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Abstract

The kinematic specification of motion for redun-
dant manipulators has relied primarily on a formulation
which decomposes joint velocity solutions into a pseu-
doinverse component and a homogeneous solution com-
ponent. While such a formulation is conceptually appeal-
ing since it treats the redundant degrees of freedom as
independent from those required to maintain a desired
end effector trajectory, it has been shown to be physi-
cally inaccurate when applied to the kinetic behavior of
redundant manipulators. In this work, the kinetic behav-
ior of the homogeneous solution component is analyzed in
order to specify realistic limitations on the use of redun-
dancy. It is shown that the equations which govern these
limitations are related to the conditions for guaranteeing
stability of the local torque minimization formulation.

I. Introduction

The vast majority of efforts to utilize redundancy in
robotic manipulators have been focused on the resolution
of redundancy at the kinematic level. The kinematics of
manipulators is frequently represented by

E=Jo (1)

where £ is an m dimensional vector specifying the end
effector velocity, 8 is an n dimensional vector denoting
the joint velocities, and J is the m by n Jacobian matrix.
For redundant manipulators n > m so that the general
solution to (1) is typically presented in the form

b=Jtz+(I-J%0)é (2)

where * denotes the pseudoinverse, (I — J*J) is a pro-
jection operator onto the null space of J, and é is an
arbitrary vector in 0 space. The second term in (2) is
the homogeneous solution to (1) since it results in no end
effector velocity and will be denoted here by 6. This ho-
mogeneous solution is frequently used to optimize some
secondary criterion under the constraint of the specified
end effector velocity by choosing é to be the gradient of
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some function of # [10]. Alternative formulations for in-
stantaneously optimizing a secondary criterion by aug-
menting the Jacobian matrix have also been presented
[1,2]. Some of the secondary criteria that have been ap-
plied include joint range availability [9], singularity avoid-
ance [12,14], various measures of dexterity [3,4,7 ,15,16],
and obstacle avoidance[13,14]. The homogeneous solu-
tion can also be used to optimize secondary criteria de-
fined in Cartesian space, either to impose a priority to
the manipulation variables [13] or to avoid obstacles [11],
by using

¢ =[Jo(I = JT ) (22 — 2Tt 3) (3)

where the subscript 2 refers to the secondary criterion.
The overall solution is then given by substituting (3) into
(2) to obtain

b=Jti+ [J(I-JT N (22— I TE)  (4)

which has been simplified by taking advantage of the fact
that the projection operator is Hermetian and idempo-
tent [11].

In all of the above techniques, the specified end ef-
fector trajectory is the implicit primary criterion. Unfor-
tunately, the specification of an arbitrary homogeneous
joint velocity may result in unrealistic demands on ma-
nipulator performance. These difficulties were first illus-
trated in [8] where the dynamic performance of a redun-
dant manipulator showed significant end effector tracking
errors when a secondary criterion was imposed. A more
dramatic difficulty with using homogeneous solutions is
the instability illustrated in {5] when redundancy is re-
solved at the acceleration level to instantaneously mini-
mize joint torque. In this case, the joint acceleration is
related to the end effector acceleration by differentiating
(1) to obtain

i=Ji+Jé (5)
where once again the general solution is expressed in the
form i

6=Jd%E—J6)+ (I -JJ)é. (6)
The dynamic equations of a manipulator can be written
in closed form as

r=Hi+6-C-6+¢g (7




where 7 is the vector of joint torques, H is the inertia
matrix, C' is a matrix of Coriolis and centrifugal coeffi-
cients, and g is the gravity vector. If 7 is denoted as the
torque due to the pseudoinverse solution

F=HJ (i~ J6)+6.C.0+¢ (®)

then it is easy to show that the minimum joint torque in
a least squares sense is given by

r=F—-HHI-J J)|tF (9)
which results in a joint acceleration of

6=J"(E—-J6) —[H(I - JHJ)]* % (10)
It has been shown that this joint acceleration can induce
large joint velocities which may require physically unre-
alizable joint torques in order to maintain the desired end
effector trajectory.

In this work, in order to place realistic limitations
on the use of redundancy, the kinetic effects of a homoge-
neous solution will be analyzed. It will be shown that an
arbitrary homogeneous solution cannot be used without
potentially affecting the primary constraint of a desired
end effector trajectory. In addition, conditions for identi-
fying the instability of the torque minimization technique
will be presented. It will be shown that these conditions
are only a function of a manipulator’s configuration and
thus can be used to determine desirable regions of oper-
ation.

II. Kinetic Effects of a Homogeneous Solution

In order to explicitly consider the kinetic effects of
a homogeneous velocity, only the case where & = 0, that
is, the desired end effector trajectory requires the hand
to remain stationary at a given position and orientation,
will be considered. This case occurs in practice whenever
a reconfiguration of the manipulator is required to avoid
a moving obstacle or as the result of a residual homoge-
neous velocity after the desired end effector trajectory is
completed. Under these conditions, there will in general
be an acceleration at the end effector due to the rate of
change of J as given by (5). The resulting joint angle ac-
celeration required to maintain the desired configuration
of the end effector is given by (6), which if one assumes
that there is to be no acceleration along the homogeneous
solution results in
6=—JJy. (11)
If the discussion is restricted to manipulators with a sin-
gle degree of redundancy, then the acceleration given by
(11) will result in a constant magnitude of homogeneous
velocity which will trace a curve in joint space that cor-
responds to all the possible manipulator configurations
that can be reached without moving the end effector.
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The joint acceleration given by (11) has a simple
physical interpretation in that it is inversely related to
the radius of curvature of this homogeneous solution
space curve. In particular, if the radius of curvature is
denoted by p then (11) can be written as

_ l6al?,
p

D:

(12)

where # is a unit vector directed from the homogeneous
solution curve toward the center of curvature. The two
important points to note about this acceleration are that,
first, it’s magnitude is proportional to the square of the
magnitude of the homogeneous joint velocity, and sec-
ond, that it’s direction is independent of not only the
magnitude of 6 u but also of the direction of 8y around
the homogeneous solution curve. Therefore, the direc-
tion of the joint acceleration required to maintain the
desired end effector trajectory is a function of only the
manipulator configuration.

The torque required to maintain a homogeneous
joint velocity is given by (8), which, if one neglects the
velocity independent gravity term, can be written as

(13)

. —H?#
= [|0H||2[T +vn - C g

where v, is a unit vector along . In the case of a single
degree of redundancy v, corresponds to the nth output
singular vector specifying the null space of J. Clearly,
the torque given by (13) must be physically achievable
in order to maintain the desired end effector trajectory.
Now consider the case where an acceleration along the
homogeneous solution is allowed. Such an acceleration,
denoted by 6y and given by the second term in (6),
will affect the torque requirements in two ways: directly,
through the inertial torque required to achieve the accel-
eration, and indirectly, through the increase or decrease
of the homogeneous velocity. When using the instanta-
neous torque minimization formulation, the direct effect
of iy is used to decrease the torque requirements by ap-
plying the acceleration given by (10). In this case the
homogeneous acceleration term would be given by

O = |0ul*(HI - T*)]*e (14)

where

(18)

While this homogeneous acceleration term will minimize
the instantaneous torque requirement, it tells us nothing
about the indirect effect on future torque requirements.
In order to obtain this information one must look at the
direction of the homogeneous acceleration relative to the
homogeneous velocity. Mathematically, if

t:[ﬂ—vn-Cwn].
P

vldy >0 (16)




then the homogeneous acceleration term will increase
the magnitude of the homogeneous velocity and subse-
quently increase the torque requirements. This, in effect,
amounts to a positive feedback system and results in the
instability of local torque minimization noted in [5].

In order to guarantee global stability when using the
local torque minimization formulation the homogeneous
acceleration must not be applied when (16) is true. It is
possible to identify regions of stability and instability for
this formulation by evaluating the conditions for which
(16) holds. Substituting (14) into the left hand side of
(16) results in

oThy = oT|0u|PHI - J* D). ()

It is easy to show that

T
I-JtNt = Inln 2 18
(- T = S (18)
so that (17) becomes
. . oI H
’Ufoy = “0;{”2-——'”7,;{20 . (19)
n n

Since only the sign of vTdy is of concern, (19) can be
simplified to

sign(vfg) = sign(vl Ht) (20)

since H is positive definite. There are two important ob-
servations concerning (20) which should be pointed out.
First, the magnitude of the homogeneous joint velocity
does not in any way affect the sign of vT 6. Second, the
vector Ht is independent of the direction of the homoge-
neous velocity, being solely a function of the manipula-
tor configuration. As a result of the second point, it is
possible to determine regions of operation for which the
local torque minimization method is inherently stable or
unstable. The following section will present a specific
example.

In addition to providing conditions for the stability
of the instantaneous torque minimization formulation,
the above discussion also pertains to the use of homo-
geneous solutions for realizing other secondary criteria.
The torque requirements of a homogeneous velocity given
by (13) along with the condition expressed by (16) iden-
tify when and to what degree a desired homogeneous
joint velocity solution can be induced without resulting
in unrealistic torque requirements. In particular, if the
torque required to maintain a desired homogeneous ve-
locity is approaching its physical limitation, (16) can be
used to determine whether the magnitude of the homoge-
neous velocity should be reduced immediately or whether
the manipulator should wait for a configuration where
both the torque and velocity can be reduced simultane-
ously.
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Fig. 1 Geometry of the planar three-link manipulator
used in the examples.

III. A Two-Dimensional Example

The issues presented in the previous section will be
illustrated for the planar three degree-of-freedom manip-
ulator depicted in Fig. 1. The links are all identical and
are modeled as thin uniform rods with lengths of 1 m and
masses of 10 kg. The homogeneous solution curves for
this manipulator, which have been previously presented
[6], are shown in Fig. 2. These curves are plotted for end
effector positions ranging from z = 1.00 m to z = 3.00
m. The curves are generated by selecting the desired
end effector position, specifying a homogeneous joint ve-
locity of 1 rad/sec, and then applying the acceleration
given by (11). An alternative technique for generating

Fig. 2 A parallel projection of the homogeneous solu-
tion curves for the manipulator in Fig. 1 plotted
in 3D @ space.

Ay N



these curves is presented in [7). An important obser-
vation concerning these curves is the wide variation in
the radius of curvature. This is particularly noticeable
for the homogeneous solution curve which goes through
the three internal singular configurations labeled S to
S3. Near these singular configurations the radius of cur-
vature approaches zero, resulting in accelerations (and
torques) which approach infinity in order to maintain a
constant end effector position. The other sections of this
curve, however, are nearly linear and thus require virtu-
ally no acceleration in order to maintain the desired end
effector position. Another view of these homogeneous
solution curves is presented in Fig. 3 where the viewing
direction is along the vector 87 = [3 2 1]. This view
is chosen because it tends to more accurately reflect the
shape of these curves, particularly at reaches farther from
the base, since these curves tend to lie in a plane with
a surface normal of [3 2 1]. This orientation is due to
using equal link lengths which results ina 3:2 : 1 ratio
in the columns of the J when the manipulator is fully
extended.

In Fig. 4 are shown plots of the acceleration, iner-
tial torque, and total torque required to maintain a ho-
mogeneous velocity of 1 rad/s when the end effector is
commanded to be at a position 2.00 m from the base.
Since the norm of the joint velocity is unity, the norm of
the joint acceleration is also equal to the inverse of the
radius of curvature of the homogeneous solution curve.
The maximum and minimum accelerations denoted A to
D can be shown to correspond with the maximum and
minimum radiuses of curvature for the curve in Fig. 3.
From these plots it is clear that while the inertial torques
due to the radius of curvature are the dominant charac-
teristic in determining the overall torque requirements,
the Coriolis and centripetal torques do play a significant

S3

*S2

Fig. 3 Another view of the homogeneous solution
curves from Fig. 2.
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Fig. 4 Graphs of the acceleration, inertial torque, and
total torque required to maintain a homoge-
neous velocity of 1 rad/sec around the homo-
geneous solution curve for z = 2.00 m.

role, typically mediating the effect of the inertial torques,
and therefore cannot be ignored. It is important to note
once again that the total torque required to maintain the
homogeneous velocity,  given by (13), is independent of
the direction of that velocity. In other words, in terms of
Fig. 3, 7 is independent of whether the velocity is clock-
wise or counterclockwise. .
The direction of the homogeneous acceleration, 8y,
required to reduce the magnitude of the joint torques
can be obtained by evaluating (14). The plot in Fig. 5
graphically depicts the sign of 85, by illustrating whether
it will require a clockwise or counterclockwise accelera-
tion around the homogeneous solution curve. This plot
determines whether 6z can be used to reduce the mag-
nitude of the homogeneous velocity while simultaneously
reducing the joint torque. Note that this is identical to
the conditions guaranteeing stability for the local torque
minimization scheme. If the manipulator is in a config-
uration where the homogeneous velocity is in the same
direction as the acceleration given by Fig. 5, then the
local torque minimization scheme should not be applied.
The data plotted in Fig. 5 can also be used to iden-
tify possibly desirable regions of operation. In particu-
lar, those configurations which are the boundary between
clockwise and counterclockwise §g can be classified as in-
herently stable or unstable depending on the direction of
the transition. As an example, consider the manipula-
tor configuration labeled E in Fig. 5. Regardless of the
direction of the homogeneous joint velocity, the homoge-
neous acceleration can always reduce this velocity while
simultaneously minimizing the joint torque thus resulting
in an inherently stable configuration. The manipulator




Fig. 5 A plot of the homogeneous solution curves illus-
trating the direction of the homogeneous accel-
eration required to reduce the joint torque due
to a homogeneous velocity.

configuration labeled F, however, is inherently unstable
because regardless of the direction of the homogeneous
velocity, reducing the joint torque will always result in
a homogeneous acceleration that increases the homoge-
neous velocity. In some respects it is useful to think of
point E being in a valley and point F being on the top
of a ridge although the analogy is not perfect.

IV. Simulation Results

To illustrate the characteristics of stable and unsta-
ble configurations, simulations were performed in which
the manipulator was put into the desired configuration,
given an initial homogeneous joint velocity of 1 rad/s,
and then commanded to maintain a stationary end ef-
fector position. Each simulation was performed twice,
once for a homogeneous velocity in the clockwise direc-
tion and then again in the counterclockwise direction. In
both cases results are shown for the pseudoinverse for-
mulation, given by (11}, as a basis of comparison to the
torque minimization formulation, which includes (14).

The results for the stable configuration, denoted E,
are presented in Fig. 6. As anticipated for this configura-
tion, both the joint velocity norm and joint torque norm
can be reduced simultaneously, regardless of the direc-
tion of the homogeneous velocity. This characteristic of
stable configurations makes them ideal for decelerating
a homogeneous velocity when approaching the desired
homogeneous space solution for a specific secondary cri-
terion. While the local minimum torque solution cannot
in general be used to bring the homogeneous solution
to zero velocity, it can be reduced to a point where the
non-minimum torque solution is still well within phys-
ically achievable limits. For the homogeneous velocity
in the counterclockwise direction there is a small hump
in the velocity norm which denotes a change in sign of
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(16). Clearly this hump could be removed by not apply-
ing the homogeneous acceleration under these conditions
as discussed above.

The results for the unstable configuration, denoted
F, are presented in Fig. 7. From these results one can see
that the local torque minimization scheme does initially
result in a decrease of the torque required to maintain
the desired end effector position. However, this decrease
is short-lived due to the buildup of the homogeneous ve-
locity which eventually results in physically unachievable
torque requirements. It is important to note that these
characteristics are not dependent on the end effector tra-
jectory which has brought the manipulator into the un-
stable configuration. It should also be pointed out that
these unstable configurations are not inherently undesir-
able. In particular, if the torque minimization formula-
tion is only applied for limited periods of time one can
“shave” the peaks from the torque curve while waiting
for a stable configuration in which to remove the induced
homogeneous velocity.

There are two final points which should be addressed
concerning the characteristics of homogeneous space so-
lutions. The first is that stable configurations are in no
way correlated with globally optimal minimum torque so-
lutions. The second point relates to the fact that unless
the secondary criterion induces a large homogeneous ve-
locity, the kinetic requirements of the primary constraint
of a specified end effector trajectory will tend to dominate
the dynamic behavior of the manipulator. This will usu-
ally be true until the manipulator starts to approach the

Velocity 15

rad/s

0.0

Torque 8.0

JES - pu—

Pseudoinverse

Torque Minimization

Fig. 6 Simulation results showing the joint velocity
norm and torque norm for the manipulator
starting in an inherently stable configuration.




Velocity 4.0
rad/s
0.0
CCW -__F__CW
Torque 50.0
Nm
0

CCW e F o CW
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Fig. 7 Simulation results showing the joint velocity
norm and torque norm for the manipulator
starting in an inherently unstable configuration.

end of its gross motion trajectory where the desired end
effector velocity is reduced. It is at this point that consid-
eration of the kinetic effects of any residual homogeneous
velocity is critical since they will tend to dominate the
behavior of the manipulator. This is particularly true of
those tasks which require fine manipulation after gross
motion as is typical of most assembly operations.

V. Conclusions

The kinematic specification of motion for redundant
manipulators has relied primarily on a formulation which
treats the redundant degrees of freedom as independent
from those required to maintain a desired end effector
trajectory. While such a formulation is conceptually ap-
pealing, it has been shown to be physically inaccurate
when applied to the kinetic behavior of redundant manip-
ulators. In this work, the kinetic effects of homogeneous
solutions have been analyzed with emphasis on placing
realistic limitations on how redundancy can be utilized
without adversely affecting the primary goal of a desired
end effector trajectory. It has been shown that it is possi-
ble to identify manipulator configurations which possess
the desirable characteristic of being able to either remove
or impart a homogeneous velocity while simultaneously
reducing the torque requirements on the manipulator.
The conditions which govern these configurations have
also been shown to be directly related to the conditions
for guaranteeing global stability for the local torque min-
imjzation formulation.
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