Initial Design Considerations:
- Keeping patients safe and providing maximum comfort
- Device for physicians to increase access to the gallbladder
- Most common disorder affecting the biliary system (25 million people in the United States)
- Characterized by stone formation, which can lead to painful symptoms and potential duct blockages
- Subset of patient population has comorbidities, making them unable to undergo general anesthesia
- Current Treatments/Options
 - Cholecystectomy: surgical removal of the gallbladder (requires general anesthesia)
 - Percutaneous drainage: current solution to help relieve painful symptoms and formation, characterized by stone in the biliary system (25 million people)

Problem Statement
1. Base problem: A better solution to remove gallstones from non-operative patients suffering from gallstone disease is needed
2. Meetings with physicians and extensive research to determine:
 - True root of the problem
 - Available tools
 - Physicians’ needs and desires
3. Main problem identified to solve: The lack of access to the gallbladder that is limiting the use of current tools to remove gallstones in a minimally invasive manner

Goals and Preliminary Design
- Overall Project Goals: Develop an easy to use and reliable device for physicians to increase access to the gallbladder, while keeping patients safe and providing maximum comfort
- Initial Design Considerations:
 - Wire mesh with similar function to finger trap toy mechanism
 - Force and safety factor (SF) calculations were done to discover that a stainless-steel mesh would be able to withstand the pressures of the body

Design Objectives
- Prototype 1: Established mechanical functionality (objectives 1-7)
 - Handle rotates to change sheath diameter
 - Sheath diameter size can be seen on handle through a small window on housing
 - Wire mesh rigidly attaches to bearing
- Prototype 2: Improve usability, patient safety, and patient comfort (objectives 1-11)
 - Handle moves bridge along threads of housing to change sheath diameter

Prototype 1
- Overall Prototype 1 Goal: Establish mechanical functionality (objectives 1-7)
 - Handle rotates to change sheath diameter
 - Sheath diameter size can be seen on handle through a small window on housing
 - Wire mesh rigidly attaches to bearing

Prototype 2
- Overall Prototype 2 Goal: Improve usability, patient safety, and patient comfort (objectives 1-11)
 - Handle moves bridge along threads of housing to change sheath diameter

Percutaneous Access
- Galbladder with gallstones
- 1. 18-G needle punctures the abdominal wall, liver, and gallbladder
- 2. Guidewire is placed through 18-G needle
- 3. 18-G needle is removed, and device is placed over guidewire
- 4. Guidewire is removed, and device is kept in place
- 5. Device is upsized to increase sheath diameter
- 6. Tools are placed through the expanded device to remove gallstones
- 7. Sheath is fully expanded, and gallstones are removed
- 8. Sheath diameter is decreased over time
- 9. Device is removed
- Note: All placement done with pre-established imaging modalities

Objectives and Results
- Design Objectives
 - Prototype 1: Threaded physician interface
 - Prototype 2: Threaded physician interface
- Prototype 2: Locked control wires
 - Bearing between bridge and mesh
 - Bearing between bridge and mesh
 - Iris and iris tab
- Prototype 1: NA
 - Drain attachment
 - Suture eyelets
 - Spring-loaded lock
 - Detachable housing

Impact and Conclusions
- Current Impact
 - Raises awareness of the lack of options for the target patients
- Future Impact
 - Provide patients with options and has potential to be used in other procedures – increasing patient care across many fields
 - Decrease follow-up procedures – decreasing waste and financial burden for both hospitals and patients
- Conclusions and Accomplishments
 - Determined the root problem to be lack of access
 - Proved mechanical feasibility of device
 - Filed provisional patent
 - Created a foundation for project continuation
 - Collaborated with individuals across professional fields
 - Maintained a positive team dynamic

Future Work
- Immediate Plan: Compile tentative testing procedures, extra ideas, & current problems into a document for project pass off
 - Develop to-scale, working prototype
- Future Work: Obtain patent and consistently producible product

Acknowledgements
We would like to thank our advisor, Larry Blankenship, Dr. Kenneth Citrus, Dr. Julie Dunn, Dr. Joshua Tierney, and Dr. Erik McGraw for their continued support and assistance with this project. We would also like to thank the CSU/Uchealth North Clinical Immersion Program and the National Institutes of Health for the basis and funding of the project.