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Abstract—A kinematically redundant manipulator
is a robotic system that has more than the minimum
number of degrees of freedom that are required for a
specified task. Due to this additional freedom, control
strategies may yield solutions which are not repeat-
able in the sense that the manipulator may not return
to its initial joint configuration for closed end effector
paths. This paper presents two methods for choos-
ing repeatable control strategies which minimize their
distance from a non-repeatable inverse with desirable
properties. The first method minimizes the integral
norm of the difference of the desired inverse and a re-
peatable inverse. While this is the more appropriate
criterion, it results in a difficult optimization. The sec-
ond method, which minimizes the distance of the null
vectors associated with the desired and the repeatable
inverses, is somewhat easier to implement. As an il-
lustrative example the pseudoinverse is approximated
in a region of the joint space using both techniques.

I. INTRODUCTION

A robotic system can be described by its kinematic
equation which relates the set of joint values of the ma-~
nipulator to the position and orientation of the end effec-
tor in the workspace. If the location of the end effector is
specified as an m-dimensional vector x then the kinematic
equation can be written as

x = £(9) (1)
where f is a smooth vector function and where 4 is an n-
dimensional vector of the joint angles. One of the popular
techniques for controlling a manipulator is resolved mo-
tion rate control which calculates the joint velocities from
the joint configuration and desired end effector velocity.
The underlying equation is the Jacobian equation which,
for the positional component, can be found by differenti-
ating (1) to obtain )

x=Jo (2)
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where x is the desired end effector velocity. The chief
advantage of using the Jacobian for the motion control of
a manipulator is that the Jacobian is a linear relationship
between the joint velocities and the end effector velocities.
At each point 8, J is an m x n matrix.

Kinematically redundant manipulators are robotic
systems which possess more degrees of freedom than are
required for a specified task so that m < n. This work
will only consider the case of one degree of redundancy,
i.e. when n = m 4+ 1. There are an infinite number of
control strategies for redundant manipulators so that one
can take advantage of this freedom by choosing a con-
trol strategy which will optimize some particular criterion.
This work will consider generalized inverse strategies of

the form .
6=Gx 3)

where G satisfies JG = I for nonsingular configurations.
The elements of G are functions of the joint configura-
tion. This strategy may be chosen to locally minimize
a given criterion function such as the least-squares mini-
mum norm criterion on the joint velocities as in the case
of the pseudoinverse solution

§=J%x 4)
where J* is the Moore-Penrose pseudoinverse of J. This
control strategy locally minimizes the joint velocities of
the manipulator subject to moving the end effector along
a specified trajectory. Also popular in the robotics liter-
ature are weighted pseudoinverse solutions which locally
minimize §7 Q8 for some positive definite weighting ma-
trix Q.

Due to the additional freedom afforded to kinemat-
ically redundant manipulators, control strategies such as
(3) may not be repeatable in the sense that closed tra-
Jectories in the work space are not necessarily mapped
to closed trajectories in the joint space so that for cyclic
tasks the manipulator will not necessarily return to its
starting configuration. Klein and Huang [3] give a math-
ematical proof of this for the pseudoinverse control of a
planar 3R manipulator. An elegant method of identify-
ing control strategies which are repeatable is presented in
a paper by Shamir and Yomdin {8]. This method deter-
mines repeatability by checking whether the Lie bracket
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of any two columns of the inverse is in the column space
of G.

This work focuses on the generation of repeatable
control strategies that are as close as possible to some
desirable, but not repeatable, control. In Section I a
get of repeatable control strategies, specified in terms of
their associated augmenting vectors, is determined. Once
such a set has been chosen, Sections IIT and IV describe
methods for obtaining an optimal strategy. In Section III
the inverse which is closest to a given desired inverse in an
integral norm sense is chosen. This method, while concep-
tually simple, results in a difficult optimization problem.
In order to simplify this optimization a second method
is introduced in Section IV. Rather than working with
the inverses themselves, this method selects an augment-
ing vector that minimizes its distance to the desired null
vector on a subset of the joint space. Simulation results
comparing these two methods are then presented in Sec-
tion V using the standard planar 3R manipulator as an
illustrative example. Finally, the conclusions of this work
are presented in Section VI

1L. GENERATING REPEATABLE CONTROL STRATEGIES

In order to choose an optimal repeatable control
strategy it is necessary to characterize those strategies
which are repeatable in terms of the desired generalized
inverse G4 and a null space component. This will be done
by considering the corresponding augmented Jacobian.
At nonsingular configurations any generalized inverse G
can be calculated by inverting an augmented Jacobian of
the form

(6)

where v is a null vector of GT. The corresponding control
strategy is found by taking the first m columns of the
inverse of J; ! which is given by

5= Wt op] (©)
where fiy is a unit length null vector and
_G“f v
W= M

It is a well known fact that one can obtain a repeat-
able control strategy for a manipulator with one degree
of redundancy by inverting a Jacobian which has been
augmented with a gradient [7]. Thus the augmented task
space approach is one commonly used technique for re-
solving manipulator redundancy [6]. For the extended
Jacobian [1], the augmenting vector is given by the gra-
dient of Vg - nj where g is some criterion function of
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0. By including this additional function the manipulator
acts “mathematically” like a nonredundant manipulator
assuming that the rows of J and v are linearly indepen-
dent. A set of these gradients can be used to define a
class of control strategies which are repeatable in simply-
connected, singularity-free domains [2].

An example of a set of augmenting vectors which
yield repeatable control strategies is the span of N linearly
independent gradient functions {v1,va,..., vn}. For this
case the augmenting vectors would take on the form
v = Zf;l a;v; where each a; is a real constant. Sev-
eral considerations should be made in choosing such a
basis. One should be careful to select the gradient func-
tions to be linearly independent from the row space of
the Jacobian since failure to do so will result in a sin-
gular augmented Jacobian. Secondly it should be noted
that all nonzero multiples of an augmenting vector result
in the same control. Thus choosing an optimal augment-
ing vector becomes a constrained optimization problem
in which each augmenting vector is normalized. Such a
normalization can be done for example by requiring that

N
Yzt a? =1
1II. THE NEAREST REPEATABLE CONTROL STRATEGY

Now that a class of repeatable strategies has been
defined, it is possible to choose an optimal solution. The
nearest repeatable control strategy is defined as the con-
trol strategy from a set of repeatable strategies which is
nearest to some desired non-repeatable strategy in some
region of the joint space. A particular example of a set of
repeatable strategies was given above as a parametriza-
tion of the span of a set of gradient functions. Once a set
of repeatable control strategies has been chosen, a mea-
sure must be decided upon so that an optimal strategy
can be determined. The criterion used in this work will
be a measure of the distance between the desired inverse
G4 and the repeatable inverse G, defined by the following
norm

IG, - Gall = /n G, — Gall2do ®)

where € is a simply-connected, singularity-free subset
of the joint space. Equation (8) provides a measure of the
closeness of two inverses on some important subset € of
the joint space. The subset € may be chosen based on
some optimal configuration at which one would like the
manipulator to operate. From (6) it follows that the eu-
clidean matrix norm of the difference between the inverses
Gy and Gg is

IG- = Gll2 = llBswliz = lIwll2. ©

Thus the measure given in (8) for a repeatable inverse and
a desired inverse becomes

IGx — Gall3 = /n w2 do (10)



where w is given by (7).

Only for very simple cases can one analytically op-
timize (10) to find a repeatable inverse which is near a
desired inverse [4]. For more complicated manipulators
the optimization must be performed numerically using a
basis of allowable augmenting vectors. Suppose that a set
of N linearly independent gradients {vi,vs,...,vx} has
been chosen as in Section II. The span of this set consists
of all vectors of the form

N

v= E aivg

i=1

1)

where the a; are real scalar constants. It is easy to verify
that (11) is a gradient due to the linearity of the differ-
ential operator. Combining equations (7), (10), and (11)
yields

N N
”Gr - Gd”a = / zi:l E.x—'l a"a:'iv?GngVj
o (Zk=1ariy -v)?

which is a criterion function of the coefficients a;. As dis-
cussed in Section II the coefficients should be normalized
in some fashion since any scaled version of the augment-
ing vector will yield the same inverse. The problem then
becomes an (N — 1)-dimensional optimization. One final
consideration is the possible existence of algorithmic sin-
gularities for certain combinations of a; in the domain Q.
Such combinations of coefficients should be avoided when
determining an optimal solution.

do (12)

IV. NULL SPACE APPROXIMATION

The above optimization can be rather difficult since
the criterion function is in general highly nonlinear. Even
when a minimum is obtained it is difficult to determine
whether it is in fact a global minimum. A more computa-
tionally efficient optimization can be developed by consid-
ering the problem in terms of the function space L(R2).
The space £3(f) is a separable Hilbert space consisting
of the set of Lebesgue measurable functions u : Q — R"
which satisfy [, [lu]|3 d0 < oo along with an inner product
defined by

(13)

for any two vector functions u,v in £3(Q) where u - v
is the standard dot product and Jq 8 is the Lebesgue
integral on © C IR". The corresponding integral norm

fullo = [ ||un%d0r

will be used as a measure of the distance between vector
functions on €. Since L2(R) is a Hilbert space it follows

<u,v>n=/u-vd0
fo}

(14)

that for any closed subspace & and any w € £3(Q) there
exists a unique u € U such that |ju—w||q is minimal. The
measure of the distance between two subsets V and W of
L2(Q) is defined to be dist(U, W) = inf{||[v — w|lg|v €
V,we W}

The criterion used in this section is to minimize
the distance between the null vectors of the desired and
the repeatable inverses. In particular this work is con-
cerned with minimizing the distance between a subset
Mo of the null space N of G4 and a space of allow-
able augmenting vectors V. This subset Ay is the set
of null vector functions which are normalized in the norm
Jl - lla. A desirable gradient v* will have the property
that it minimizes infueyy, ||[v* — n||q. For the space Ay
each element can be written in the form ang for non-
singular configurations where « is any continuous func-
tion, fig is the unit null vector associated with G4, and
lefig|la = 1. Thus if 2 does not contain any singularities
No(Q) = {ahig| f 02 df = 1}.

As above it will be assumed that the set of allowable
augmenting vectors Vy is given by a basis of gradient
functions {vy,vs,---,vy} with the further requirement
that this basis be orthonormal in £;(Q2). With this restric-
tion the Projection Theorem guarantees that the element
of Vi which is closest to some arbitrary vector function
n in £4(R) is given by

N
vi(n) = Z <m,vi>qvV; (15)
i=1
which is simply the orthogonal projection of n onto Vy.
Thus for any vector function n € Ny the element in Vy
which minimizes ||v ~ n||g is the orthogonal projection of
n onto Vy.

Now that an appropriate subspace has been defined,
one can choose an augmenting vector from this set which
minimizes its distance from A, the space of null vectors
which are of unit length in the norm ||-{|g. This is done by
finding the appropriate a* and the v in Vy which mini-
mizes [la*fig — v||3 with [, o®df = 1. This minimization
will be done in two steps. First the form of the a’s which
is closest to Vi will be stated. Then the corresponding v
in Vy for each of the candidate a’s is calculated. Finally
the minimal pair is chosen from these candidates.

The n in My which is closest to a v in Vy is char-
acterized in terms of its corresponding « by the following
proposition:

Proposition 1 Let v = Ef;l ¢;v; be a fixed vector func-
tion in Vi and suppose that Zf;l ¢;v -ig # 0. Suppose
a* = argminge4 ||afig — Efil ¢ivi||4. Then there exists

a constant K such that
N

a* = KZC;V,‘ ‘ng.

i=1

(16)
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Proof See [5]

Thus the candidate a’s are of the form given in (16).

For each n € Np the corresponding v € Vy which
is closest to n is the orthogonal projection of n onto Vn.
Let v(a) denote the orthogonal projection of afig onto
Vn. Thus the problem now becomes that of minimizing

an

By Proposition 1 a minimal a would have the form given
in (16). Thus there exist by, ...,b~ such that

N
o= Eijj . ﬁG.
i=1

Let a;(a) be the generalized Fourier coefficient of afig cor-
responding to v; which is given by < aiig, Vi >q. From
(18) it follows that

lairg = v(a)la-

(18)

N
af@) = Yob L (vi -Bg)(v; -Bg)ds.  (19)

In order to make the presentation clearer some vector no-
tation is introduced. Let a = [a1(a),...,an(a)]T corre-
spond to the series E;-\;l a;jvj, let b = [by,.. .,bn], and
let the matrix M be the Gramian matrix defined by

My = [ (v -5a)(v; -hc) do. (20)
a
Using this notation (19) becomes
a=Mb. (21)

In order for ||afig|la = 1 there is a restriction on b. Inte-
grating the square of (18) yields

N N
[ara=33"

a i=1j=1
which is equal to one, which in vector notation becomes

(23)

Now |lafig — v(a)|[3 = 1 — a”a. Thus it is important
to maximize aT a subject to (23). This maximum occurs
when a and b are eigenvectors of M associated with its
largest eigenvalue. Since M is a symmetric positive semi-
definite matrix, a can be found from the singular value de-
composition of M. The vector a would simply be \/o1u;
where ¢4 is the largest singular value and u, is its corre-
sponding singular vector. It is this vector of generalized
Fourier coefficients which minimizes the distance to No.

/ﬂ(v,- ~hg)(v;j - hig)df bid; (22)

bTMb=1.
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V. AN ILLUSTRATIVE EXAMPLE

In order to illustrate the two methods discussed
above, consider the three-link manipulator shown in Fig. 1
which has links of unit length. The Jacobian for this par-
ticular manipulator is

|

where 8;; = 6; +0;. Note that the manipulator described
by (24) is given in terms of the more realistic relative
angles as opposed to the simpler absolute angles which
are frequently used in work concerning repeatability. For
a simply-connected, singularity-free subset of the joint
space the unit null vector fy for this manipulator can
be continuously and uniquely defined up to a multiple of
—1. In particular it can be obtained by normalizing the
cross product of the two rows of the J acobian:

—80123
cf123

—8012 — sb123
cf12 + cbr23

—s0, — sb12 — 50123
cby + cB12 + c123

| o

803
—803 bt 6‘923
802 + sfa3

(29)

A

ny=

where A = /5203 + (sf3 + 5023)2 + (502 + s023)%. For
this example the desired optimization criterion will be to
minimize the norm of the joint angle velocities. The exact
solution for this criterion is given by the pseudoinverse of
the Jacobian; however, it is well-known that the pseudoin-
verse is not repeatable [3]. The task here is to approxi-
mate the pseudoinverse using the two techniques discussed
previously. Since the pseudoinverse cannot be accurately
approximated over the entire joint space, one must select
a simply-connected, singularity-free region @ = 1 xI2x I3
where I; = [a;, ;] with a; < b; for i = 1,2,3. The bound-
aries of this region can be chosen based on the particular
physical constraints of the manipulator or the require-
ments of the task being performed. For this particular
example let the set Q be given by the cube [r/4, 3n/4)3.

The first step is to choose a set of augmenting vectors
which are gradients so that the corresponding inverses will
be repeatable. In addition to being a set of gradients the
second method requires that this set be given in terms
of an orthonormal basis contained in £3(f). In order to
compare the two methods, the same basis will be used. A
simple example of such a basis is given by

{nel , Kea, nea}

where k = 8/ and where e; represents the standard
basis for IR3. An advantage of the nearest repeatable
method is that it only requires a linearly independent ba-
sis as opposed to an orthogonal one as in the case of the

(26)



null space approximation method. However, this advan-
tage is overshadowed by the difficulty of the optimization
criterion associated with the first method.

The optimization for the nearest repeatable trajec-
tory was done numerically by minimizing (12) as outlined
in Section III. The optimal augmenting vector was found
to be

v =[-0.8381 0.2065 -0.5048]. 27

For the null space approximation method the Gramian
matrix M was calculated from (20) resulting in

0.4275 —0.2559 0.2579
M =|-02559 0.2844 —0.2814 (28)
0.2579 —0.2814 0.2881

The optimal augmenting vector for this optimization is
found by calculating the singular value decomposition of
M, which is given by UZUT since M is symmetric, where

-0.6367 —0.7711 —0.0013
U= 05434 —0.4498 0.7088 (29)
-0.5472  0.4506  0.7054

ard where the diagonal elements of the matrix £ are given
by (0.868,0.128,0.005). The singular vector associated
with the largest singular value represents the desired aug-
menting vector so that for this method

v =[-0.6367 0.5434 —0.5472]7. (30)

Clearly by comparing (27) with (30) one can see that
these two techniques have resulted in two different repeat-
able inverses. A comparison of the performance of these
inverses relative to the desired non-repeatable pseudoin-
verse was performed for the square end effector trajectory
shown in Fig. 1. The norm of the joint angle velocities for
both the repeatable inverses as well as the pseudoinverse
are shown in Fig. 2. Note that for the initial phase of the
trajectory from A to B the performance of the nearest re-
peatable inverse is nearly identical to that of the pseudoin-
verse with the null space approximation technique being
comparable. However, when the direction of the desired
end effector velocity is changed abruptly at B, the per-
formance changes radically. This clearly illustrates that
the resulting performance is not only linked to the config-
uration of the manipulator which determines the inverse
but also to the characteristics of the specified end effector
velocity. During the trajectory from B to C the near-
est repeatable inverse is clearly a better approximation to
the pseudoinverse than the inverse obtained from the null
space approximation technique. After this part of the
trajectory there is little point in comparing the repeat-
able inverses to the pseudoinverse since there is no longer
a correlation between the respective manipulator config-
urations. This is graphically illustrated in Fig. 3 which

Y

Fig. 1  The planar 3R manipulator and the square end effector
trajectory used in the illustrative example. The manipulator starts
at A with an initial configuration of [7/2 /2 x/2].

gives a measure of the difference between the configura-
tions obtained using the repeatable inverses and that ob-
tained using the pseudoinverse. Note that as was inferred
from the norm curves, the configurations of the manipula-
tor for the three techniques are comparable for the initial
phase of the trajectory. After point B, however, the con-
figuration of the manipulator resulting from pseudoinverse
control diverges from the repeatable controls and results
in non-repeatable behavior. In contrast, the two repeat-
able inverses are constrained to match configurations at
A so that there must be a closer correspondence in the
resulting joint space trajectories.

VI. CONCLUSIONS

The contribution of this work is a comparison of two
techniques for generating repeatable generalized inverses
which are close to some arbitrary given generalized in-
verse. Both techniques characterize a set of repeatable
inverses by the gradient functions which correspond to
their null vectors. The difference in the two methods is in
the optimization on which each relies. The first technique
minimizes the integral norm of the difference between the
repeatable inverse and the desired inverse over a subset §.
While this gives a more appropriate measure of the two
techniques it is certainly the more difficult one to calcu-
late. The second technique tries to most nearly match the
null vector of the desired inverse and relies on using a set
of orthonormal basis functions to describe a set of possi-
ble gradient functions. The optimal coefficients for these
basis functions can be easily determined by calculating
the singular vector associated with the maximum singu-
lar value of the Gramian matrix. It was shown that both
techniques can only provide accurate approximations to
the desired inverse on limited portions of the workspace.
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Fig. 2
optimal desired non-repeatable inverse (pseudoinverse) versus the

A comparison of the norm of the joint velocities for the

two different repeatable inverses for the trajectory shown in Fig. 1.
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