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Abstract—A kinematically redundant manipulator
possesses an infilnite number of joint angle trajectories
which satisfy a given desired end effector trajectory.
The joint angle trajectories considered in this work are
locally described by generalized inverses which satisfy
the Jacobian equation relating the instantaneous joint
angle velocities to the velocity of the end effector. One
typically selects a solution from this set based on the
local optimization of some desired physical property
such as the minimization of the norm of the joint angle
velocities, kinetic energy, etc. Unfortunately, this type
of solution frequently does not possess the desirable
property of repeatability in the sense that closed tra-
jectories in the workspace are not necessarily mapped
to closed trajectories in the joint space. In this work
the issue of generating a repeatable control strategy
which possess the desirable physical properties of a
particular generalized inverse is addressed. This is
done by first characterizing repeatable strategies us-
ing orthonormal basis functions to describe the null
space of these transformations. The optimal repeat-
able inverse is then obtained by projecting the null
space of the desired generalized inverse onto each of
these basis functions. The resulting inverse is guaran-
teed to be the closest repeatable inverse to the desired
inverse, in an integral norm sense, from the set of all
inverses spanned by the selected basis functions. This
technique is illustrated for a planar, three degree-of-
freedom manipulator.

1. INTRODUCTION

A robotic manipulator is described by its kinematic
equation which relates the joint configurations of the ma-
nipulator to the position and orientation of the end effec-
tor in the workspace. The kinematic equation f : @ — W
is usually a nonlinear mapping of the manipulators joint
space © to the workspace W where dim(©) = n and
dim(W) = m. More specifically this equation is given
by

x =1(6) 1)
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where x is an m-vector and 6 is an n-vector. One of
the popular techniques for controlling a manipulator is
resolved motion rate control which calculates the joint
velocities from the joint configuration and desired end ef-
fector velocity. The underlying equation is the Jacobian
equation which for the positional component can be found
by differentiating (1) to obtain

x=J (2)
where x is the desired end effector velocity. The chief
advantage of using the Jacobian for the motion control of
a manipulator is that the Jacobian is a linear relationship
between the joint velocities and the end effector velocities.
At each point 8, J is an m x n matrix.

Kinematically redundant manipulators are robotic
systems which possess more degrees of freedom than
are required for a specified task. This occurs when
m < n. This additional freedom offers obvious advan-
tages over conventional nonredundant manipulators in-
cluding the potential for obstacle avoidance, torque min-
imization, singularity avoidance, and greater dexterity
[1,3,5,6,7,10,13,18,19,20]. There are an infinite number
of control strategies for redundant manipulators. One
can take advantage of this freedom by choosing a control
strategy which will optimize some particular criterion. A
popular optimal control strategy is the minimum norm
solution

)

where J+ is the Moore-Penrose pseudoinverse of J. This
control strategy locally minimizes the joint velocities of
the manipulator subject to moving the end effector along
a specified trajectory. Since large joint velocities are asso-
ciated with near-singular configurations, it was previously
hoped that locally minimizing the joint velocities would
avoid singularities; however this has been shown not to be
true [2].

Equation (3) can be generalized to include all solu-
tions by adding terms in the null space of J which results

mn
b=Jtx+(I-Jt))z (4)

where z is an arbitrary n-vector and (I — J*J)z repre-
sents the orthogonal projection of z onto the null space
of J. Liégeois [9] used z to optimize a criterion function

6=Jtx
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9(0) subject to making the end effector follow a prescribed
trajectory by setting z = aVg(0). This null space term
has also been used for several other objectives including
those listed previously [6,10,13,18].

This work will consider generalized inverse strategies
to solve (2) which are of the form

6 = Gx (5)
where G satisfies JG = I for nonsingular configurations.
The elements of G are functions of the joint configura-
tions. This strategy may be chosen to locally minimize
a given criterion function such as a least-squares mini-
mum norm criteria on the joint velocities as in the case of
the pseudoinverse solution. Also popular in the robotics
literature are weighted pseudoinverse solutions which lo-
cally minimize 6T Q8 for some positive definite weighting
matrix Q such as the inertia matrix [17). Due to the
additional freedom afforded to kinematically redundant
manipulators, control strategies such as (5) may not be
repeatable in the sense that closed trajectories in the work
space are not necessarily mapped to closed trajectories in
the joint space so that for cyclic tasks the manipulator will
not necessarily return to its starting configuration. Klein
and Huang [8] give a proof of this for the pseudoinverse
control of a three-link revolute manipulator. Such control
strategies fail to give mappings which are one-to-one and
onto.

Recently there has been significant interest in this is-
sue of repeatability {2,4,11,12,15,16]. An elegant method
for testing whether an inverse in the form (5) is repeat-
able for simply-connected, singularity-free subsets of the
joint space was derived by Shamir and Yomdin [16]. This
method, based on Frobenius’s Theorem from differential
geometry, consists of checking whether the Lie bracket of
each pair of columns of G lies in the column space of G.
This straightforward but tedious calculation can be used
to determine if the manipulator is repeatable for suffi-
ciently small end effector movements. It can also be used
to determine whether there exist what Shamir termed
“stable surfaces” which are surfaces on which the control
is repeatable for nonsingular configurations.

Research has also been done on the construction of
repeatable control strategies. Mussa-Ivaldi and Hogan
[12] have developed a class of repeatable inverses which
use impedance control to devise strategies in the form of
weighted-pseudoinverses. These inverses minimize crite-
ria which lead to conservative solutions. Baillieul (2] de-
vised a strategy which is repeatable in a simply-connected,
singularity-free subset of the joint space. This method,
called the extended Jacobian, minimizes a criterion func-
tion of the joint variables for certain initial conditions and
will be discussed in greater detail in the following section.
1t is also possible to obtain repeatable controls by simply

augmenting the Jacobian with the appropriate number of
kinematic constraints [14].

The remainder of this paper is organized in the fol-
lowing manner: Section II describes a method for gener-
ating a generalized inverse G from the null space of G7.
It is then shown how one can obtain repeatable inverses
by suitably selecting the null space of GT. Section III
develops the mathematics required to define an appropri-
ate class of augmenting vectors V which yield repeatable
inverses. This class of augmenting vectors forms a closed
subspace of a Hilbert space. Utilizing the mathematical
structure on this set, Section IV discusses how to choose
the augmenting vector in V which minimizes its distance
from a set of null vectors of GT. Finally Section V illus-
trates these concepts with an example.

II. AUGMENTED JACOBIANS

Any control strategy for a kinematically redundant
manipulator can be found by inverting the square matrix
obtained by augmenting the manipulator J acobian with
the appropriate row vectors. This is, of course, under the
assumption that the square augmented matrix is nonsin-
gular. Suppose that J is augmented with a matrix N T so
that

J
In=1"- (6)
NT
The inverse of J, if it exists, has the form
I =[G M] )

where G is a generalized inverse of J and M is a maximal
rank matrix whose column space is exactly the null space
of J. Setting zy = NT6 one obtains

* 3
= Jnb 8)
ZN
so that .
. X
0 =Jy' =Gx+ Mzy. (9)
ZN

In order to obtain the control in (5) one merely sets
zy = 0. In this work manipulators with one degree of
redundancy are considered so that N is a vector v,

J
Jo=1---1,

vT

(10)

and

nz
njv

J71 =[Gy (1)
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where n; is any null vector of J. If for example one chose
v to be proportional to n; then Gy would be the pseu-
doinverse. One can consider the relationship of a gen-
eralized inverse and the set of its augmenting vectors as
a one-to-one correspondence between the generalized in-
verses and an equivalence class on the augmenting vec-
tors. This equivalence class on the augmenting vectors
is described by the following equivalence relation: two
augmenting vector functions v and w are equivalent on
2 if there is a nowhere zero scalar function a such that
v = aw almost everywhere on Q.

An example of an augmented Jacobian technique
which guarantees repeatability in simply-connected sub-
sets of the joint space that are free of singularities is
the extend Jacobian method discussed earlier [2]. This
method utilizes the redundancy to optimize a criterion
function g(6) along with the primary constraint of follow-
ing a specified end effector trajectory. Suppose the manip-
ulator starts at an optimal configuration 6* for a given end
effector position and orientation. Baillieul proved that a
necessary condition for being at a local extremum is that
the gradient of g(f) possess no component along the null

space, i.e.
Vg(8*) -n3(6%) = 0. (12)

Combining the end effector constraint and the optimiza-
tion criteria results in the equation

f(6) x ]
e =14 (13)
Vg-nj 0 J
Differentiating (13) results in
J o Ix
] 0= |--- (14)
(V(Vg-nj)T 0

where the matrix on the left-hand side is defined as the
extended Jacobian, denoted J, [2]. If J. is nonsingular
then one obtains the joint velocities by simply multiply-
ing (14) by J; 1. Clearly, J. will be singular at kinematic
singularities of the original robot which correspond to the
singularities of J. However, J, may also become singular
when any of the additional rows added to the Jacobian
are a linear combination of the rows of J. Mathemati-
cally, these singularities can be identified by evaluating
the equation

n; -V(Vg-n;)=0. (15)

These types of singularities, which are typical of aug-
mented Jacobians, were noted by Baillieul for which he
coined the term “algorithmic singularities” [2].

The repeatable inverses can be found by inverting J,
where v is a gradient. By augmenting the Jacobian with

a gradient one is resolving the manipulator’s redundancy
by adding to the kinematic equation an additional func-
tion h where v = Vh. By adding this additional function
the manipulator acts “mathematically” like a nonredun-
dant manipulator assuming that the rows of J and v are
linearly independent. In fact it is these gradients which
define the class of control strategies which are repeatable
in simply-connected, singularity-free domains. Later a set
of allowable augmenting vectors which result in repeatable
control strategies will be defined. The elements of this set
will consist of gradient functions. It is important to note
that this technique is distinct from the extended Jaco-
bian technique since there may be no function g which de-
scribes the desired optimization criterion. The proposed
technique is able to handle more general optimization cri-
teria which are not restricted to be only functions of 0.
In particular, one can consider the minimum joint veloc-
ity norm solution obtained using the pseudoinverse, which
will be used as an illustrative example in the remainder
of this work. The same technique can be used for any
other desirable generalized inverse G by substituting the
null vectors of GT.

III. MATHEMATICAL PRELIMINARIES

In order to pursue this characterization of repeatable
control strategies, this section will present the mathemat-
ical machinery needed to properly define an appropriate
class of augmenting vectors which result in repeatable con-
trol strategies. The spaces that will be considered in this
work are subspaces of the separable Hilbert space £2(1),
the space of Lebesgue measurable functions u : @ — R"
which satisfy [, |Jul|3 df < oo. An important property of
any Hilbert space is that it possesses an inner product.
The inner product < -, >q on two vector functions u,v
in £2(Q) is defined to be

<u,v>n=/u-vd0 (16)
fy)

where u - v is the standard dot product and [, df is the
Lebesgue integral on © C 6. The corresponding integral

norm 2
3
lhalla = [ PR do] (7)

will be used as a measure of the distance between vector
functions on Q. Since £2(R2) is a Hilbert space it follows
that for any closed subspace & and any w € £L3(Q) there
exists a unique u € i such that jju — w||q is minimal.
While {ju — w||q gives a measure of the distance be-
tween two elements u and w in £2(Q2), the measure of the
distance between two subsets F' and G of £L3(2) is defined
to be dist(F, G) = inf{|jlu—v||a|u € F,v € G}. In partic-
ular this work is concerned with the distance between a
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subset Ny of the null space A of J and a space of allowable
augmenting vectors V. This subset A is the set of null
vector functions which are normalized in the norm || - ||a.
A desirable gradient v* will have the property that it min-
imizes infaeny ||V* —nlln. Clearly for any vector function
n € N the element in V which minimizes ||v — nl|q is ex-
actly the orthogonal projection of n onto V. For the space
Np each element can be written in the form an; for non-
singular configurations where a is any continuous function
and ||aslj2 = 1. Thus if Q@ does not contain any singular-
ities, Mo(Q) = {afis| [ a?dd = 1}. A rigorous definition
can be made of an allowable space of augmenting vectors
which will define the repeatable control strategies of inter-
est. Consider the space V; = {Vg € £2(Q)lg € C'(Q)}.
An allowable space of augmenting vectors V is defined
to be any closed linear subspace of V; which has an or-
thonormal basis {v;}i>1. The property that the subspace
is closed is important since this guarantees that for any
vector function u in £(R) there is an element in the sub-
space V which is closest to u.

An example of such a subspace is the span of any
finite orthonormal subset of V;. Section V illustrates how
one might go about choosing such an orthonormal basis
for a manipulator with revolute joints. With these re-
strictions on V the Projection Theorem guarantees that
the element of V which is closest to some arbitrary vector
function n in £,(2) is given by

v*(n) = Z <n,v; >q Vi
i>1

(18)

which is simply the orthogonal projection of n onto V.

IV. A CLASS OF OPTIMAL REPEATABLE INVERSES

In order to do actual calculations and an implemen-
tation one is forced to consider a finite-dimensional sub-
space of V of dimension say N. Let this subspace be
denoted by Vi and let {v;}}_, be an orthonormal basis
for V. Now that an appropriate subspace has been de-
fined, one can choose an augmenting vector from this set
which minimizes its distance from Ay, the space of null
vectors which are of unit length in the norm || - {ln. This
is done by finding the o* in A and the v in Vy which
minimizes ||a*iiy — v||3. This minimization will be done
in two steps. First the form of the a’s which are closest
to Vn will be derived. Then the corresponding v in Vn
for each of the candidate a’s is calculated. Finally the
minimal pair is chosen from these candidates.

The n in Np which is closest to a v in Vy is char-
acterized in terms of its corresponding a by the following
proposition:

Proposition 1 Let v = Eﬁ—.x ¢;v; be a fixed vector func-
tion in Yy and suppose that E.N=| c;v -y # 0. Suppose

a* = argmingeA ||ofy — Z:ix c;vi||4- Then there exists
a constant K such that

N
a® = KEC,'V,' -ﬁJ.

i=1

(19)

Proof See Appendix A.

Thus the candidate a’s are of the form given in (19). It
is thus only necessary to consider A, the set of functions
in A which have this form.

For each n € Ny the corresponding v € Vn which
is closest to m is the orthogonal projection of n onto V.
Let « be in A and let v(a) denote the orthogonal projec-
tion of ahy onto Vy. Thus the problem now becomes to
minimize ||afi; — v(a)||q over the scalar functions a in A
Since « is in .A, there exist by, ...,bn such that

N
a:ijvj 'ﬁ]- (20)
j=1

Let a;(a) be the generalized Fourier coefficient of aniy
corresponding to v;. From (20) it follows that

N
gi(a) =< any,v; >a= ij /(V.' A7) (vi-ag)dd. (21)
i=1 a

In order to make the presentation clearer some vector no-
tation is introduced. Let a = [a1(a),...,an(a)]T corre-
spond to the series E;v:I ajvj, b= [by,...,bn], and let
the matrix M be given by

M,‘j = L(V,' . ﬁ])(Vj . fl]) dé. (22)

The matrix M is the Gramian matrix. Using this notation
(21) becomes

a= Mb. (23)

In order for ||afis|lq = 1 there is a restriction on b. Inte-
grating the square of (20) yields

/ o? d9=if: / (vi -Bs)(v; -B7)d8 bib;  (24)

a i=1 =190

which is equal to one, which in vector notation becomes
bTMb=1. (25)

Now |lah; — v(a)|}} = 1 — aTa. Thus it is important

to maximize al a subject to (25). This maximum occurs
when a and b are eigenvectors of M associated with its
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largest eigenvalue. Since M is a symmetric positive semi-
definite matrix, a can be found from the singular value de-
composition of M. The vector a would simply be /g7u;
where oy is the largest singular value and u; is its corre-
sponding singular vector. It is this vector of generalized
Fourier coefficients which minimizes the distance to Ap.

V. EXAMPLE

In order to illustrate the previous section consider
a planar 3R manipulator which has links of unit length.
The Jacobian for this particular manipulator is

—80; — 8013 — 523

= —sb12 — sb123
Co1 + 6012 + C0123

J chi2 + cbi23

—sf123
2
c123 } (26)

where 8;; = 6; + 0;. For a simply-connected, singularity-
free subset of the joint space the unit null vector f; for
this manipulator can be continuously and uniquely de-
fined up to a multiple of ~1. In particular it can be ob-
tained by normalizing the cross product of the two rows

of the Jacobian:
1 sf3
flj = - —803 - 5023

(27)
A sfa + sfas

where A = \/8203 + (S03 + 8923)2 + (802 + 5923)2. For
this example the desired optimization criterion will be to
minimize the norm of the joint angle velocities. The ex-
act solution for this criterion is given by the pseudoinverse
of the Jacobian, however, it is well-known that the pseu-
doinverse is not repeatable. Since the class of augment-
ing vectors associated with the pseudoinverse is charac-
terized by the null vectors of the Jacobian, the task at
hand is to find a gradient augmenting vector that most
closely matches a null vector of the Jacobian in a simply-
connected, singularity-free region Q = I, x I, x I3 where
I; = [a;, ;] with a; < b; for i = 1,2, 3. The boundaries of
this region can be chosen based on the particular physical
constraints of the manipulator or the requirements of the
task being performed.

The first step is to determine an orthonormal basis for
the allowable augmenting vectors. The Fourier functions
for each interval I; are given by

2nmw

K.' . 2nxr
—=, Kisin —(6; — ¢;), K; 0; —c; 28
{75 Koo 770 — ). Kicon e} e

n2>1

where || = b; — a;, ¢; = %(a,- + b;) and K; = \/2/]L].
The Fourier functions on £, denoted here by pj, are sim-
ply permutations of the products of the Fourier functions
for each I; described by the set given in (28). The set
{pi}i>1 forms a basis for the scalar functions on . By
taking the gradient of each p; one can obtain a basis for

a subset of gradients. It is important to note that this
basis does not span the entire space of gradient functions.
However, the set {Vp;};>1 does form an orthogonal ba-
sis for a proper subset of the gradients (see Appendix B),
which is crucial for the success of this technique. Reduc-
ing this set to N terms and normalizing each element in
the norm || - [|a, results in the space Vn = span{Vp; HL,
which forms a closed subspace of £2(2) where each mem-
ber is a gradient function. For this example, Q will be
taken to be [x/4,3x/4]3. Thus (28) becomes

/2 2 2
~,—sin4nb;, — cos4n0.-} . 29
{ w \/7? \/7? n>1 ( )

For the purposes of illustration, the following orthonormal
set of six vector functions will be used

cos 40, 0 0
{ K 0 , kK jcosdly |, & 0 ,
0 0 cos 403
sin 460, 0 0
K 0 , k|sindd, |, & 0 }
0 0 sin 403

where k = 4/7%/2, Let Vs denote the span of the above
set. It can be easily verified that this is an orthonormal
subset of V.

The fact that Vg is closed guarantees that there is
an element in Vs which is closest to some nj in M.
Thus from the Projection Theorem it follows that for each
n; € N the unique v* € Vs which minimizes its distance
from ny is given by

(30)

v =

6
<nj,v; >qVj (31)
j=t
where v; = Vp; /||Vpjlla.
The Gramian matrix corresponding to Vs is calcu-
lated using (22) and is given below:

428 0 6o 0 0o 0
0 285 —021 0 —.026 .01
0 —021 292 0  .009 .02
M= % o 48 o o |- 52
0 -.02 009 0 284 .02
0 .01l .02 0 .02 285

Since M is symmetric it can be decomposed into the form
USUT where U is a unitary matrix and S is a diagonal
matrix. For this case

10 o0 0 0 0
0 0 —394 756 005 =—523
1o 0 558 040 .70 —.355
U=1lo1 o 0 0 0 (3)
0 0 546 —-.073 —.650 —.523
0 0 486 649 —125 572
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and

428 0 0 0 0 0
0 428 0 0 0 0
_lo o 338 0 0o o0
S=1o o 0 26 0 o0 (34)
0 0 0 0 279 0
0 0 0 0 o0 .233

The largest eigenvalue of M is 0.428. The two corre-
sponding vectors are [1 0 0 0 0 0] and [0 0 0 1 0 0]7.
Thus +/0.428v; and v/0.428v,4 are vector functions in Ve
which have minimum distance from Nj. In fact any lin-
ear combination of vy and v4 which has euclidean length
+/0.428 is of minimum distance from N} over the space Vs.
Therefore, a practical choice for the augmented Jacobian
becomes

—s8) —sby3 —sfi23 —sb12 —s0123 —sf123
Jv=| cfy 412 +chias  cbia+chiaz  cbias
4 ’2"’,23 cos 46, 0 0

which results in a repeatable inverse that approximates
the pseudoinverse.

(35)

VI. CONCLUSION

The contribution of this work is a technique for gen-
erating a repeatable generalized inverse which is close to
some arbitrary generalized inverse that possesses desirable
properties. This technique relies on using orthonormal
basis functions to describe a set of possible gradient func-
tions. While this is in general a formidable task, it was
shown that for this particular application, simple trigono-
metric functions are an ideal choice. It was also shown
that the optimal coefficients for these basis functions can
be easily determined by calculating the singular vector as-
sociated with the maximum singular value of the Gramian
matrix. Finally, an example was presented which illus-
trated this technique.

APPENDIX A

Proposition 1 Let v = E,A;l ¢;v; be a fixed vector func-
tion in Vn and suppose that Zf\il ¢;v-ny # 0. Suppose
o = argmingey |jafiy — Zf\;l c.-v,-][?z. Then there exists
a constant K such that
N
a* = I{ZC;V,‘ -ﬁ_].

=1
Proof The function a* solves the following problem:

N
Minimize / llais = 3~ covill3 do
Q

i=1

Subject to / a’df =1.
Q

The Euler-Lagrange equation must be satisfied in order
for a minimum to occur. This equation is given by

2 ot -3 cvld + A Lat =0
A~ AL e

which becomes
N
2a—2Zc.~v; -0y + 2 a=0.
i=1
Separating terms results in
N
1+ XNa= ZC.'V.' -ny.
i=1
Since Zf;l ¢iv; -y # 0, one obtains

1
T+

a = Ccivi-nyg.

M=

1

"

By setting K = 13 the lemma is proved. Note that K
can be calculated ﬁom the fact that « is of unit length in
the norm || - ||a.

(QED)
APPENDIX B

N
Proposition 2 {H‘VVT’;fIE} is an orthonormal set.
i=1
Proof In order to prove the proposition it suffices to show
that any two distinct elements of the set are orthogonal.
Let j # k so that p; # pi. Both have the form of the

product of trigonometric functions
Pi = Rim, (61)Ram,(02)Ram,(03)

pr = Tip, (01)T2p,(02)T3p,(63).

where R;, and T;,, are Fourier functions on I; of the form
(28). The gradients are

Vpj =

1mi (01)Ram, (02) Ram, (03)
Ry, (61) Ry, (62) Rams (63)
Rim, (61) R2m,(02) Rypm, (03)

and

T1p1(01)T5,,(02)T3p, (03)

Tllpl (01 )sz, (92 )T3P3 (03)
Vpk =
T1p1(01)T2p, (02)T5p,(63)
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where R|,,, and T}, represent the derivative with respect
to 0; of Rim, and T;p,, respectively. The inner product of
Vp; and Vpy is

/n Vp; - Vou do= /n > (Rg,,,,.HR,,,.,XI:,,,Hﬂ,,)do

i=1 1#i 1#i

3
=3 [ RimTip, T] RirTis 0
=1

12

3
=y /I | Rl T, d6: T /I Rim, Tip, d6;

i=1 12 VI

Since p; # pr there is an i such that Rin,; # Tip;,. Then
Rim; and T;p, are orthogonal. Since both are of the form
(28), Ri,,, and T}, are also orthogonal. It thus follows
that

/PVpi-ijd0=(l
a2

QED
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