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ABSTRACT

This work considers real-time fault-tolerant control of kine-
matically redundant manipulators to single locked-joint failures.
The fault-tolerance measure used is a worst-case quantity, given
by the minimum, over all single joint failures, of the minimum
singular value of the post-failure Jacobians. Given any end-
effector trajectory, the goal is to continuously follow this trajec-
tory with the manipulator in configurations that maximize the
fault-tolerance measure. The computation required to track these
optimal configurations with brute-force methods is prohibitive
for real-time implementation. We address this issue by present-
ing algorithms that quickly compute estimates of the worst-case
fault-tolerance measure and its gradient. Real-time implementa-
tions are presented for all these techniques, and comparisons show
that the performance of the best is indistinguishable from that of
brute-force implementations.

I. INTRODUCTION

Robot failures are not uncommon. A report from
the Japanese Ministry of Labor indicates that over
60% of the industrial robots studied had a mean-time-
between-failure of less than 500 hours; indeed, 28.7%
had mean-time-between-failure of 100 hours or less [1].
Similar numbers can be derived for robots in nonindus-
trial environments, by deducing mean-time-between-
failure from reliability data for individual components.
Table I gives the mean-time-to-failure and reliability
R(z) (probability that the component is still function-
ing after « hours) for typical robot components and sub-
systems employed in a ground mobile environment [2].
Assuming that the components fail independently of
each other, it can be shown that eight out of ten robots
will likely fail after 1000 hours of operation (for six DOF

TABLE I
Device MTTEF | R(1000) | R{10,000)
Servo Amplifier | 136,054 | 0.993 0.929
DC Servo Motor | 31,519 0.969 0.728
Gear Box 53,319 | 0.981 0.829
Optical Encoder 4,845 0.814 0.127
Tachometer 9,606 0.901 0.353

robots, with each joint consisting of a servo amplifier,
servo motor, gear box and optical encoder). More se-
vere environmental conditions will, of course, result in
even worse failure rates.

Failures in robots have significant consequences,
ranging from economic impact in industrial applications
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to potentially catastrophic incidents in remote and/or
hazardous environments. A direct approach towards
increasing robot reliability is to improve the reliabil-
ity of the individual components; however, achieving
acceptable reliability rates is often prohibitively expen-
sive, and sometimes technologically impossible. An al-
ternative approach is to consider failure-tolerant robot
designs. These typically incorporate a failure detection
and identification scheme [3] followed by failure recov-
ery [4]. Designing the robot with redundant systems
increases the options available for failure tolerance. Re-
dundancy can be in the form of duplication of actu-
ators and sensors [5, 6], or in the form of kinematic
redundancy [7, 8, 9]. Proper utilization of kinematic
redundancy provides greater dexterity prior to failures,
minimizes the immediate impact of a failure, and guar-
antees task completion by ensuring a reachable post-
failure workspace.

This work presents real-time implementation of
schemes for utilizing kinematic redundancy to maximize
the tolerance of robots to single locked-joint failures.
The fault-tolerance measure used is a worst-case quan-
tity, given by the minimum, over all single joint failures,
of the minimum singular value of the post-failure Jaco-
bians. Maximizing this measure corresponds to config-
uring the robot to minimize the worst-case end-effector
velocity error over all single locked-joint failures. This
is also equivalent to minimizing the worst-case discon-
tinuities in the joint velocities of the healthy joints as
they move to compensate for the failed joint. The main
contributions of this work are computationally efficient
schemes for computing the fault-tolerance measure and
its gradient, which in turn enable real-time optimal con-
figuration of robots in anticipation of failures.

II. FRAMEWORK FOR FAILURE-TOLERANT CONTROL

The forward kinematics of manipulators are fre-
quently represented as

%= Jq. (1)

where % is an m-~dimensional vector representing the
end-effector velocity, q is an n-dimensional vector de-
scribing the joint velocities, and J is the m by » manip-
ulator Jacobian matrix [10]. For a redundant manipu-
lator, n > m so the equation is underconstrained and
there are an infinite number of solutions which can be
expressed as

q=J %+ (I = J*t])z, )
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where JV is the pseudoinverse of the Jacobian, and z €
IR™. The first term on the right in (2) corresponds to the
least-squares minimum-norm solution, while the second
is the projection of the vector z onto the null space
of the Jacobian. The vector z is frequently chosen as
z = Vh(q) in order to optimize h, under exact end-
effector tracking [11]. Other methods for optimizing h,
such as those based on the extended Jacobian [12] or the
augmented Jacobian [13, 14], also require its gradient.

The Singular Value Decomposition (SVD) provides
a mathematical framework for describing both the op-
timization scheme (2), as well as the failure-tolerance
measure considered here. The SVD of the Jacobian is
the matrix factorization

J=UZV" (3)

where U € IR™*™ is an orthogonal matrix of the left
singular vectors 4;, and V € IR™™ is an orthogonal
matrix of the right singular vectors ¥;. The matrix ¥ is
m by n, with X = [34 0], where ¥4 = diag(o1,...,0m)
and 0 is an m by n — m zero matrix. The o; are called
the singular values of J, and satisfy 01 2 g9 > --- >
om > 0. The rank » of J is simply the number of
its nonzero singular values. The SVD can be used to
compute the pseudoinverse of the Jacobian

Jt=vzty” (4)

as well as the null space projection
(I—-Tt7)= Y 7. (5)

1=r41

The SVD has long been a valuable tool for quan-
tifying various dexterity measures: manipulability [15]
(product of the singular values), isotropy [16] (ratio of
the maximum singular value to the minimum), task
compatibility [17] (weighted combination of singular
values) and proximity to singularities [18] (minimum
singular value). Each of these measures has its own
physical interpretation. In particular, the minimum
singular value, besides defining the distance from sin-
gularity, also has the property that its reciprocal gives
the worst-case joint velocity norm over all desired unit-
norm end-effector velocities. Worst-case measures are
arguably the most appropriate for fault-tolerance stud-
ies, since guarantees of a certain level of performance
are required. These observations motivate the follow-
ing definition of the kinematic fault-tolerance measure:

K= flelin om (FT}, (6)
where
T=[j1 jo 0 jfe1 - dn] (7

is the Jacobian following the locked-joint failure of the
fth joint, obtained by simply zeroing out the fth col-
umn of the original Jacobian [8]. We also define the
index of the most debilitating joint failure as

Jr-1

F=arg min o, (J). (8)

The gradient of the function K can be computed
and used in the gradient projection scheme suggested
by (2), thereby maximizing the manipulator’s failure
tolerance while exactly tracking % {19]. The kinematic
fault-tolerance measure can be re-expressed in terms of
the singular vectors of the failed Jacobian *.J as

K=7al "7 ¥,. (9)
The change of K with respect to ¢; is then given by
oK _rgT aorJ ro

(10)

For rotary-jointed robots !, the partial derivative of the
kth column of the Jacobian with respect to ¢; can be
efficiently computed as follows [20]:

[ (27 Pr)2k — (27 2k )Pk } i<k
Z; X Zf
8jk/6q1 = - R s (11)
{ (25 p:)2i — (27 21 )p: } ik
0
where Z; is the axis of rotation of the /th joint and p;
is the vector from the lth joint axis to the end effec-
tor. The gradient of X can then be computed from (10)
and (11):

(12)

T
V/C::{alc oK ?E] .

9q1 9 O4n

The various steps in a numerical implementation of
the the proposed failure-tolerant control algorithm are:

1. Compute the pseudoinverse and the null space
projection of the Jacobian.

2. Compute the kinematic fault-tolerance measure K
and the associated failed column F' of the Jaco-
bian.

3. Compute the gradient of the kinematic fault-
tolerance measure VK.

The most computationally intensive step in the algo-
rithm is the second step, since it requires the compu-
tation of the minimum singular value for the n possi-
ble joint failures. This makes a naive implementation
of (6) unsuitable for real-time applications. In addi-
tion, as with any gradient optimization technique ap-
plied to this measure, the most debilitating joint failure
will typically be nonunique. From a practical stand-
point, this leads to “chattering” (i.e., switching back
and forth between multiple worst-case joint failures).
This can be addressed by keeping track of all “near
worst-case” joints, thus exacerbating the computational
cost. Therefore the issue of real-time implementation is
a significant one; this will be the focus of the remainder
of the paper.

1Prismatic joints simplify the expressions.
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III. REAL-TIME CALCULATION OF X AND VK

Fundamental bounds on the change in the singular
values of the Jacobian following a locked-joint failure
can be derived. In particular, the decrease in any singu-
lar value of a matrix following the removal of a column
is bounded by the norm of that column. Results such as
these can in turn be used to derive useful lower bounds
for K, and possibly eliminate candidate F's.

We present three techniques for real-time compu-
tation of K and its gradient. The first two use a Taylor
series approximation to extrapolate the singular values
and singular vectors from their pre-failure values. The
third approach relies on the fact that the changes in the
joint variables along any trajectory are continuous, and
therefore for small increments along a trajectory, power
methods can be used for efficient tracking.

For all three techniques presented here, it is as-
sumed that the full SVD of the pre-failure Jacobian is
available, as a result of completing Step 1.

A. First Order Polynomial Approzimation
Let

Ja) =11 Jj—1 A=a)js Jpr1 - Jdn]. (13)

The case when a = 0 corresponds to a healthy manipu-
lator, while & = 1 corresponds to a locked-joint failure
of the fth joint. A linear approximation of the the sin-
gular values for J(1) can be obtained from the SVD of
J(0) as

d’o.:
f5.(1) = frr. : 4
oi(1) ="0:(0) + ——=| (14)
where
dloi _ ;. d'
- ="l =%, (15)
and
dtJ .
S =01 01—y Opa - 0a) (16)

Substituting (16) and (15) into (14) yields
f74(1) = 04(0) — &7 (0) j5¥:(0). (17)

Since 41;(0) and ¥;(0) are available, the estimate of each
f7;(1) requires only 2m + 1 flops®. Similar estimates
can be derived for 7;(1) and f¥;(1), but we have found
them to be quite poor. Therefore, we use (17) only
to determine the worst-case joint failure index F'; this
requires using (17) to obtain estimates of all the singular
values for all possible single locked-joint failures, and
picking the failure that is the worst case. Note that for
every joint failure, estimates of all the singular values
need to be computed, since the ordering of the singular
values may change. Once the worst-case joint-failure
index F is estimated, we compute the minimum singular
value and the associated singular vectors of *J, required
to calculate the gradient from (10).

2A flop is defined as one floating point operation (add or
multiply).

The accuracy of the first-order approximation of
even the change in the singular values may be quite
poor. For the example illustrated in Fig. 1, a strong
interaction between the singular values ‘o3 and fo4 can
be seen. This is largely due to the fact that they are

3
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Fig. 1. An example of the change in singular values of a typical
Jex7 as a column is removed.

“close” to each other. The singular values ‘o; and ‘o
show comnsiderable interaction as well. It turns out that
in this example, the failed joint contributes consider-
ably to the singular value ‘o7, and therefore the local
linear estimate of this singular value predicts a large
drop. However, other joints also contribute to this sin-
gular value; in particular, as the column associated with
the failed joint is zeroed out, the singular vectors asso-
ciated with ‘o1 and %o rotate, “transferring” the effect
of the failed joint from one to the other. This rate of
change of the singular vectors is not considered in (17);
this motivates retaining more terms in the Taylor series
expansion of ‘o;(a). We explore this in the next section.

B. Third Order Polynomial Approzimation

We have already seen how the interaction between
the singular values can be intuitively explained in terms
of rotation of the associated singular vectors. These
comments can be made more precise with an explicit
derivation of the rate of change in the singular vectors:

diy; i a; iy
— = 2(1—-a)alj —E2 G 18
da ( )z.]fga,z_o_z k ( )
ki
dv; Lo (aes)
k=1
k#1
" v
S ko
- uZ-TJfZ ;‘ . (19)
k=m+1 °
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Two of the major factors that we discussed as in-
fluencing the rate of change of the singular vectors as-
sociated with a particular singular value can now be
clearly seen: how close other singular values are to this
singular value (the 1/(o? — ¢2) factors), and how much
the failed joint contributes to that singular value (the
uf jy term).

This additional information about the rate of
change of singular vectors can be used to derive higher
order estimates for fo;(c). From (15) (and noting that
d?1J/da? = 0)7 we have

d2f0'i Tde V Af_rdfjdfvz
da? da da W da da

It can be shown, using standard arguments from linear
algebra that d -

(20)

o @) _ =0 (21)

=1
Using the four boundary COIldlthnS

1. ¢;(0), given by the pre-failure SVD;
2. dfo;/da at & = 0, given by (15);
3. do;/da at a = 1, given by (21);
4. d*¥o;/da? at a = 0, given by (20),
we derive a third-order approximation for ‘o;{a):
a;(0) + ’o;(0)a + 3707 (0)a?
3 (f0i(0) + 7o (0)) a’, (22)

fO',‘(a) =

where “” denotes differentiation with respect to a.

The behavior of the third order polynomial approx-
imation as compared to the first order is illustrated in
Fig. 1. The third-order approximations are in general
more accurate, particularly for large singular values as
in the case of oy, however, large discrepancies in their
estimates of small singular values are not uncommon.
This is once again due to the complex interaction be-
tween singular values that have strong contributions
from the failed joint. The fundamental problem is that
the failure of a column can be a significant perturbation,
and can require a large number of terms in the Taylor
series expansion. This motivates the exploration of an
alternate technique.

C. Power Method Approzimation

Since the underlying objective is one of tracking
the singular values and vectors of manipulator Jaco-
bians, which varies smoothly with the joint variables
q, it is natural to consider power methods. Power
methods have been successfully applied to track the
minimum singular value and the associated singular
vectors for the purpose of traversing singular config-
urations [21]. These iterative methods converge very
rapidly—typically in one or two iterations—if a good
initial estimate of the SVD is available (which is the case
here). However, each iteration of the power method is

usually quite expensive. It will be shown that for our
application, a computationally efficient scheme can be
devised, making real-time implementation feasible.

In order to compute K and its gradient, we need
to track the index of the failed joint F', as well as the
minimum singular value and one of the associated sin-
gular vectors of *J. In general, I’ will change along a
trajectory, and therefore, we need to track the mini-
mum singular values and one of the associated singular
vectors of all n post-failure Jacobians.

To estimate the current minimum singular value
Jom and the associated left singular vector f,,,, we need

to apply the power method to the matrix (Y7fJ7)™"

We write
T = JJT - 3535, (23)
which can be re-expressed in terms of the SVD of J as
(JIIT)y =U (87 — UTJf_]fU) Ur. (24)
Therefore,

UT (1)U = (S27 - UT§30) 1. (25)
-1

The matrices (*J *J7) " and <EZT = U"j5i% ) have

the same singular values, and their singular vectors are

related by the coordinate transformation

fﬁi =U fWiv (26)

where fW; are the singular vectors of the latter matrix.

It turns out that applying the power method to
the matrix on the right-hand side of (25) is significantly
more efficient. Using the identity

_ _ A7la) (bTA?
(A +ab7) 1=A1—(1+1))T(A_1a) (27)
we get
(227 - UTj550) T = (28)

((m=m)t umyy) (j;U(EzTrl)

(=) + =
1-j5U (Zx7) 7 Uy

We have assumed that ©X7 is nonsingular®; otherwise,
we know that K = 0. Noting that
J7U =lowys1 o205z - 0mvpml], (29)
we get
-1 .
(SZ7 - U"§;j7U) " =diag (1/03,...,1/02%) + (30)
vs1/oy
fnl———z’gf : [ vi/on Vim/Om
t=m-+1 Y f7 'Ufm/o"m

3This case implies that the manipulator is already at a kine-
matic singularity; under our control scheme, this will occur only
at a workspace boundary where there is no nonsingular configu-
ration that achieves this task point.
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The fundamental power iteration is then given by
the following pseudo-code:

o = (UT(ETITTU)
Tom = Pwnll;
N = W/ O

The matrix-vector product in the first step is performed
using (30) and therefore requires at most 5m + 2n
flops (while direct implementations of the inverse power
method on (*J #J7) " are considerably more expensive).

At the start of the power iteration, W, is initial-
ized to its value from the end of the previous power
iteration (performed for the configuration at the previ-
ous cycle time). Note that ‘¥, is the only quantity
that has to be carried along from one cycle to another.
At each cycle time, once the n power iterations are com-
pleted (one for each failure), K, and its corresponding F’
can be immediately calculated. The associate left sin-
gular vector "1, can be computed using (26); the right
singular vector can be computed using

] 1 o
o= o (T, T) (31)

Using these quantities and (10), the gradient of K can
be computed.

IV. PERFORMANCE COMPARISON OF TECHNIQUES

The three techniques proposed for real-time im-
plementation of optimizing failure tolerance were first
tested on 10,000 Jacobians of size 6 x 7, randomly dis-
tributed throughout the range of physically realizable
rotary-jointed robots. Each column of these Jacobians
is of the form

. V;
- (2]

where @; is of unit length, and pointing uniformly over
all directions. Given @, the vectors v; have directions
uniformly distributed over the subspace orthogonal to
@5, with a length that is uniformly distributed over [0, 2].
This distribution is intended to represent a reasonably
normalized Jacobian that has accounted for the dispar-
ity in units between linear and rotational velocities.
Since the power method uses information from the
Jacobian of the previous cycle time, a single Jacobian
does not provide enough information for testing this
technique. To address this issue we generate a plausible
configuration for the cycle time previous to that of each
randomly generated Jacobian. This is done by first con-
verting the random Jacobian to the corresponding ma-
nipulator defined by Denavit and Hartenberg parame-
ters [22]. The previous configuration for this manipu-
lator is then determined by applying a perturbation of
0.01 radians to each of the joints*. Finally, the SVD of

4The magnitude of this perturbation is meant to reflect rea-
sonable values for the maximum joint velocity and the controller
cycle time, e.g., one radian per second and ten milliseconds, re-
spectively.

the Jacobian for this configuration is computed to ob-
tain the previous ‘W, required by the power method.

Figure 2 compares the accuracy of the three ap-
proximation methods for estimating the minimum sin-
gular value for each of the seven possible joint failures on
the 10,000 test Jacobians. An analysis of this data can
be summarized by noting that the performance of the
power method was vastly superior to either of the poly-
nomial approximation methods; resulting in estimates
that are within 0.01 of the actual value in 90% of the test
cases. An arguably even more important measure of the
performance of the three techniques is the percentage of
cases where the correct worst-case joint failure F is de-
termined. For the 10,000 test cases, the power method
was correct 97.5% of the time while the first and second
order approximations were correct 33.6% and 35% of
the time respectively. 3
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Fig. 2. A comparison of the error in the estimated minimum

singular value for the three approximation techniques.

In addition to the above statistical analysis, the
performance of the three approximation techniques was
evaluated in a real-time control implementation. The
familiar three-link planar manipulator with equal link
lengths is presented as an illustrative example. The
manipulator’s end effector is commanded to follow a
straight-line trajectory starting from its base and ex-
tending to its reach singularity. Fig. 3 shows the joint-
space trajectories obtained by using the three tech-
niques along with a contour map of K. The trajec-
tory obtained by using the power method clearly tracks
the optimal value of K and is in fact indistinguishable
from the closed-form optimal solution given in [8]. The
trajectories obtained by using the polynomial approxi-
mation techniques deviate noticeably from the optimal;
however, the actual value of K along these trajectories

5These percentages can be somewhat misleading since in many
cases, the minimum singular value after the failure of a joint
other than F' can be close to X, making the calculation of F
ill-conditioned. In such cases, it can be argued that the effect of
gradient calculations based on the incorrect ¥ would not be too
deleterious.
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is quite high, as shown in Fig. 4. Since all three tech-
niques are suitable for real-time control (an unoptimized
implementation of the power method required only 0.2
milliseconds on a SPARC 5 to compute K for a 6 x 7
Jacobian) the superior accuracy of the power method
makes it the obvious method of choice.

1501

100F
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03
Fig. 3. A comparison of the joint space trajectories obtained

using the three approximation techniques for maximizing K. The
trajectories are displayed over a contour map of K.
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Fig. 4. A comparison of the actual value of K along the trajec-
tory displayed in Fig. 3.

V. CONCLUSIONS

The main conclusion of this work is that failure tol-
erance to locked-joint failures is possible in a real-time
control scheme. It has been shown that a manipulator
can be operated such that at all times it is in an op-
timal configuration where, should a joint failure occur,
the deviation from the desired end-effector trajectory
will be minimized and the remaining joints will be able
to compensate for the failed one. While three differ-
ent approaches have been presented for this purpose,
the overwhelming method of choice is that based on the
power method.

REFERENCES

[1] B S Dhillon, Robot Reliability and Safety, Springer-Verlag,
New York, 1991.

(2] Reliability Analysis Center, Nonelectronic Parts Reliability
Data 1995, Department of Defense, 201 Mill St., Rome, NY
13440 (315) 337 0900, 1995.

[3] M L Visinsky, J R Cavallaro, and I D Walker, “A dynamic
fault tolerance framework for remote robots”, IEFE Trans.
on Robot. and Auto., vol. 11, no. 4, pp. 477-490, August 1995.

[4] Y Ting, S Tosunoglu, and D Tesar, “A control structure for
fault-tolerant operation of robotic manipulators”, in Proc.
1998 Int. Conf. on Robot. and Auto., pp. 684~690, May 2-6.

[5] E Wu, J Hwang, and J Chladek, “Fault tolerant joint
development for the space shuttle remote manipulator sys-
tem:Analysis and experiment”, in Proc. Fourth Int. Symp.
on Robot. and Manuf. | pp. 505-510, Nov. 1992.

[6] D Sreevijayan, S Tosunoglu, and D Tesar, “Architectures
for fault-tolerant mechanical systems”, in Proc. of the 7th
Mediterranean Electrotechnical Conference, pp. 1029-1033,
Antalya, TURKEY, April 12-14 1994.

[Tl A A Maciejewski, “Fault tolerant properties of kinematically
redundant manipulators”, in Proc. 1990 Int. Conf. on Robot.
and Auto., pp. 638—642, Cincinnati, OH, May 13-18 1990.

8] C L Lewis and A A Maciejewski, “Dexterity optimization
of kinematically redundant manipulators in the presence of
failures”, Comp. and Elec. Fng., pp. 273-288, May 1994.

[9] CJ J Paredis, W K F Au, and P K Khosla, “Kinematic design
of fault tolerant manipulators”, Comp. and Elec. Eng., vol.
20, no. 3, pp. 211-220, May 1994.

[10] D E Whitney, “Resolved motion rate control of manipulators
and human prostheses”, IEEE Trans. on Man—-Machine Sys.,
vol. MMS-10, no. 2, pp. 4753, June 1969.

[11] A Liégeois, “Automatic supervisory control of the configu-
ration and behavior of multibody mechanisms”, IEEE Trans.
on Sys., Man, and Cyb., pp. 868-871, December 1977.

[12] J Baillieul, “Kinematic programming alternatives for redun-
dant manipulators”, in Proc. 1985 Int. Conf. on Robot. and
Auto., pp. 722-728, St. Louis, MO, March 25-28 1985.

[13] O Egeland, “Task-space tracking with redundant manipula-
tors”, IEEE J. Robot. and Auto., pp. 471-475, Oct. 1987.
[14] H Seraji, “Configuration control of redundant manipulators:
Theory and implementation”, IEEE Trans. on Robot. and

Auto., vol. 5, no. 4, pp. 472-490, August 1989.

[15] T Yoshikawa, “Manipulability of robotic mechanisms”, Int.
J. Robot. Res., vol. 4, no. 2, pp. 3-9, Summer 1985.

[16] J Angeles, “The design of isotropic manipulator architec-
tures in the presence of redundancies”, Int. J. Robot. Res.,
vol. 11, no.3, pp. 196-201, June 1992.

[17]) S L Chiu, “Task compatibility of manipulator postures”,
Int. J. Robot. Res., vol. 7, no. 5, pp. 13-21, October 1988.
[18] C A Klein and B E Blaho, “Dexterity measures for the design
and control of kinematically redundant manipulators”, Int.

J. Robot. Res., vol. 6, no. 2, pp. 72-83, Summer 1987.

[19] C L Lewis, Fault Tolerance for Kinematically Redundant
Manipulators, PhD thesis, Purdue University, 1994.

[20] C A Klein and L Chu, “Comparison of extended Jacobian
and Lagrange multiplier methods for resolving kinematic re-
dundancy”, to appear in J. Intel. and Robot. Sys., 1997.

[21] A A Maciejewski and C A Klein, “Numerical filtering for
the operation of robotic manipulators through kinematically
singular configurations”, J. Robot. Sys., vol. 5, no. 6, Dec. 88.

[22] M A Gonzalez-Palacios, J Angeles, and R Ranjbaran, “The
kinematic synthesis of serial manipulators with a prescribed
Jacobian”, wn Proc. 1993 Int. Conf. Robot. and Auto., pp
450-455, Atlanta, Georgia, May 2-6 1993.

2600



