmonics of 27 /n.
The plot on the left in the last row shows the singular values of X.
Note that the singular values from indices 45 onwards are iden-
tically zero, due to the symmetry of the object. The plot on the
right shows the frequency at which the FFT of the corresponding
right singular vectors achieves a maximum (i.e., the “dominant”
frequencies). It can be seen that the dominant frequencies of
the spectra of the right singular vectors corresponding to nonzero
singular values increase almost linearly with their index.

the case & = 60°). However, two properties are im-
mediately apparent: (i) The right singular vectors are
well-approximated by sinusoids of frequencies that are
multiples of 27 /n radians, and the spectra of the right
singular vectors consist of a narrow band around the
corresponding dominant harmonics. (ii) The dominant
frequencies of the spectra of the (ordered) singular vec-
tors increase approximately linearly with their index.
Empirical evidence (see §VI) suggests that these prop-
erties hold approximately true for a large class of three-
dimensional objects. This forms the basis of a fast ap-
proximate eigenimage computation technique that we
present in the next section.

V. A FAST EIGENDECOMPOSITION ALGORITHM

Our objective is to determine the first k left singn-
lar vectors of X. Let p be such that the spectra of the
first k singular vectors are essentially restricted to the
band [0, 27p/n]. Owing to the properties of the singular
vectors discussed above, p is typically not much larger
than k. Let H, denote the matrix comprising the first
p columns of H (i.e., the first p columns of the matrix
given in (7)). Then the first k singular values 1, ...,6%
and the corresponding left singular vectors 11y, ..., @4 of
X H, serve as excellent estimates to those of X. (Note
that X H, typically has far fewer columns than X, so
that its SVD can be computed much more quickly.)
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Fig. 3. This figure illustrates the typical relationship between
several energy recovery ratios as a function of k, 1 < k < p, for
several fixed values of p. (The plots shown here correspond to
Object 1 from Fig. 4.) For fixed p, p(X, 11, ..., 1) behaves as a
very good lower bound to p(X, uy, ..., u) for small k, and is very

well approximated from below by p(X7T, hi,...,hy) for large k.

Moreover, the accuracy of the approximated singular
vectors with spectra concentrated around “lower” fre-
quencies will tend to be better, i.e., the smaller 7 is, the
better estimate @i; is of u;. This is illustrated in Fig. 3
for a typical image (Object 1 from Fig. 4), where we
have used p to measure the quality of the estimates of
the u;. The solid line shows p(X,ui,...,u,) as a func-
tion of p, while the dashed lines show p(X,111,..., %)
for k = 1,2,...,p and p = 2,4,6,8. It is evident that
for any p, the error p(X,uy,...,ux) — p(X, @1,...,0%)
increases as k increases from 1 to p.

Our ultimate goal is to guarantee, upon termi-
nation, that p(X,d;,...,0%) exceeds a user-specified
threshold p. However, note that p(X,dy,...,#) de-
pends critically on k£ and 1y, ..., ix, neither of which
are available a priori. However, it can be shown that

p(Xvﬁla“wﬁp)Zp(XTahl)“':hP)i (10)
where h; denotes the ith column of H. The right-
hand side of (10) is readily computed; and ensuring
that p(X7,hi,...,hy) > p in turn guarantees that
p(X,fll,...,ﬁp) > H.

From Fig. 3 it can be seen that p(X7,hy,...,h,)
is a very conservative lower bound for p(X,uy,...,u,),
with the quality of the bound improving uniformly
with increasing p. For fixed p, p(X,d1,...,7%) be-
haves as a very good lower bound to p(X,u;,...,ux)
for small &, and is very well approximated from below
by p(XT,hy,...,hy) for large k.

In summary, when p is chosen so as to satisfy
p(XT hy,...,h,) > pu, the quantity p(X,iy,..., )
turns out to exceed p for some k < p, with @y,..., 0
being very good estimates for uy, ..., ux; and &q,...,5%
being very good estimates for oy, ..., 0. The energy re-
covery ratio p(X, 1y, ..., %) can be efficiently approx-
imated by 3., 62/[1X %



The entire algorithm for the fast computation of a
partial SVD of X can be summarized as follows.

1. Form the matrix Y, whose ith row is the FFT of
the ith row of X.

. Determine the smallest number p such that
p(XT,hy,...,h,) > pu, where p is the user-
specified reconstruction ratio. The key observa-
tion here is that the matrix XH, can be con-
structed as the first p columns of the matrix

\/g[—%yl Ry2 Sy2 Rys Sys--], where y;
denotes the ¢th column of Y.

. With Z, denoting the first p columns of the matrix
[%yl Ry: Sy2 Rys Sys--], compute the
SVD of the matrix Z,.

4. Return d1y,. .., 0 such that p(X, 4y, ..., 0x) > p.

The above algorithm computes the partial SVD of
X. If instead the partial SVD of X is sought, the algo-
rithm is modified as follows. In Step 2, p is estimated
as the smallest number p such that 2, [[Xh;||?> >
(X% — | Xhy||?). In Step 3, the SVD of the ma-
trix comprising the second through p columns of Z is
computed.

We briefly analyze the computational expense of
our algorithm. The cost incurred in Step 1, i.e.,
performing the FFT of each row of X, requires
O(mnlog, n) flops. Step 2, that of estimating p, re-
quires of O(mp) flops. In Step 3, the cost of computing
the SVD of the matrix comprising the first p columns
of ﬁX H is of order O(mp?). Step 4, determining the
needed dimension k, requires O(mnk) flops. If p <« n,
then the total computation required is approximately
O(mnlog, n). This compares very favorably with the
direct SVD approach which requires O(mn?) flops, and
in most cases with the updating SVD method as well,
which requires O(mnk?) flops.

VI. EXAMPLE

We illustrate our approach on a database of images
provided by [19]. There are twenty different objects
available, with each image data matrix being of size
128% x 72. A single image of each object is shown in
Fig. 4.

The algorithm outlined in §V was used to compute
the eigendecomposition of X corresponding to each of
the image data matrices, with an energy recovery ratio
threshold of 0.90. Table I summarizes the performance
of the algorithm, showing k, p, and computation times.
In addition, Table I also shows the data when the di-
rect SVD of MATLAB is used to compute the first n
singular values and vectors. Compared to the direct
SVD which took about 40 seconds for each object, the
median speedup factor with our algorithm was approx-
imately three. We also compared our algorithm against
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Fig. 4.
proposed algorithm (provided by [19]). The objects are rotated
throughout 360 degrees and 72 images were taken for each of
them. Each image is of size 128 x 128 and is scale normalized
such that the object touches a boundary.

This figure shows the objects used to evaluate the

other algorithms [10, 11, 13, 14], using a fair and rea-
sonable stopping criterion. It was observed that our
algorithm yielded significant computational savings as
compared to these algorithms as well. Details of these
comparisons can be found in [20].

_ With our algorithm, the difference between
p(X,1y,...,0) and p(X,1y,...,0;) for each object is
less than 2.22%, with an average of 0.85%, which reveals
that {41, ..., 0%} provides a very good approximate ba-
sis for the span of the first k eigenimages {1i1,...,0x}.
As discussed in §IV, this is a consequence of the follow-
ing empirical facts: (i) The FFT of the right singular
vector v; turns out to be approximately band-limited.
(ii) The frequency at which the magnitude of the FFT
of v; achieves a maximum roughly increases with in-
creasing ¢. Thus, the span of {hs,...,h,} effectively
“covers” the span of {V1,...,V;}.

We next turn to image-specific conclusions that can
be inferred from Fig. 4 and Table I. While Object 1 re-
quires a value of k¥ = 9 to achieve an energy recovery
ratio of 0.90, the value of k for Object 9 is four times as
large. This illustrates that determining a priori the di-
mension of the subspace required to achieve a prespeci-
fied quality of reconstruction is difficult. Thus, other al-
gorithms such as the updating SVD which do use a fixed
value of k cannot be expected to perform uniformly well
over all images. In contrast, our online estimate of k
(given by p) can be seen to perform extremely well for
most objects. In cases when the estimate p of % is poor,
it can be seen that the corresponding object is rota-
tionally symmetric; thus the associated pose-detection
problem is ill-conditioned (see Object 17, and also 12
and 16).



VII. CONCLUSIONS

We have illustrated a very computationally efficient
algorithm for computing the eigenspace decomposition
of correlated images. In addition to its speed, the algo-
rithm enjoys the advantage that the dimension of the
subspace required to achieve a desired fidelity of repre-
sentation is determined automatically; thus the amount
of computation is “adapted” to meet accuracy require-
ments. Examples show that the algorithm performs
very well on a range of test images composed of three-
dimensional objects rotated about a single axis. The
approach presented herein was demonstrated on rota-
tionally correlated images; its applicability to images
with other types of correlation is a topic that is cur-
rently under investigation. :

TABLE I
ALGORITHM PERFORMANCE
Dimension Time (sec)
Object | k P Our method | Direct SVD
1 9 11 6.72 40.53
2 12 15 8.46 40.53
3 25 29 16.53 41.12
4 16 19 10.21 40.33
5 31 33 19.57 41.95
6 |27 29 16.70 40.67
7 12 17 8.99 40.24
8 15 19 9.94 40.67
9 36 39 24.52 41.30
10 18 19 10.76 40.19
11 15 19 10.14 40.96
12 24 45 27.47 39.13
13 22 25 13.80 40.32
14 18 25 13.41 41.15
15 15 21 11.10 39.86
16 14 31 16.32 39.42
17 18 39 22.83 40.39
18 22 29 16.09 40.53
19 20 23 12.59 41.66
20 31 37 22.19 40.57

The performance of the proposed algorithm is compared against
that of the direct SVD algorithm, using the 20 objects shown
in Fig.4. In all cases, the eigenimages of X were computed with
a desired energy recovery ratio of 0.90. All computations were
performed using MATLAB on a HP9000/C110 workstation.
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