2022 marks the second year of graduating Scott Scholars and the sixth incoming class of Scott Scholars. They are 25 of the most outstanding students from all Colorado regions who will help the college continue to build a reputation of excellence in our engineering programs and benefit from a world-class education.

A critical piece of the Scott Scholars program is enrichment, which allows Colorado State University students to participate in educational and professional development programs that ensure their success. These activities are things students otherwise could not do outside the classroom without financial assistance and the support of the Scott Scholars program. Students have told us this has been hugely valuable as part of their overall educational experience.

Scott Scholars have enjoyed a wide variety of activities with these funds including, but not limited to:

- Prosthetic innovation in Ecuador to learn about prosthetic design and delivery working with difficult-to-reach populations.
- Traveling to Thailand to explore architecture and spiritual practices for a greater sense of cultural diversity.
- Engaging in independent study
- Obtaining certifications (CPR, drone flights, etc.)
- Attending professional conferences.

Enrichment activities for Scott Scholars include Study Abroad programs.

Fall 2017-Fall 2022 Cohorts

Scott Scholars By Major

- Biomedical Engineering with CBE (16)
- Biomedical Engineering with ECE (1)
- Biomedical Engineering with ME (9)
- Chemical and Biological Engineering (10)
- Civil Engineering (8)
- Computer Engineering (4)
- Electrical Engineering (6)
- Engineering Open Option (3)
- Environmental Engineering (9)
- Mechanical Engineering (17)

Academic Profiles

Fall 2022 Cohort

- **Laura Miller**, Electrical and Computer Engineering
- **Suzanne and Walter Scott Foundation education director, holds a gear made and gifted by the students, listing names of the graduating CSU Scott Scholars, May 2022.

Fall 2017-2021 Cohorts

- **58/65**
- **Renewed in Fall 2022**

Avg. CSU GPA

- 3.697

Geographic Areas

- **Aurora**
- **Carbondale**
- **Colorado Springs (2)**
- **Denver (2)**
- **Edwards**
- **Fort Collins (3)**
- **Golden**
- **Grand Junction**
- **Greeley**
- **Lakewood**
- **Pueblo**
- **Trinidad**
- **Woodland Park**

Academic Majors

- **Chemical and Biological Engineering (10)**
- **Civil Engineering (8)**
- **Computer Engineering (4)**
- **Electrical Engineering (6)**
- **Engineering Open Option (3)**
- **Environmental Engineering (9)**
- **Mechanical Engineering (17)**

Fall 2022 Cohort

- **Aurora**
- **Carbondale**
- **Centennial (2)**
- **Colorado Springs (3)**
- **Denver (2)**
- **Edwards**
- **Fort Collins (3)**
- **Golden**
- **Grand Junction**
- **Greeley**
- **Lakewood**
- **Littleton**
- **Longmont**
- **Lyons**
- **Mancos**
- **Pueblo**
- **Trinidad**
- **Woodland Park**

Fall 2017-2021 Cohorts

- **Alamosa**
- **Arvada**
- **Aurora**
- **Broomfield**
- **Boulder**
- **Castle Rock**
- **Centennial**
- **Colorado Springs**
- **Denver**
- **Eldorado Springs**
- **Englewood**
- **Fort Collins**
- **Fort Lupton**
- **Grand Junction**
- **Greeley**
- **Highlands Ranch**
- **La Jara**
- **Lakewood**
- **Littleton**
- **Loveland**
- **Monument**
- **New Castle**
- **Parachute**
- **Parker**
- **Pueblo**
- **Westminster**
- **Windsor**

Laura Miller, Suzanne and Walter Scott Foundation education director, holds a gear made and gifted by the students, listing names of the graduating CSU Scott Scholars, May 2022.
The program helped facilitate recruitment of top Ph.D. student Jiate Li to work on adaptive design of civil infrastructure systems in a changing climate. Even more importantly, it enables exploratory investigation of such topics that are high risk but ultimately very high reward and will have broad societal impacts.

– JOHN VAN DE LINDT, Harold H. Short Endowed Chair Professor, Civil and Environmental Engineering

“The Scott Graduate Research Assistantship program has played an instrumental role in helping me take care of my finances, as I focused on my research. Furthermore, it has helped me to complete a good portion of my required course work toward my Ph.D.”

– RASHADUL KABIR, Graduate Research Assistant, Electrical and Computer Engineering

The Scott Graduate Research Assistantship program is a great opportunity to attract talents around the world to join Ph.D. programs in our college. It helped me recruit an excellent Ph.D. student to join my research group and start a new research project.”

– MAHDI NIKDAST, Assistant Professor, Electrical and Computer Engineering

2022 Scott Graduate Research Assistants come from across the U.S. and around the world

UNITED STATES
Davis, California
Fort Collins, Colorado
Newberg, Oregon
Princeton, New Jersey
Stillwater, Oklahoma

INTERNATIONAL
Lanzhou, China
Tehran, Iran
Ota, Nigeria
The Scott Discretionary Fund allows the dean flexibility to invest in areas that advance college excellence. Examples include student scholarships, additional funding for Scott Scholar enrichment activities, unique laboratory research experiences and paid internships through the Scott Undergraduate Research Experience, and facilitation of student internship placement and access to professional development programs.

As in past years, the Scott Discretionary Fund has also supported the Colorado Science and Engineering Policy Fellowship, which seeks to develop the next generation of policy and science leaders in Colorado. Students attended an eight-week intensive internship on the legislative process, which included developing model laws and policies, collaborating with policymakers in the state Legislature, and visiting corporate and research sites throughout Colorado.

SCOTT UNDERGRADUATE RESEARCH EXPERIENCE

Engaging research opportunities help undergraduate students persist to graduation. Analysis by Scott Scholar program director Susan Benzel demonstrates that students who participate in SURE persist at a higher rate:

ABOUT 35 STUDENTS on average for the past four years have participated in SURE.

MORE THAN 93 PERCENT of students participating in SURE stay in the college.

MORE THAN 99 PERCENT of students stay at CSU.

ABOUT 54 PERCENT of the SURE students identified as first in their family to attend university.

SURE student Lindsay Dietz at the Powerhouse Energy Campus, featuring a state-of-the-art 100,000-square-foot green building that is a model for sustainable building practices and innovative architectural design.

SURE student Lindsay Dietz at the Powerhouse Energy Campus, featuring a state-of-the-art 100,000-square-foot green building that is a model for sustainable building practices and innovative architectural design.
Scott Presidential Chairs Tami Bond and Jim Hurrell continue to work on the most pressing challenges facing the globe today, working across CSU and the nation to collaborate on climate change and sustainability research. They also co-led the college’s strategic planning process, which steers the college for the next five years and beyond.

Bond, Scott Presidential Chair for Energy, Environment and Health, obtained a coveted three-year NSF grant for Research Experiences for Undergraduates, which is designed to build excitement for research with societal impact, particularly among undergraduate students with underrepresented or nontraditional backgrounds. Eleven students joined the program this summer, each working with a different adviser on an aspect of energy use or human activity that affects the atmosphere. Although each project had a particular focus, the students formed a cohort that integrated perspectives of several tools and disciplines. Bond’s research focuses on the exchange between humans, energy use, climate, and human health. She intends for the continuing summer undergraduate program to integrate the interests of faculty across the college and the University, as well as diversify the pool of applicants interested in graduate study at CSU.

Hurrell, the Scott Presidential Chair in Environmental Science and Engineering, continues to work toward establishing CSU as a world leader in two emerging areas of climate science: climate intervention and Earth system prediction.

Hurrell is investigating approaches to potentially reduce the impacts of future climate change on natural and human systems through a concept called “Climate Intervention.”

Attempts to moderate anthropogenic warming by slightly increasing the amount of sunlight that clouds and particles in the atmosphere reflect back to space is a specific type of CI, sometimes referred to as Solar Radiation Modification. Interest in SRM as an option to reduce climate impacts is growing in the U.S. and other parts of the world. However, little is known about the effectiveness and risks of SRM approaches. After recently co-authoring new reports on SRM for the U.S. National Academy of Sciences and the United Nations Environment Programme, Hurrell is working to position CSU to lead a transdisciplinary effort on the impacts of proposed SRM strategies. As part of this effort, he is developing an SRM lab at CSU with support from a recent philanthropic gift and competitive grant funding.

Hurrell also continues work on Earth system prediction by integrating existing atmospheric, ecological, and agricultural expertise across campus. In partnership with the National Center for Atmospheric Research, the overarching goal is to develop new capabilities to skillfully predict changes in global, terrestrial ecosystems, including natural forest and grassland systems and managed croplands, rangelands, and forests; the consequences for food, fiber, energy, and water resources; and land management strategies for climate change mitigation and socioeconomic security.