Flexible and Navigation Enabling Spine Phantom

Joe Clouse\(^1,2\), Megan English\(^1,2\), Matt Helmreich\(^1,2\), Ryan Henry\(^1,2\)

School of Biomedical Engineering\(^1\) Department of Mechanical Engineering\(^2\)

Background

Medtronic
Restorative Therapies Group
Louisville, CO
Enabling Technologies
Design and produce technologies for brain and spine surgeries

Problem

Current spine phantoms
1) Blue Phantom (rigid design)
2) Red Phantom (flexible design)

Either cannot achieve both physiologically realistic motion and repeatable home positioning

Project Goals and Constraints

User Needs
- Primary Goal: In a single phantom, achieve physiologically realistic and repeatable home positioning capabilities

Design Constraints
- Change in angle for home positioning b 3 rotational degrees of freedom
- 1) Repeatability Home Positioning
- 2) 3 translational degrees of freedom
- 3) 3 rotational degrees of freedom
- 4) Compatible with surgical tools & tasks
- 5) Compatible with O-Arm imaging
- 6) Size of Spine: L2-S5 vertebral

Initial Design
- First Full Prototype: November 2019

- All components 3D printed
- Home positioning acquired from side alignment pins

Feedback from Medtronic Engineers
- Locking pin design shows promise
- Desktop printer accuracy not met
- Pins from side limit accessibility of the spine during use

Key Features
- Spine: T12-L5 vertebral
- Connected with flexible spinal cord
- Dual pins from below
- Base
- Gel support
- Sternum pin
- 6-7 Locking Plates
- Locking Plate Holder

Validation Methods

- Imaging and Home Positioning
 - Completed using Medtronic’s StealthStation and O-Arm
 - Reference landmarks checked prior to and after use

- Finite Element Analysis (FEA)

 Problem: L4 Dual Pin experienced a fractured arm during use
 Action Taken: Larger fillet applied to stress concentration
 Validation: Using FEA, max stress was reduced by 56.4%

Results

- Home Positioning and O-Arm Imaging
 - Navigation remained accurate after manipulating and re-locking phantom
 - O-Arm Imaging:
 - Clear contrast between vertebral and intervertebral discs

- Drilling
 - O 25° dia. x 2.25° depth
 - Drilling was successful
 - No damage around drill site

Risk Analysis

- Risk tracked for each component using 1 to 5 scale
- Risk consisted of:
 - Technological: Manufacturability, Imaging, Durability, Spine Mobility, Repeatability
 - Usability: Ease of use (Imaging, Locking, Drilling, etc.)

Conclusions

- T12-L5 can achieve six degrees of freedom
- Pin design enables repeatable home positioning
- Clear O-Arm imaging
- Spine is compatible with drilling procedures
- Obtained satisfactory risk levels on the monthly risk assessment
- Created a modular spine phantom to enable further improvements

Future Work

- Complete quantitative testing of home positioning accuracy
- Further testing of common surgical procedures (drills, screws, etc.)
- Development of disease states such as Spondylolysis

Acknowledgements

A special thank you to our advisor, Shane Roner, Ph. D., Medtronic, and the following individuals for their contributions throughout our project:
- Victor Snyder
- Tara Wagnon
- Matt DiCamillo
- Michael Nguyen
- Dr. Ellen Brennan Pierce - CSU TP Lab