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Abstract—Kinematically redundant manipulators,
by deflnition, possess an infinite number of general-
ized inverse control strategies for solving the Jacobian
equation. These control strategies are not, in gen-
eral, repeatable in the sense that closed trajectories
for the end effector do not result in closed trajectories
in the joint space. Two methods for generating control
strategies which are repeatable are presented in this
work. The first method, which requires one to solve
a set of partial differential equations, may be difficult
to apply to complicated manipulators thus motivating
the second method, which assumes a certain form for
the control strategies. Both of these methods result in
a technique for designing a repeatable control which
{8 nearest, in an integral norm sense, to a desired op-
timal control. The desired optimal control iz allowed
to take the form of any generalized inverse. An ex-
ample is presented for both methods which illustrates
the capability of designing repeatable controls that ap-
proximate the behavior of desired optimal inverses in
selected regions of the workspace. Finally a compari-
son of the two methods is made by studying the results
of an example simulation.

I. INTRODUCTION

Kinematically redundant manipulators are robotic
gystems which possess more degrees of freedom than are
required to perform a specified task. For single arm ma-
nipulators the task is usually specified as a location or
path for the end effector. A manipulator can be described
by its kinematic equation

x = £(8) (1)

where x € IR™ represents the workspace position and/or
orientation of the end effector and § € IR™ represents the
manipulator’s joint configuration. Thus m < n by defini-
tion for redundant manipulators. The Jacobian equation
relates the joint velocities to the end effector velocities
and is obtained by differentiating (1), resulting in
% = Jé. (2)
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Due to the extra degrees of freedom, redundant manipu-
lators possess an infinite number of local control schemes
of the form

)

where JG = I (except at singularities of J or possibly G)
in order to satisfy the constraint of a given end effector
velocity. A popular local control scheme is pseudoinverse
control due to its desirable minimum norm property.

A generalized inverse control like the one given in
(3) may not be repeatable in the sense that closed tra-
jectories in the workspace may not be mapped to closed
trajectories in the joint space. Pseudoinverse control is
no exception as Klein and Huang [2] have shown. When
a cyclic task is performed using a nonrepeatable control,
the joint angles of the manipulator do not necessarily re-
turn to their initial position. In other words, generalized
inverse control of kinematically redundant manipulators
may produce a drift in joint space when a cyclic task is
performed in the workspace. This may pose a problem
gince the manipulator’s behavior would be hard to pre-
dict without prior analysis. By using a repeatable control
the setup time for a manipulator can be reduced for cyclic
tasks since one would only need to check one cycle to see
if the manipulator functioned as desired.

Shamir and Yomdin [4] have developed an elegant
test using Frobenius’s theorem from differential geometry
for determining whether or not an arbitrary inverse is re-
peatable in an open subset of the joint space. This test,
called the Lie Bracket Condition (LBC), is formulated in
terms of the Lie bracket of the columns of the inverse. The
Lie bracket of two vectors u and v, where both vectors
are functions of 6, is given by

[u,v] = (%)u - (%—)v

An inverse G is said to satisfy the LBC if the Lie bracket
of any two columns of G is in the column space of G. For
the special case of the pseudoinverse one need only apply
the LBC to JT which greatly simplifies the computations
required.

The remainder of this paper is organized in the fol-
lowing manner: Section II presents two methods for gen-
erating repeatable solutions. After a class of repeatable

6 =Gx
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solutions is found, a technique for determining the mem-
ber of this class which is nearest to a desired inverse in
an integral norm sense is discussed. Section III then illus-
trates these two design techniques with a specific example.
Simulation results are then presented in Section IV with
conclusions appearing in Section V.

II. A CLASS OF REPEATABLE INVERSES

This section illustrates two methods for generating a
class of repeatable solutions. These inverses, like the ex-
tended Jacobian [1], have foliations of stable surfaces and
so are guaranteed to be repeatable. The inverses under
consideration are generalized inverses like those described
by (3). For a manipulator with a single degree of redun-
dancy, any of these inverses can be written in the form

G=Jt+a,wT (5)

where fi; is the unit length null vector of the Jacobian
J and w is a vector which uniquely determines G. This
follows from the fact that J(G — J*) = [0]. From (5) it
is easy to verify that

ng=JTW—ﬁJ. (6)

is a null vector of GT.

In order to implement the first method for designing
an optimal repeatable inverse it is necessary to determine
a class of vector functions w which characterize a set of
repeatable inverses. This can be done by determining a
set of the w that satisfy the differential equations given
by

nLg,g]=0 1<i<j<m (7

For three-link planar manipulators (7) simplifies to
ng -Vxng=0. (8)

Equation (7), or (8) where applicable, determines a class
of admissible w so that for any w in this class the corre-
sponding inverse G, is repeatable.

There are infinitely many such repeatable inverses
so that it is possible to optimize over this class in order
to obtain additional desirable properties. One possible
approach is to minimize the distance to an unrepeatable
inverse G4 that possesses some desirable characteristics.
The measure that will be used in this work is

[ 6. -Gtz s o)
4]

where | - ||z is the Euclidean norm. Equation (9) gives
a measure of the closeness of the two inverses over the
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connected subset {1 of the joint space. From (5) it follows
that

IGr = Galla = (I + 8yw]) — (I + Bywg)2

=l s(wr = wa)l2

(10)

where w, is the unique vector that corresponds to G,.
Since fi; is of unit length, (9) becomes

[ 16, ~Gulgds = [ Jw. ~walgas (1)
Q Q

which greatly simplifies the computations.

Unfortunately solving for closed form analytical so-
lutions to a set of partial differential equations such as (7)
may be a difficult if not impossible task. In order to find
a near optimal repeatable control for more complicated
manipulators it is necessary to develop a second method,
which does not rely on solving complicated PDE’s. This
method, which will be called the direct method, uses the
known geometrical properties of repeatable inverses to
generate a subset of analytic solutions to these PDE’s by
utilizing gradient functions. While this technique has the
advantage of avoiding complicated PDE’s, it’s disadvan-
tage is that it optimizes over a smaller subset of repeatable
inverses.

In order to apply this technique a different character-
ization of the repeatable control strategies, which does not
utilize the Lie bracket, is necessary. This method relies
on characterizing those vectors which are at every joint
value orthogonal to the joint trajectories determined by
the control strategy. These vectors are given by the null
space of the transpose of the generalized inverse, which
for a repeatable generalized inverse is determined by a
gradient function. Thus the repeatable strategies can be
obtained by inverting the square matrix

e[

where v is a gradient function which characterizes the
repeatable generalized inverse. Note that J, is of the
same form as the extended Jacobian; however, the gradi-
ent function may not be related to any physically mean-
ingful function of the joint positions. These repeatable
inverses are calculated at nonsingular configurations by
taking the first m columns of

(12)

- T
St=[ea-n,5% 2] (13)

where once again G is some desired (but typically not re-
peatable) generalized inverse. Thus any repeatable strat-
egy has the form

vIG
G, =Ga—1fsg d

s (19



where v is a gradient function. From equation (14) it

follows that w is given by

_ GIv
ﬁJ v’

w= (15)

The values of § which result in #;(f) - v(f) = 0, but
correspond to nonsingular configurations of the Jacobian,
are called algorithmic singularities. These singularities,
which were first noted by Baillieul [1] in the case of the
extended Jacobian, cause ||w|fz to take on infinite val-
ues. The cost function, corresponding to (9), on a simply-
connected singularity-free subset {1 of the joint space is
thus given by

GIv|2
iz =16, - e = [ Balian o)

(Bs-v)?

Since every repeatable control strategy can be written in
the form of (14) it is possible to optimize over a set of these
strategies by considering a linear space of gradients. Such
a space can be given by the span of N linearly independent
gradient functions {vi,vz,...,Vn} so that the augment-
ing vectors take on the form v = E?_’__l a;v;. One must,
however, be careful to select these gradient functions in
such a way that they are not linear combinations of the
rows of J since such a choice would result in a singular
augmented Jacobian. One final consideration relates to
the fact that all multiples of the gradient function will
result in the same control so that a normalization is in
order. Such a normalization can be done for example by
requiring that Efv:I a? =1 or by setting some particular
a; equal to one. In some instances it may be possible to
make further constraints on the coefficients a; so that the
resulting control strategy contains no algorithmic singu-
larities.

III. AN EXAMPLE

In order to illustrate the two methods described in
the previous section, a specific example will be presented.
Consider the planar manipulator shown in Fig. 1 which
consists of two orthogonal prismatic joints and a third
revolute joint of 1 m length. The kinematic function for
this manipulator is given by

_ _ dy + cosfs
x=1(0) = [dg+sin03]

(17)

T T .
wherex =[z y| and 8 =[dy d; 03] . It is easy to
see that the Jacobian for this manipulator is

Sy [1 0 —sin93]. (18)

0 1 cosfs
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Fig. 1.
two joints are prismatic and whose last joint is revolute and of 1 m
length.

Geometry of a planar three-link manipulator whose first

The first step in determining the repeatable inverse
which is closest to the pseudoinverse is to characterize all
generalized inverses by their null vectors. By using (6)
these vectors can be written as

wy — é—isin b3
ng = wg + J cos fs (19)
—w; sin f3 + wy cos 3 — 71;

where they are now parameterized by wy and wp. Next,
these null vectors are restricted to those null vectors which
correspond to a subset of repeatable inverses. This can be
done by determining solutions to the differential equations
obtained from (8) and (19). For this particular example
the solution of these equations is characterized by the re-
lation 1

wy = kwa + Vi(sin 03 + k cos 63) (20)
where k is an arbitrary constant and it is assumed that the
inverses are only functions of §3. Thus, (20) parametrizes
these repeatable inverses in terms of the function w; and
the constant k.

Now that a class of repeatable inverses has been de-
rived, the optimal member of this class with respect to an
appropriately chosen criterion function can be found. For
this example the criterion function is given by

b
o) = [ 116, - I* B s (@)

which is a measure of the distance from the repeatable
inverse G, to the pseudoinverse in the region a < 63 < b.



1t has been shown [3] that the optimal solution must take

the form
_ kcosf3 +sinf,

w; = \/E(kz + 1) (22)
wy = _M_ (23)

V2(k2 +1)

Equations (22) and (23) give a family of repeatable in-
verses, parameterized by k, that minimize (24). Substi-
tuting (22) and (23) into (24) gives

2 _ (sinf3 + kcosfs)?
i = Lntet beoads): (24

which is bounded by 1/2 thus insuring that the criterion
function is well-defined. Therefore (21) becomes

b
(sin 63 + k cos 63)?

Clk) = 2(kZ +1)

a

ds. (25)

Note that the optimization resulting in (22) and (23) is
independent of a and b, the limits of integration for (25).
The criterion function C(k) can be rewritten as

b
Clk) = / %sinz(93+¢) dés (26)

where ¢ = tan~1 k € [-n/2, 7/2]. The cost function C(k)
has now been written as a differentiable function of ¢ on
the interval [-x/2,%/2|. It then follows that C has a
minimum value on this closed interval and that this min-
imum occurs either at a point where the first derivative
of C with respect to ¢ is zero or at an endpoint of the
interval. Setting dC/d¢ to zero and applying the second

derivative test results in the following optimal solution
¢._{—%(u+b)+mr, f0<b-a<n (27)

T l-zle+d)+ 2ty ifr<b-a<2r

where n is chosen so that ¢* € [—x/2,7/2]. Since ¢ in
equation (26) can vary over IR one does not need to check
the endpoints —r/2 and 7/2. Also since (26) is periodic
with respect to ¢ with period 7, one knows that (27)
determines a global minimum. The corresponding k* is
found by taking the tangent of ¢* resulting in
ktz{—tan(?g), §f0<b—a<7r (28)
cot(4f?), Fr<b—a<2m

Note that infinite values of k* are allowable and that this
in fact does correspond to an inverse which is given by
the limit of equations (22) and (23) as k approaches +oo.

Thus for k = +oo the inverse is given by taking w; = 0
and Wg = — 12 cos 03.

The second method described in the previous section,
which consists of augmenting the Jacobian with a gradient
function, can also be used. Consider augmenting vectors
of the form v = ae; + fe; +ve; where ey, e;, and e; rep-
resent the standard basis for IR3. Clearly any such vector
function is a gradient, and since it is not a function of d;
or dz, the resulting repeatable control strategy will be a
function of #3 only. Therefore, in this case the resulting
optimal solution for the direct method cannot be better
than the one obtained above, which optimizes over all re-
peatable control strategies which are functions of 3 only.
Thus the solution resulting from the direct method can
be considered an approximation of the optimal solution
obtained previously. From (15) it follows that the vector
w is given by

1 [a(1+c08203) + Bsinf3 cos 3 — ysin s
W= = . . 2 (29)

6 [ @sind3 cos 3 + B(1 + sin® 63) + vy cos b5
where § = \/E(a sinflg — fcosfs + v). Under the sim-
ple coordinate transformation r = \/a? + 82 and ¢ =
arctan(—a/f) it follows that
2r2 2y 3
Az + N (30)
where A = y+rcos(f3 — ). Algorithmic singularities for
this control strategy will occur when A = 0. This problem
can be remedied by either requiring 7 + rcos(d; — ¢) to
be strictly positive or strictly negative. Such a restriction
would require 4 to be nonzero, and since any multiple
of v results in the same control, v can be, without loss
of generality, taken to be 1. Thus in order to eliminate
algorithmic singularities one requires that 1 + rcos(f3 —
¥) > 0, or equivalently that 0 < r < 1. In this example
the values or r will be restricted to lie in the closed interval
[0,0.9].

As before the cost function has the form

b
ctr¥) = [ w3 do

Iwiiz =

(31)

where now the dependence is on the variables r and .
Substituting (30) into (31) yields

ct=2 [ (+2) s - L)

where v = 1. Applications of the first and second deriva-
tive test individually to the first two terms of (32) shows
that the optimal ¢ is given by

(32)

o = %(a+ ) (33)
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Fig. 2.
the simulation of the manipulator depicted in Fig. 1.

The desired end effector trajectory (3 m square) used in

for intervals of less than 27. For 05 intervals [a, b] of length
less than 7 /6 the optimal r is given by 0.9. This follows
readily from the fact that the first derivative of ||w}l2 with
respect to r is strictly negative for |[§3| < 7/12and 0 < r <
0.9. Thus the optimal coefficients are a = 0, § = —0.9,
and v = 1. The resulting w is

(34)

W=

1 sin f3 ]
\/5 —cos 03 + 1+0.]§.Sos O )

IV. SIMULATION

In order to compare the two methods used in the ex-
ample in Section III, this section presents simulation re-
sults for the manipulator depicted in Fig. 1, commanded
to follow the 3 m square end effector trajectory shown
in Fig. 2. The manipulator’s initial configuration is set
to the origin of the joint space which corresponds to the
point (z,y) = (1,0) in the workspace. The joint space
trajectory obtained using pseudoinverse control is shown
in Fig. 3. As expected, pseudoinverse control produces a
drift in the joint space which results in a joint trajectory
which spirals down the fiber corresponding to the point
(1,0) in the workspace. Superimposed on this figure are
the two stable surfaces which correspond to the optimal
repeatable inverse, which was designed to approximate
the pseudoinverse in the §5 region [—#/12,7/12], and the
approximation to this optimal obtained by applying the
direct method. Clearly, the pseudoinverse trajectory ini-
tially lies on both of these stable surfaces, as designed,
but starts to diverge as the end effector leaves point C.
It is at this point that the global repeatability require-
ment forces the repeatable inverse to abandon the desired
pseudoinverse solution.
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— Optimal Repeatable
Approximate Optimal

Fig. 3.
to pseudoinverse control for the manipulator in Fig. 1. The stable

A 3D view of the joint space trajectory corresponding

surfaces for the optimal repeatable control and the approximate
optimal repeatable control are also shown.

— Pséudoinverse
Optimal Repeatable
Approximate Optimal

-y
IR

Fig. 4. Three orthogonal views of the joint space trajectories ob-
tained using pseudoinverse control, the optimal repeatable control,
and the approximate optimal repeatable control for the end effector

path in Fig. 2.
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Fig. 5. A plot of 03, which together with the end effector posi-  Fig. 6. A plot of the joint velocity norm as a function of the

tion uniquely identifies the configuration of the manipulator shown
in Fig. 1, as a function of the position of the end effector in the
workspace for the trajectory used in Fig. 2.

Fig. 4 provides a direct comparison of the resulting
joint space trajectories when these three different control
techniques are used to follow the desired end effector tra-
jectory specified in Fig. 2. Both of the repeatable controls
provide quite good approximations to the pseudoinverse
in the design region, i.e. in the neighborhood of A. This is
more clearly illustrated in Fig. 5 which in effect plots the
configuration of the manipulator, since any joint value
uniquely identifies the configuration, along the specified
end effector trajectory. It is easy to see from this fig-
ure that the optimal repeatable inverse solution exactly
matches the performance of the pseudoinverse trajectory
up to the point C. The approximation to the optimal re-
peatable inverse is likewise quite good until about halfway
between point B and C. The norm of the joint velocity for
these three trajectories is presented in Fig. 6. This figure
illustrates the tradeoff resulting from the use of the ap-
proximate optimal inverse. Note that outside of the design
region, i.e. the limits of integration on (31), the perfor-
mance of the approximate inverse can be quite poor, as is
the case near C and D.

V. CONCLUSIONS

The constraint of repeatability for all end effector tra-
jectories and all initial conditions, which is characterized
by foliations of stable surfaces, significantly restricts the
choice of available generalized inverse controls. However,

position of the end effector in the workspace for the trajectory used
in Fig. 2.

it has been shown that it is possible to approximate the
behavior of any desirable optimal inverse in a specified re-
gion by determining the repeatable inverse that is closest
to the desired inverse. This results in a controlwhich takes
advantage of the available redundancy to locally optimize
some desirable performance criterion in the specified re-
gion of the workspace while also satisfying the extremely
restrictive global constraint of repeatability.
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