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Abstract— This paper provides a set of algorithms
which allow qualitative information regarding the connec-
tivity of configuration space to be quickly established. A
mechanism is presented which utilizes these results to de-
termine the effects of the motions of one manipulator on
the configuration space of the other. These algorithms are
then used as a basis for a simple planner which is capable of
rapidly computing collision-free paths for multiple SCARA
manipulators operating within overlapping workspaces.

I. INTRODUCTION

Recently, there has been a growing recognition of the
advantages achievable by placing more than one manipula-
tor in a common workspace. Besides being able to perform
tasks in parallel, the manipulators may be used coopera-
tively, thereby increasing the dexterity and load carrying
capabilities which may be brought to bear on a particular
task. Unfortunately, these advantages come at a cost, in-
cluding the problem of determining paths for each of the
manipulators which will avoid striking obstacles in the
environment while, at the same time, avoiding collisions
with the other robot.

In the past several years there have been numerous
approaches to this problem including treating the manipu-
lators as a redundant system [1] and the use of cellular de-
composition techniques [2]. Among the numerous related
algorithms which consider the motion of robots moving
amidst obstacles are the spatial indexing of configuration
space-time [3], and the use of the relative velocities of the
objects and the robots to transform the problem into one
of several static problems.

One particularly popular approach [4] imposes priori-
ties upon the manipulators and then plans the paths of one
robot at a time, using the higher priority robots as obsta-
cles in the configuration space-time representation of the
lower priority robots. Another common approach to plan-
ning paths for robots which must avoid moving obstacles
is to decompose the problem into a two phase approach,
commonly referred to as Path-Velocity Decomposition [5].
In this approach, the problem is simplified by solving for
the motion amongst the static obstacles and subsequently
planning the velocity along these paths so as to avoid the
moving obstacles. Although this approach is both con-
ceptually as well as computationally appealing, it suffers
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Fig. 1. A typical situation in which the initial choice of paths
keeps a path-velocity decomposition planner from finding a solution
during velocity planning. The arrows indicate the volume which will
be swept through by the links.

from being unable to find paths in situations in which a
solution may be intuitively obvious. In particular, as il-
lustrated in Fig. 1, there are cases in which the solution
to the first phase of planning results in paths along which
no appropriate velocity profile exists. Often, if the path
planning phase had chosen some other path for either of
the two manipulators, then a solution to the overall prob-
lem would have been found. This work focuses on this
issue and attempts to find a solution in such a sitnation.

A. Notation/Terminology

Throughout the paper, the following notation will be
employed.

W = the workspace

c = the configuration space

B; = an obstacle in the workspace

B = all of the obstacles in W

CB; = the configuration space representation of the B;
CB = all of the obstacles in C

Cjree = the manipulator’s free space

0o =06,+6-

¢ = cosb;

i = sin#;



Furthermore, the following terms will be used. A “region”
will be considered a path-connected subspace of C which
has the same pair of obstacles to its left and right in con-
figuration space. A “channel” will be some sequence of
regions and a “path” will be a sequence of configurations
in Cf,-,e‘

B. Assumptions

A number of simplifying assumptions were made in
this work. The most obvious was to model obstacles in
the workspace as points and the SCARA manipulators as
line segments. The purpose of these initial simplifications
was to focus the presentation on fundamental aspects of
the algorithm. Section IIT develops a more general charac-
terization of obstacles and [6] discusses robot links which
have been modeled as polygons.

C. Overview of Paper

The remainder of this paper is organized as follows:
Section II reviews basic results from forward and inverse
kinematics. Algorithms for establishing the presence of in-
tersections between obstacles in C are developed in Section
III. Section IV begins by presenting a mechanism for map-
ping connected regions in one manipulator’s configuration
space into the other manipulator’s configuration space.
It concludes by using the various algorithms which have
been developed as the basis for a simple planner which
computes collision-free motions for multiple manipulators.
Section V illustrates the operation of this planner. Finally,
Section VI provides a discussion of the results of this work
and indicates some of its limitations.

II. KINEMATICS

The benefits of path planning in a robot’s configu-
ration space [7] have been well established in the litera-
ture [8]{9]. The underlying concept of this approach is the
recognition that a robot may be represented as a point
in configuration space traveling through a set of obstacles
which are obtained as the result of a transformation on the
real obstacles in the manipulator’s workspace. The pro-
cess of path planning is then heavily dependent on the re-
lationship between the manipulator’s configuration space,
C, and its workspace, W. In this section, the nature of
the relationship between these two spaces is presented at
both the position level and the velocity level.

For the manipulator depicted in Fig. 2, the transfor-
mation which describes the relationship between a manip-
ulator’s configuration, (6;,6:), and the Cartesian position
of the end effector, (z.ss,yesy), is easily calculated using
forward kinematics [10] as

Zesr | _ | Lici + Locya
[ Yess ] - [ Lys; + Lasiy 1)

where L) and L are the lengths of links 1 and 2.
Solving (1) for 8, and @5 yields the equally well-known
inverse transformation describing the inverse kinematics
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Fig. 2. The geometry of a SCARA-type manipulator.

for this manipulator:
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The relationship between the end effector velocities and
the joint velocities is readily obtained by differentiating

(1) to obtain

Tepy | _ —Lysyz 6 (4)

Yes s N Lycrz 0,

Recall that the ultimate goal of this development is
to provide a mechanism for rapidly determining whether
obstacles in C intersect. Computing this intersection us-
ing (2) and (3) would require the simultaneous solution
of nonlinear equations, a task which is, in general, non-
trivial. However, for many of the purposes of this work,
it will suffice to establish the presence of an intersection
without knowing precisely where it occurs. As will be
shown in Section IIlI, a characterization of configuration
space obstacles has been developed which is sufficient for
establishing the presence of intersections between configu-
ration space obstacles. The basis of this characterization is
a representation of the obstacle by its tangents. As shown
in [6], the tangent of an obstacle in C corresponding to a
point in W is readily obtained as

0y = +cos™

—Lys) — Lasyy
Licy + Lyeyy

df, _ b+ Licy
by~ —t, ()

where £; is the length along the second link at which the
contact with the obstacle occurs.

ITI. TuE ToroLoGY OF Crree

The notion of utilizing topological properties in gen-
erating obstacle representations for planning has been



studied extensively. Several researchers [11] [12] have gen-
erated representations of C by convolving a representation
of a free flying robot with a representation for an obsta-
cle. Because the mechanism which was used for perform-
ing these convolutions tended to produce a small number
of vertices, edges, and faces which were either redundant
or otherwise non-realizable, a second stage was employed
which utilized topological information to cull out these
extraneous pieces of information. Additional researchers
[13] have chosen to characterize the topology of W rather
than C and use an octree representation to evaluate the
connectivity of the free workspace. Here, the topological
properties of the obstacles are used as a filter for removing
regions of C in which a collision-free path cannot be found.

Before discussing the details of calculating topologi-
cal features of C, it is instructive to consider what type
of global features can be used to improve the efficiency of
most path planners. One important feature of free space
for two-dimensional revolute manipulators which has been
previously identified, is the existence of “highways” [14).
Physically, a highway is a distinguished subspace of config-
uration space for which a collision free path can be planned
simply by using a line segment parallel to the 6; axis for
some relatively large range of f; values. Other global fea-
tures of free space which are not guaranteed to exist in-
clude a path from one highway to the other, referred to
as an “isthmus.” If this feature does not exist then this
implies that the free space is further partitioned. Regions
of free space that are connected to only one of the two
highways will be referred to as “peninsulas”. Additional
details on these properties and their computation may be
found in [6], however it should be apparent from their def-
initions that the ability to determine whether obstacles in
C intersect will be critical to any algorithm which will be
used. The purpose of the remainder of this section is to
address the question of how to best determine whether
such an intersection exists.

A. Intersections Between Point Obstacles in W

Consider the ways in which a SCARA manipulator
may come into contact with a pair of point obstacles:

L. both contacts may take place along the first link,

2. one contact may be along the first link and the other
along the second link,

3. both contacts may take place along the second link.

Testing for the first condition is trivial. If the two obsta-
cles are represented in polar coordinates as (py,¢ys) and
(Pgs¢g), then the obstacles intersect if both are at a ra-
dius less than L; and é; = ¢4. The second case is only
slightly more complicated since one must only check to see
whether the two values of 8, for the end effector to be in
contact with the one obstacle bracket the value of ¢ for
the obstacle at p < L;. The remainder of this section will
consider the final case.

Let By and By be point obstacles in W which have
the Cartesian coordinates (z;,y;) and (zg,yg) with re-
spect to the base of the manipulator. If the points are
both assumed to be at a radius greater than L, then the

following lemma provides a necessary condition for test-
ing for an intersection between obstacles in configuration
space.

Lemma 1. 1f CBy(NCB, # 0 then CB; CFL # @
and CBy (YCFL # O where

CFL = {(01,92) [8; + 65 = tan~! (u)} . (6)

:L'!—.'Dg

The proof to this can be readily seen by recognizing
that Lemma 1 merely states that the second link of the
manipulator must be parallel to the line supporting the
two obstacles if it is to be in contact with both of them
simultaneously. Unfortunately, because the inverse tan-
gent function does not return a unique value, application
of this lemma would require checking for the intersection
of the configuration space obstacles with each of the lines
which have slope -1 and an appropriate intercept. How-
ever, by simply choosing a particular member of this set of
functions, not only does this lemma become easier to ap-
ply, but it is also strengthened in such a way as to become
sufficient. In particular, if the direction in polar coordi-
nates of the vector from By to By is denoted by ¢4, then
the intersection between CB, and CB; can be established
by testing for intersection with the particular line

0 + 0y = ¢a. (7

If the set of configurations which lie along this line are
denoted CL where

C‘C:{(HlvBQ)l01+€2=¢A} (8)
then one can obtain the following lemma.

Lemma 2: Given the assumptions and definitions of
the previous paragraphs, CB;(CBy # 0 if and only if
CByNCL # 0 and CB,NCL # 0.

Physically, this condition states that if pr 2 pg > Ly
then the second link of the manipulator must point in
the direction defined by the vector from the obstacle at
a smaller radius to the obstacle at a larger radius. The
necessity of this condition may be established fairly eas-
ily from Lemma 1. The sufficiency condition may also be
established by using a simple geometric construction to
examine the elements which are members of the intersec-
tions of CL with CB; and CB,.

At first glance, it may appear that the benefits of
having established this property are negligible since the
net effect appears to have been to eliminate the need to
calculate the intersection between two nonlinear functions
at the expense of now having to twice calculate the inter-
section between nonlinear functions with a straight line.
Fortunately, however, the obstacles in configuration space
have additional properties which prove particularly useful.

Recall from calculus that the local extrema in dis-
tance from a curve to a line is at the points along the
curve at which the tangent matches the slope of the line.
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CONFIGURATION SPACE

Fig. 3. An example in which the intersection test succeeds. F; and
G; represent the points which must be computed in order to apply
the test.

Setting the slope of the obstacle as described by (5) equal
to the slope of the constraint equation results in

£a+ Licy -1, 9)
—4y
which has the solution 6, = +w/2. If the obstacle does
not extend past 8; = /2, then the local extrema with
respect to these lines will be at those points which cor-
respond to the end effector resting upon the obstacle.
Hence, the local extrema of an obstacle with respect to the
line along which an intersection must lie may be calculated
via two applications of the inverse kinematics function.
Thus, an algorithm to determine if the line defined by
(8) intersects a configuration space obstacle, would evalu-
ate the curve describing the obstacle at only two points,
i.e. those at #; = /2, and determine if they lie in the
opposing half spaces defined by the line along which the
intersection must take place. Similar results exist for ob-
stacles which are not constrained to lie at a radius greater
than L;. An example of this test succeeding is illustrated
in Fig. 3.

B. Intersections Between Points and Line Qbstacles .

In the previous section, the manner in which a manip-
ulator may come into contact with muiltiple point obsta-
cles was analyzed. This yielded an easily computed test
for establishing the presence of intersections between the
representation of point obstacles in C. This section follows
an analogous development for somewhat more general ob-
stacles, namely line segments and circles. The interest in
these particular classes of obstacles will become apparent
in Section IV where the effects of motions through regions
in one manipulator’s configuration space are studied with
regards to their effects on the connectivity of the other
manipulator’s configuration space.

As in the test developed above, the first step in de-
veloping this algorithm is to characterize the line segment

with regards to its local extrema in C with respect to lines
of slope -1. Clearly, these extrema must take place along
the boundary of the configuration space obstacle. If one
considers the manner in which the manipulator may be in
contact with the obstacle then it becomes clear that this
boundary can be decomposed into simpler curves corre-
sponding to cases in which either the second link of the
manipulator slides along the end points of the line seg-
ment, or by the end effector of the manipulator traversing
the interior of the line segment in a manner which is de-
scribed by (4). The extrema of the obstacle may be com-
puted by determining the extrema along each of the four
portions of the boundary and applying appropriate logic.

Let Bs be a line segment in W with endpoints By =
(zg,ys) and By = (z4,y,). A necessary first step in the
characterization of Ci?s is then to characterize CB; and
CB, as in the previous section. The extrema of the re-
maining portions of CBs may be computed by consider-
ing the obstacle at the velocity level. If it is assumed that
[6z,6y] is a vector along the line segment, then the tan-
gent of those portions of the boundary due to the traversal
of the end effector along the interior of the line segment
is obtained by solving (4) as

iy _
do,

—Llcléx o Lz(:lzét - Llsléy - L28126y

10
Lyeisbz + Lysyoby (o

Setting this slope to -1 and solving for 6, yields the

condition that
)
01 = tan_l (—é)

which must be satisfied in order to be at a local extrema
along the interior portions of CBs. Before continuing, it
should be stressed that this result is not limited to line seg-
ments. In fact, the extrema of any obstacle with respect
to lines in C of slope -1 which place the end effector on
the obstacle will always satisfy this condition, so long as
the obstacle may be represented by a differentiable curve.

From (11), the specific configurations at which the
extrema occur are given by

6, = tan~" (_L‘..fi) .
Ys — Yy

Determining the corresponding value of 6, may be per-
formed via the inverse kinematic equations.

Now, consider a point obstacle at (z;,y). If K; =
tan™! (u) and Ky = tan™! 19—1), then the poten-

1
Ty=T, Tg—,

(11)

(12)

tial orientations of the second link which bring it simul-
taneously in contact with both the point obstacle and the
line segment may be described by the family of lines

Cﬁ,eg = {(91,02) | K, < 0, 4+ 0, < 1\'2} (13)
where it has been assumed, without loss of generality, that
K| < K5. Given this information, and the characteriza-
tion of CBs which is illustrated in Fig. 4, an algorithm to
test for intersections between the representations of points
and line segments is readily obtained.
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Fig. 4. The characterization of an obstacle due to a line seg-
ment. The solid lines are those portions of the obstacle due to the
manipulator sliding along the end points of the line segment. The
bold dashed lines represent those portions of the abstacle due to the
traversal of the end effector along the interior of the line segment.
The normal weight dashed lines are the extrema of the obstacle with
respect to lines of slope -1.

C. Intersections Beiween Point and Circular Obstlacles

Characterizing configuration space obstacles which
represent circles or arcs may be done in a manner di-
rectly analogous to the method presented for character-
izing line segments. First, consider the situation in which
the end effector is lying along a circle z = zo+r cos(y) and
y = yo + rsin(yp). Differentiating the equations describ-
ing such a circle and applying (11) yields a description of
those configurations in which the end effector is in contact
with the circle while the corresponding obstacle in C is at
a local extrema. This condition is described by,

0, =y +nm. (14)
In other words, the first link must be parallel to the line
segment between the center (zg, y9) and the point at which
the end effector touches the obstacle. Substituting this
condition into the forward kinematic equations and solv-
ing for those configurations which place the end effector
on the circle yields those configurations as

2 N2 g2
6, =tan~! <£l2>:hcos_l (d + (&L - ) L:)) (15)

Xo 2L1d
and d? — (L, —r)? - L3
_ -1 - 1—-7) — 43
O G T I
where d = \/z2 + y2.

Determining the configuration which places the con-
tact somewhere within the interior of the second link
is most readily accomplished by recognizing two critical
facts. First, the necessary condition on the relationship
between 6, and the polar coordinates of the contact given
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by (14) continues to hold, so #; = ¥ 4+ n7. Second, for
the configuration to lie along the boundary of C.iree, the
second link of the manipulator must lie along a tangent of
the circle, hence ; + 6, = ¥ £ . When these facts are
combined, it is clear that §; = ¢ + n7 and 6y = +7.

It is easy to show that the location along the link at
which the contact takes place is given by

E'z = \/—(Ll - T‘)2 +d2.

If the evaluation of (17) results in 0 < £y < Lo, then the
configurations satisfying this condition are given by

(17)

= cos-l [FolLr —d) £ boyo
o= o (S
b = F (18)

An approach similar to the one described for line segments
would then result in an intersection test.

IV. A SIMPLE PLANNER

The key to our approach to planning collision-free
paths is a mechanism for meshing channels in different
configuration spaces. The method for accomplishing this
is based upon mapping regions in one configuration space
into the configuration space of the other manipulator as
an obstacle. Clearly, this approach is heavily motivated
by the work of [4] in that the motions of one manipulator
are modeled as an obstacle in the configuration space-time
of the other manipulator. The difference in this work is
that the choice of a specific path within the region is not
considered until after the global planning stage has been
completed. Instead the set of all possible paths through a
region are, in effect, considered when generating the con-
figuration space-time obstacle. The remainder of this sec-
tion deals first with the mechanism chosen for transform-
ing the set of possible motions of one manipulator into
obstacles in the other manipulator’s configuration space
and then proceeds to describe the planner which has been
implemented.

As mentioned above, the principal result of this sec-
tion is an ability to study the sets of possible motions of
one manipulator with regard to their effects on the topol-
ogy of another manipulator’s configuration space. More
specifically, a representation is built that approximates the
set of all possible postures of the robot when it is in any
configuration within a region. The approach which was
used to perform this operation relies heavily on the com-
putation.of those portions in the workspace called “shad-
ows” [15] which describe the regions through which the
link of the manipulator will sweep while it stays in con-
tact with the obstacle. When an approximation is built
which encloses the shadows of all of those points obtained
by interpolating between the polar coordinates of the two
obstacles along the boundaries of the region, the result-
ing area is a conservative approximation of the set of all
postures in which the manipulator may find itself when
it is at any configuration within the region. This is illus-
trated in Fig. 5. The resulting region may then be mapped
into the configuration space of the other robot and treated



CONFIGURATION SPACE

'WORK SPACE

Fig. 5. The process used for determining the potential postures
of a manipulator when it is in any configuration in a region. The
region in C filled with grey is being mapped into its corresponding
manipulator postures. Also depicted is the c-space representation of
the artificial obstacle obtained by interpolating in polar coordinates
between the actual obstacles. The corresponding workspace is also
depicted. The bold, filled circles represent the actual obstacles. The
bold line between them depicts the artificial obstacle. The normal
weight curves represent the shadows of some of the points along the
artificial obstacle.

as though it were a static obstacle in this manipulator’s
workspace. Finally, the effects of this artificial obstacle
on the topology of the second manipulator’s freespace are
determined using the tests of the previous section.

First, consider the portion of W in which the manip-
ulator may lie when it is in any configuration which brings
it into contact with a point obstacle. Let B; denote such
a point obstacle which is at the polar coordinates (p;, ¢;)
with respect to the base of the manipulator. The curve
drawn with a solid line in Fig. 6 illustrates the path fol-
lowed by the end effector as the manipulator moves under
such constraints. The equation describing this curve may
be obtained in polar coordinates as

PP+ (La— 1) = L}
20(Ly — r)

O(r) = cos™! [ (19)

where © is measured with respect to the line passing be-
tween the origin of the manipulator’s base coordinate sys-
tem and the point obstacle and 7 is measured with respect
to the obstacle. Note that the relationship between this
curve and the robot’s configuration as it tracks this curve
is given by © = 6, + 6, — ¢.

The set of points swept out by the entire link as it
slides along B; may be determined by expanding the area
enclosed by (19) to include all those points which may be
reached by projecting a line segment of length L, from
each of the points along (19) through B;. The line seg-
ments which form the boundaries of this region are quickly
obtained by recognizing that they must represent the po-
sitions of the second link when it is tangent to the curve
of (19) and its end point is at an extrema in ©. Further-
more, the robot configurations which place the second link
in such a position are given by noting that these extrema
in © occur when 6, = %

Finally, the construction is completed by considering
those points which come into contact with the first link.
This is accomplished by considering the sector of radius
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WORK SPACE

Fig. 6. Generating the shadow of one of the region's bounding
obstacles. The solid line in the depiction of the workspace represents
the path followed by the end effector as it slides along the point
obstacle. The dashed line illustrates the portions of W which must
be added to this area to obtain the shadow of the obstacle.

CONFIGURATION SPACE

WORK SPACE

Fig. 7. The bold lines approximate the set of all possible positions
for the manipulator when it is in any configuration in the region
illustrated in grey. The figure also depicts the shadows of the two
bounding obstacles.

L, which subtends the angle formed by the end points of
the two line segments computed in the previous step and
the base of the manipulator. The area which results from
this construction is illustrated with dashed lines in Fig. 6.
For the sake of notation, the portion of this region which
lies at a radius greater than p; will be referred to as the
“outer shadow” of B;. The remainder of this region will
be denoted the “inner shadow” of obstacle B;.

An approximation for the area in W in which the
manipulator may lay when it is in any configuration for
an entire region is illustrated in Fig. 7. This area is con-
structed by first establishing the shadows of each of the
two obstacles forming the boundaries of the region. Then,
it is expanded by extending the line segments forming the
boundaries of the outer shadows so that an arc centered
at the base of the manipulator and passing through the
end points of these segments will be of sufficient radius to
enclose both of the outer shadows. This approximation is
then completed by including the inner shadows of the two
obstacles along with the area which lies between them.



At this point, a conservative approximation has been
developed which represents the entire area in W in which a
manipulator may be when it is at any configuration within
the region. The utility of this information comes when de-
termining the effects of choosing any path through a region
in one configuration space on the topology of the other ma-
nipulator’s configuration space. Since the approximation
which has been developed is composed entirely of line seg-
ments and arcs, considering this approximation to be an
obstacle in the other robot’s workspace permits the tests
of Section III to be utilized in establishing the effects of
one robot’s motions on the topology of the other robot’s
freespace without knowing a priori which particular path
will be chosen.

Given these results, a simple planning algorithm can
be readily described. The basis of the work being pre-
sented, as well as that of our earlier work [6] is that the
planning process may be broken into a two phase ap-
proach during which the free space is first searched for
a channel using qualitative information on its topology
and then fitted with a specific path using local geometric
information. The process of searching for the channels is
simplified by limiting the search to those which use the
highways as intermediate goals, not unlike the approach
employed in [14]. Furthermore, the search is guided by us-
ing the heuristic that the channel be the one most likely
to yield the shortest path. These channels are then tested
for potential conflicts by using the results of the previous
sections. If a conflict is found via the tests of the previous
section then a velocity planner is invoked to modify the
rate at which the channel will be traversed. If the veloc-
ity planning does not yield a pair of conflict-free channels
then the planner continues by iterating through pairs of
channels of increasing length until it finds a solution.

More specifically, the planner is initialized by eval-
uating the topology of each manipulator’s free space, a
process which involves computing the sets of isthmuses
and to which highways, if any, the initial and goal con-
figurations are connected. Having done this, the planner
proceeds by choosing the pair of channels which have not
yet been examined and which are most likely to yield the
shortest paths. By using its extent in 6, as an approx-
imation for the time required to pass through a region,
the two channels are then temporally synchronized. Once
this is accomplished, the results of Sections [II and IV are
used to determine whether the traversal of a particular
region will affect the connectivity of the other manipu-
lator’s configuration space in such a way as to indicate
a potential collision. If so, the planner generates a new
pair of channels and estimates the amount of time which
would be required to traverse these new channels. If the
time required to traverse the new pair exceeds the time
to traverse the pair which has just failed, then the plan-
ner attempts to modify the manipulator velocities along
the older pair of channels in an attempt to avoid colli-
sions, as in Path-Velocity Decomposition. If the result of
this attempt at velocity planning is a set of trajectories
which require no more time than the estimated time to
traverse the new set of channels, then the planner returns
the trajectories as the result. If at some point a pair of
conflict-free channels is found, then a local path planner
is invoked to choose a particular path within each of the
channels. Finally, if, at some point, the planner hits some
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predetermined limit on the estimated length of the path,
then it returns with a failure.

V. AN EXAMPLE

In this section, the operation of the planner on a typ-
ical problem is illustrated. Consider the problem of plan-
ning a path between the configurations labeled (I) and (G)
in Fig. 8(a). In the example which is illustrated, the plan-
ner first attempts to plan a path which leads the robot
on the left along the path illustrated, while having the
robot on the right traverse the isthmus closest to the ini-
tial configuration. Both solutions would be reasonable if
considered individually, as they would be close to being
the shortest paths in C for each manipulator. If, how-
ever, the robots were in fact to traverse these channels,
then they would sweep through the regions in W illus-
trated in Fig. 8(b). and it is clear that a collision would
occur regardless of the velocity profiles chosen along the
paths. Hence, if a Path-Velocity Decomposition were em-
ployed in this situation, it is not unreasonable to believe
that it would not be able to find a solution. However, by
utilizing the algorithms described above, the planner is ca-
pable of quickly recognizing that the two proposed paths
are unacceptable. It then chooses an alternate channel
for one of the robots and tests this pair of channels for
collisions. The resulting motions of the manipulators are
shown in Fig. 8(c). In this case, the new pair of channels
do not bring the manipulators into potentially dangerous
situations and, as a result, it is not necessary to invoke
the velocity planning phase. Computing this solution re-
quired approximately 130 ms of CPU time on a SPARC
IT workstation.

VI. REsuLTs/CONCLUSIONS

This paper has described an approach to the problem
of planning collision-free motions for multiple SCARA ma-
nipulators operating within overlapping workspaces. The
primary results have been the development of two funda-
mental concepts, namely:

1. the ability to quickly establish the presence of cer-
tain topological feature in Cy,.., and

2. the ability to quickly compute an approximation of
the effects of one robot’s motion on the topology of
the other robot without a priori knowledge of the
particular path which will be chosen through the
region.

These concepts have been illustrated by the development
of a simple planning system for multiple SCARA manipu-
lators which finds solutions which form a superset of those
found through a straightforward implementation of Path-
Velocity Decomposition. Furthermore, the low compu-
tational costs of generating candidate paths and testing
them for interactions tends to offset the combinatoric na-
ture of the search process to yield a relatively quick al-
gorithm. The major drawbacks of the planner which has
been presented is that it is not complete and some of the
paths which result may be considerably less than optimal.
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Fig. 8. An example of a situation in which a Path-Velocity De-

composition will not yield a solution although one exists. The con-
figuration spaces in (a) depict the paths which are tried for each of
the manipulators as it attempts to find a solution. The path for the
manipulator to the right depicted with a dashed line yields a colli-
sion which cannot be avoided via velocity planning (see (b) ). After
the planner determines that a path is not possible, it backtracks
and computes the path shown in (c), which is collision-free. This
solution required approximately 130 ms. on a Sparc-1I workstation.



