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Abstract.

Kinematically redundant manipulators have been proposed for use in

critical applications due to their ability to compensate for failures in individual joints.
This article presents an overview of the current state of the art in utilizing kinematic
redundancy to instill failure tolerance into robotic systems. Techniques are presented
for improving performance prior to failures, anticipating impending errors in order to
minimize their impact, and guaranteeing a specified level of performance after failures.
These techniques are illustrated for both a locked-joint failure model and a free-swinging
joint failure model, which together account for a large fraction of typical joint failure

modes.
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1. INTRODUCTION

Failures in robotic systems are not an uncommon
occurrence [8]. A report from the Japanese Min-
istry of Labor indicates that over 60% of the in-
dustrial robots studied had a mean-time-between-
failure of less than 500 hours; indeed, 28.7% had
mean-time-bhetween-failure of 100 hours or less [6].
These failures have significant consequences, rang-
ing from economic impact in industrial applica-
tions to potentially catastrophic incidents in re-
mote and/or hazardous environments [5]. A di-
rect approach towards increasing robot reliabil-
ity is to improve the reliability of the individual
components [26]; however, achieving acceptable
reliability rates is often prohibitively expensive,
and sometimes technologically impossible. An
alternate approach is to consider failure-tolerant
robot designs. These typically incorporate a fail-
ure detection and identification scheme [30, 31]
followed by failure recovery [29]. Designing the
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robot with redundant systems increases the op-
tions available for failure tolerance. Redundancy
can be in the form of duplication of actuators and
sensors [28, 32|, or in the form of kinematic re-
dundancy [16, 19, 21, 23], which is the topic of
this work.

It is well known that the kinematic structure
of a redundant manipulator must be carefully de-
signed to guarantee that the additional degrees
of freedom support failure tolerance [19]. Ide-
ally, kinematic redundancy will provide greater
dexterity prior to failures, minimize the imme-
diate impact of a failure, and guarantee task
completion by ensuring a reachable post-failure
workspace. All of these desirable characteristics
require that one consider both local dexterity mea-
sures, typically centered around the manipulator
Jacobian [10, 11, 13, 16, 20, 24, 25], as well as
global measures such as the post-failure workspace
[9, 12, 17, 22]. Many times these measures can
be related, for example, workspace boundaries re-



sult in manipulator singularities that are easily
identified by examining the Jacobian. This paper
presents an overview of our work in both of these
areas for two different types of failure modes, i.e.,
locked joint failures and free-swinging joint fail-
ures.

2. LOCAL FAULT TOLERANCE

2.1. Background

The position® of the end effector of a manipulator
can be expressed in terms of its joint variables by
the kinematic equation

x = f(q), (1)

where x € IR™ is the position of the end effector,
q € IR" is the vector of joint variables, and m
and n the dimensions of the task space and joint
space respectively. Redundant manipulators, by
definition, have more degrees of freedom (DOFs)
than required for a task, i.e., n > m, where n —
m is the degree of redundancy. The end-effector
velocity x is expressed in terms of the joint rates
q as

x = Jq, (2)

where J € IR™*" is the manipulator Jacobian.
For redundant manipulators, (2) is undercon-
strained and there are an infinite number of so-
lutions which can be expressed as

q=J%x+ (I -J"J)z, (3)

where JT is the pseudoinverse of the Jacobian,
and z € IR™. The first term on the right in (3)
corresponds to the least-squares minimum-norm
solution, while the second is the projection of the
vector z onto the null space of the Jacobian. The
vector z is frequently chosen as z = Vh(q) in or-
der to optimize some desirable secondary criterion
given by h, under exact end-effector tracking [18].
Other methods for optimizing h, such as those
based on the extended Jacobian [3] or the aug-
mented Jacobian [7, 27], also require its gradient.

The Singular Value Decomposition (SVD) pro-
vides a mathematical framework for describing
both the optimization scheme (3), as well as many
of the failure-tolerance measure considered here.
The SVD of the Jacobian is the matrix factoriza-
tion

J=USVT? (4)

where U € IR™*™ is an orthogonal matrix of the
left singular vectors @;, and V' € IR™*™ is an or-
thogonal matrix of the right singular vectors v,.

IThe term “position” is used to refer to any combination
of position and/or orientation variables.

The matrix ¥ is m by n, with © = [, 0], where
Y4 = diag(o1,... ,0m,) and 0 is an m by n —m
zero matrix. The o, are called the singular values
of J, and satisfy 01 > 09 > -+ > 0, > 0. The
rank r of J is simply the number of its nonzero
singular values.

The SVD has long been a valuable tool for
quantifying various dexterity measures: manip-
ulability [33] (product of the singular values),
isotropy [1, 15] (ratio of the maximum singular
value to the minimum), task compatibility [4]
(weighted combination of singular values) and
proximity to singularities [14] (minimum singular
value). Each of these measures has its own physi-
cal interpretation and can be used for quantifying
the capabilities of a manipulator both before or
after a failure.

.2. Locked Joint Failures
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by simply removing the ¢th column, i.e.,
" in ],
(5)

or equivalently, replacing the ith column with ze-
ros. One can then apply any of the local dexterity
measures discussed above to the resulting post-
failure Jacobian, ‘J, to determine the manipula-
tor’s local tolerance to a failure in joint 7. The two
most commonly applied local measures of fault
tolerance are the reduction in manipulability [25]
(due to ease of analysis), and the minimum singu-
lar value [13, 16, 19, 20] (a worst-case measure).
As an example of a worst-case measure, consider
the following kinematic fault-tolerance measure:

mxn—1 — [ jl j2 e ji—l ji—l—l

K= E%in om (\T). (6)

This measure can be re-expressed in terms of the
singular vectors of the failed Jacobian *J (where
F denotes the index of the most debilitating joint
failure) as

K=Fak TT7,,. (")
The change of K with respect to ¢; is then given
by

a*J ..

Ok _rgr Vi (8)

dq; tm dq;

which can be used in the gradient® projection
scheme suggested by (3), thereby maximizing
the manipulator’s failure tolerance while exactly
tracking x. An algorithm for performing these
computations in real time is given in [13].

2Note that K is not differentiable when F is not unique.
However, this can be addressed through standard numeri-
cal techniques.



The above control scheme guarantees that the
current configuration of the manipulator will be
optimal in the sense that it maximizes K for the
desired end-effector position. However, it is in-
structive to consider the extremal values of K over
all possible manipulator designs and configura-
tions. If one constrains the configurations to those
that are isotropic [1, 14, 15] prior to failure, then
it is easy to show that for single joint failures

n—m

0<K<o

. (9)
where ¢ denotes the norm of the pre-failure Ja-
cobian [20]. Furthermore, it is possible to deter-
mine a canonical form for Jacobians that achieve
the maximal value of K. For example, for a four
DOF manipulator required to position in three-
dimensional space, an optimally failure tolerant
Jacobian is given by

2oL /L /L
4 12 12 12
T= 0 o5 e V|
10
0 0 —y/3 : (10)

Note that the null vector of J in this case is given
by[1 1 1 1 ]T, i.e., all elements are of equal
magnitude, which is a characteristic of optimally
failure tolerant Jacobians. At the other end of the
spectrum, it is also easy to show that X = 0 when-
ever the ¢th element of the null vector of J is equal
to zero, which corresponds to a rank deficient
post-failure Jacobian, *J. These results are similar
to those obtained when using the manipulability-
based failure tolerance measure, with analogous
results for multiple joint failures [25].

2.3. Free-Swinging Joint Failures

This section considers a local measure of fault tol-
erance with respect to free-swinging type joint fail-
ures. A free-swinging failure is defined as a failure
that prevents the application of actuator torque on
a manipulator’s joint so that the failed joint moves
under the influence of external forces and gravity.
While there are many measures that have been
proposed for quantifying failure tolerance to free-
swinging failures [10], [11], this section will use the
swing angle as an illustrative example. The swing
angle 0, is defined as the angle through which a
failed rotational joint ¢ moves after a failure, that
is, the angle between the prefailure configuration
and the settled, post-failure configuration. The
resting position is that for which the center of
mass of the portion of the manipulator outboard
from the failed joint is at its lowest position rel-
ative to the gravitational field. The expectation
is that with a small swing angle, the manipulator
is less likely to cause secondary damage to itself

or its environment. A shortcoming of a swing-
angle based measure is that it provides a limited
amount of information on the Cartesian motion of
the manipulator [10].

The value of éz- depends on several geometric
parameters. Let 2, denote the unit vector along
joint £+1, the z-axis of the £*" Denavit-Hartenberg
(D-H) coordinate frame; 3;° denote the first mo-
ment of inertia of the composite rigid body formed
by links £ + 1 through n referred to the origin of
D-H frame ¢; and ¢ denote the gravity vector in
the upward direction. The angle through which
joint ¢ would swing were it to fail is given by the
angle between the projections of 5" ; and —g onto
the plane perpendicular to 2,_; (the axis of rota-
tion). This can be calculated as the angle between
(8%, x 2;,_1)and (2,1 x §), i.e,

sy - ) (a7,
1572y % Zimal 12 gl gy

sin(f;) =

Zio1 (G %87 )
1570 x Zimall 12— x @I
(12)

Provided neither §*, nor § is parallel to £,_q,
equations (11) and (12) give

-k

éi = Atan2[2i71 . (g’ X §1’*_1), (si—l X 22‘71) . (22',1 X g’)],
(13)

where the range of Atan2 is —7 to m; otherwise
the torque on joint 7 is zero and 6, = 0. The
value 6; represents the failure-susceptibility mea-
sure of joint ¢ alone. For an n DOF manip-
ulator, a column of joint measures is given by
6= [ 6, 6, 0, ]T. For positive semidef-
inite weighting matrix W, the form of a compre-
hensive failure-susceptibility measure h(q) is given
by

h(a) = 8" ()W é(q). (14)

As with the local optimization of K in the previous
section, the gradient [11] of h(q) can be used in (3)
to minimize the effects of a potential free-swinging
joint failure while performing the desired task.

3. FAULT TOLERANT WORKSPACE

3.1. Locked Joint Failures

The post-failure workspace of a kinematically re-
dundant manipulator is closely related to the null
space of the manipulator Jacobian [17, 24]. The
null space defines the tangent hyperplane to the
self-motion manifold, whose size and shape can be
used as a measure of fault tolerance. As a simple
example, consider the three DOF planar manip-
ulator shown in Fig. 1, where a projection of its
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Fig. 1: A three DOF planar manipulator with
equal link lengths is shown with the curves in the
workspace having maximum and minimum failure
tolerance capabilities. The points A, B, and C are
representative task space points that are analyzed
for their global failure tolerance properties.
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Fig. 2: The set of joint configurations that keep
the manipulator’s end-effector at a single 2D po-
sition form curves in the configuration space of
the manipulator. The curves shown are the self-
motion curves for the 3 link planar manipulator
depicted in Fig. 1. The self-motion curves for some
regions of the workspace are markedly larger than
others. Points with large self-motion curves tend
to be more failure tolerant.

self-motion curves onto the (62,03) plane is shown
in Fig. 2. Each curve represents the set of joint
configurations that place the end-effector at a con-
stant radius from the base. From the figure,
one can see that some regions of the workspace
have larger self-motion manifolds than others.
For instance, the points at the boundary of the
workspace are reachable in only a single joint con-
figuration, which corresponds to the self-motion
manifold also being a point. Clearly, workspace
boundary points are unlikely to be reachable after
any joint failure. In contrast, the workspace points
at exactly one link length from the base have self-

motion manifolds which span the entire range of
joint values for all three joints. In this unique
case the failed manipulator will always be able to
reach the entire set of points one link length from
the base regardless of which joint fails, or the con-
figuration in which it fails.

To guarantee that a manipulator is capa-
ble of returning to a critical workspace position,
the motion range for each of the n joints must
be constrained to lie within the range spanned
by the self-motion manifold associated with that
position.  This effectively superscribes an n-
dimensional bounding box aligned with the joint
axes around the self-motion manifold.? The size of
the self-motion manifold bounding box is a mea-
sure of the inherent failure tolerance of its associ-
ated workspace position. If the manipulator fails
while operating within the bounding box of a given
desired end-effector position ¥, then it will always
be able to position its end-effector at 2™ regard-
less of where the end-effector is when the failure
OCccurs.

As a specific example, consider again the 3
DOF manipulator for which the bounding boxes
associated with the self-motion surfaces for the
three workspace points labeled A, B, and C in
Fig. 1 have been drawn in Fig. 2. Note that al-
though #, and its associated boundaries are not
shown, they also need to be considered. If we want
to guarantee that task point A is reachable after
any single joint failure, the joint values must be
restricted to the range of the bounding box for
A’s associated self-motion manifold. Now, if in
addition we want to guarantee that task point B
is reachable after any single joint failure, the joint
values must be further restricted to B’s bounding
box (which is the intersection of boxes A and B).
Notice that if the manipulator is in a configuration
near the center of bounding box B when a joint
failure occurs, then the artificial joint restrictions
must be released for the manipulator to reach task
point A. Finally, consider trying to add task point
C to this scenario. The intersection of the three
bounding boxes is indicated with a bold line in
Fig. 2. By design if a joint fails while operating in
this region then by relaxing these artificial joint
limits, the manipulator can reach all three task
points, however, with these artificial joint restric-
tions in place, task point C is unreachable.

‘Thus constraining the motion of a manipula-
tor’s joints prior to a failure will, in general, ren-
der a significant portion of the original workspace
unreachable. However, imposing appropriate soft-
ware joint limits prior to a failure is crucial for
increasing the size of the workspace that can be
guaranteed reachable after an arbitrary failure.

3Note that the values for the bounding box are easily
calculated by identifying zero elements in the null vector
which also correspond to K = 0.



3.2. Undetected Locked Joint Failures

All of the above work assumes that the failure of
a joint is identified by the controller so that it
can modify it’s commands to the remaining func-
tional joints. While this is a reasonable assump-
tion for many cases, there are situations where
this may not be possible. It is interesting to note
that the reachability of a desired task position,
i.e., whether it lies in the post-failure workspace,
is the dominant factor in whether the manipula-
tor will eventually be able to complete its task,
even if a joint failure is not recognized. In ad-
dition, the conditions under which a manipula-
tor will not achieve the desired task position are
closely related to the minimal values of the local
failure tolerance measures discussed above. This
is formally presented in the following theorem [12].

Theorem 1 Consider a manipulator at a non-
singular configuration, driven by a generalized in-
verse control

qc = Gx, (15)

where G = WLJT(JW-1JT)™" for some sym-
metric W > 0. Let S be the set of the indices of
the k locked joints, j; denote the ¢-th column of J,
and e; denote the i-th natural basis vector. Then,

1. Only the failed joints are commanded
motion if and only if the commanded end-
effector velocity vector x. lies in the space
spanncd by the columns corrcsponding to
the failed joints of the Jacobian, i.e.,

qc = Zaiei = X = Zaijia
icS €S (16)

forsome o; € R, i € S

2. Moreover, the failed joints are commanded
non-zero velocities only if a post-failure
weighted Jacobian is rank deficient, i.e.,

G =Yoo #0—
i€S
(JW Y rank deficient,  (17)

where {(JW1) e R™ (%) is obtained
from JW ! by zeroing the columns with in-
dices 7 € S.

Kinematic redundancy can be used to guaran-
tee the post-failure reachability of task positions
as discussed above, however, if a locked-joint fail-
ure is not detected, then the manipulator may or
may not eventually reached the desired position.
For example, consider a planar 3-DOF manipula-
tor under pseudoinverse control that is required to
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Fig. 3: Successful convergence to the task position.
The manipulator is able to complete the point-to-
point motion task between x; and x4, even with
a failure of joint 2. (x; = [2.0 — 1.4]7 and xq =
[1.5 1.5]T).
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Fig. 4: Erroneous convergence when the desired
task position xq is in the post-failure workspace.
With a joint 1 failure the manipulator converges to
a configuration where the “reduced-manipulator”
becomes singular (1J = [j2 j3] rank deficient),
and %. and j; align. (x; = [-0.9 1.8]7 and
xq = [1.5 1.5]7).

move from an initial position x; to a desired task
position xg4. In Fig. 3, the manipulator is able to
successfully complete the task even with an un-
detected failure of joint 2. TIllustrated in Fig. 4
is a case of erroneous convergence, where, even
though the desired task position x4 is the same
as in Fig. 3 (and lies in the post-failure workspace
after a failure of joint 1), the manipulator con-
verges elsewhere. These different convergence be-
haviors are characterized by the properties of the
configurations to which a manipulator erroneously
converges as outlined in the above theorem.
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Fig. 5: The boundaries of the post-failure
workspace and the number of solutions within
each boundary for a 3 DOF, unity link length and
mass, example manipulator following a failure of
joint two. Any point in the light-gray region can
be reached with two distinct configurations after
a failure of the second joint, and each point in the
dark-gray region can be reached with four.

3.3. Free-Swinging Joint Failures

After a free-swinging failure, the failed joint moves
under the influence of external forces and gravity.
This motion results in the potential for secondary
damage due to collisions with the environment.
Techniques for minimizing this motion were dis-
cussed in section 2.3. and in [10, 11]. However, this
motion also presents the possibility of expanded
usefulness after a failure [2]. It is the issue of use-
fulness after a failure, in terms of the post-failure
workspace, that is the topic of this section. The
post-failure workspace is defined here as the set of
all hand poses reachable by the manipulator when
stationary with zero actuator torque on the failed
joint (essentially equivalent to the zero swing angle
case discussed in section 2.3.). By differentiating
the constraints for maintaining zcro torque on a
joint and tracking the rank dcficiency of the cor-
responding augmented Jacobian [9], one can effi-
ciently trace the post-failure workspace boundary
for any general manipulator.

The results of this technique are illustrated on
a simple three DOF manipulator with link lengths
of unity, link masses of unity, and link centers of
mass at the link centers. The results for a fail-
ure of joint two are shown in Fig. 5. The regions
shown are for stable solutions, meaning the center
of mass of the portion of the manipulator outhoard
from the failed joint lies below the failed joint ap-
plies). Any workspace point corresponding to a
stable solution can be reached after a failure sim-
ply by moving the healthy joints to their required
positions along an arbitrary path. The number of

Fig. 6: Four configurations reaching the point
(.41, -1.01) with no torque on joint two. This
point lies within the dark-gray region of Fig. 5.
For each configuration, the center of mass of the
composite body formed by links two and three lies
below joint two, making each configuration stable.

solutions within a given boundary are obtained by
selecting any location within the region and deter-
mining the number of zero-torque configurations
that correspond to that location. Four configura-
tions reaching a point within the dark gray region
of Fig. 5 are shown in Fig. 6. For all the configu-
rations, the composite center of mass of links two
and three lies directly below the second joint.

4. CONCLUSIONS

The main conclusion of the work presented here
is that kinematic redundancy can be very effec-
tive for providing a prescribed degree of tolerance
to joint failures. However, the degree of failure
tolerance is strongly dependent on the kinematic
design of the manipulator and on the manner in
which redundancy resolution is performed prior to
a failure. Redundancy that is improperly incorpo-
rated and/or utilized can be rendered useless.
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