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ABSTRACT 

 

 

 

LARGE-SCALE REMOTE SENSING OF GEOMORPHIC CHANGE IN MULCHED AND 

UNMULCHED WATERSHEDS BURNED IN THE 2020 EAST TROUBLESOME FIRE, 

COLORADO  

 

 

Elevated levels of sediment transport in post-wildfire landscapes can degrade the hydrologic and 

geomorphic processes of a river system, damage aquatic habitat, and pose a threat to downstream 

infrastructure. Hillslope mulching applications have proven to be effective at mitigating runoff 

and erosion at plot and hillslope scales but the impacts of mulching at the watershed scale remain 

generally unknown. We conducted repeat aerial surveys of one unmulched and five partially 

mulched watershed outlets (0.61-1.44 km2) to quantify erosion and deposition in the East 

Troublesome Fire burn scar. The objectives of the study were (1) to quantify volumes of erosion 

and deposition for hillslopes and channels for a variety of sites at a range of elevations (2) to 

identify and quantify the drivers of erosion and deposition and their relative contributions within 

and across watersheds (3) to determine the impact of slope, width, and vegetation cover on 

sediment storage and transport within watersheds; and (4) to assess the impacts of a large-scale 

aerial mulching operation at scales from hillslopes to watersheds. Multiple drone flights were 

conducted for each study site between July and October 2022. The earliest and latest surveys 

were differenced to produce DEM of Difference (DoD), with spatial resolutions ranging from 3.8 

to 4.4 cm. Vertical uncertainties calculated from measurement uncertainty and Structure from 

Motion (SfM) errors were filtered out of the DoD at a 95% confidence interval (CI), resulting in 

maximum and mean detection thresholds of 11 and 4 cm, respectively. A supervised 
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classification algorithm was used to filter out changes due to vegetation growth and decay, which 

varied in effectiveness across the six study sites. Hillslope erosion and deposition volumes were 

at least three times higher than near-channel volumes, with most sites being an order of 

magnitude higher. However, near-channel erosion and deposition magnitudes normalized by area 

were higher than normalized hillslope magnitudes at all sites. A bootstrap forest regression model 

was used to determine relationships between various site-specific parameters and erosion and 

deposition for each watershed individually, and for all six sites combined. The model indicated 

mean slope, absence of vegetation, mean differenced normalized burn ration (dNBR), and 

hillslope length to be strong drivers of erosion and deposition for the individual models. Total 

precipitation accumulation and maximum 60-minute rainfall intensity were stronger contributors 

in the combined models. Near-channel storage and transport was influenced by local 

relationships between width, stream power, and absence of vegetation. Mulch coverage area was 

found to be weakly correlated with erosion and deposition at the watershed scale, with 

contributions possibly being dependent on coverage rate. These findings emphasize the 

importance of applying mulch in areas where it is both necessary and can have a measurable 

impact on reducing erosion rates.  
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(1) INTRODUCTION 

 

 

 

Wildfire prone regions, including the Colorado Front Range, are experiencing accelerated rates 

of large-scale, high-burn-severity wildfires. This increase in scale and severity has been linked to 

historic fire suppression and droughts attributed to climate change (Westerling et al., 2006; 

Miller et al., 2009). Wildfires enhance surface runoff and transport of surface sediment and 

debris by decreasing surface roughness and soil permeability and increasing ground litter 

(Benavides-Solorio and Macdonald, 2001, 2005; Robichaud et al., 2000), which can result in 

debris flows, higher peak flow rates, poor water quality, and scouring and aggradation of the 

downstream channel. It has been estimated that post-fire sediment yield contributes up to 70% of 

the long-term sediment yield in the Colorado Front Range (Morris, 1987). These effects can 

degrade the hydrologic and geomorphic processes of a river system, damage aquatic habitat, and 

pose a threat to downstream communities (Swanson, 1981).  

 

As the threat of wildfires continues to increase, a variety of mitigation techniques have been 

developed to limit post-fire runoff and sediment transport. These methods include straw 

mulching, forest-residue mulching, hydromulching, physical barriers, seeding, and chemical 

treatments. Several studies have analyzed the effectiveness of these techniques (Prats et al., 

2016; Schmeer, 2018; Girona-Garcia, 2021), and one method that has proved to be a viable 

option at a small scale is forest residue mulching. Application of mulched wood directly to 

hillslopes limits surface erosion by increasing surface roughness, decreasing bare soil cover, and 

decreasing rainfall impact energy, which have been shown to be the three driving forces behind 

post-fire sediment transport (Benavides-Solorio and Macdonald, 2005; Prats et al., 2016; Foltz 
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and Wagenbrenner, 2010; Robichaud et al., 2010a; Wagenbrenner et al., 2006). While these 

studies have confirmed that, under the right conditions, mulching can limit post-fire runoff and 

sediment transport on the plot (10-100 m2) to hillslope scale (100-1000 m2), few studies have 

attempted to estimate the impacts of mulching at the watershed scale (> 1 km2). Large scale 

aerial mulching operations are a costly endeavor; to maximize resources it is critical to 

understand the site-specific drivers of sediment transport, the areas at risk of contributing the 

most sediment, and areas where mulch can be most effective. 

 

Large scale studies of geomorphic change have only recently become possible thanks to 

advancements in remote sensing and photogrammetry. In the past, studies were limited by both 

the spatial scale and resolution at which sediment transport data could be collected. Previous 

studies (e.g., Benavides-Solorio and MacDonald, 2001; Schmeer et al., 2018) relied on sediment 

collection via sediment fences or preconstructed plots with rainfall simulators and sediment 

troughs (Prats et al., 2016). More recent studies utilized light detection and ranging (LiDAR) to 

be able to capture geomorphic changes at a much larger scale. While LiDAR measurements 

could be collected on a much larger spatial scale, they were restricted by the relatively coarse 

spatial resolution of the datasets (Pelletier and Orem, 2014; Brogan et al., 2019). Spatial 

resolution is directly correlated to the threshold of changes able to be detected during processing, 

as spatial resolution decreases so too does the detection threshold. More recently the field has 

turned to Structure-from-Motion (SfM) photogrammetry techniques. SfM utilizes uncrewed 

aerial vehicles (UAVs), capable of collecting centimeter resolution aerial images over hundreds 

of acres (Ellet et al., 2019; East et al., 2021). The use of UAVs and SfM software now allows the 

user to detect geomorphic changes on the order of a few centimeters (Fonstad et al., 2013), 
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providing an invaluable tool for accurately quantifying sediment flux volumes on hillslopes and 

channels at much greater scales. Having an accurate assessment of the sediment budget in 

contributing watersheds is necessary for downstream managers to protect critical infrastructure 

and mitigate damaging effects to aquatic habitat.  

 

Aerial mulching operations have been used to try to mitigate elevated levels of runoff and 

sediment transport. While forest residue mulching has proved effective at a small scale, large-

scale aerial mulching operations are both expensive and unproven. The 2020 East Troublesome 

Fire in the northern Colorado Front Range provides an opportunity to investigate post-fire 

sedimentation and the impacts of aerial mulching at the watershed scale. The fire began on 14 

October 2020 and went on to burn over 190,000 acres, making it the second largest wildfire in 

Colorado’s recorded history. Northern Colorado Water Conservancy District, in conjunction with 

Grand County, the United States Forest Service (USFS), and the Bureau of Land Management 

(BLM) conducted aerial mulching operations over much of the burned area from June to August 

2022 in an attempt to minimize sediment transport in high-risk areas. Subsequently, we have 

collected repeat UAV surveys of six study watershed outlets. 

 

The goals of this study are (1) to quantify volumes of erosion and deposition for hillslopes and 

channels for a variety of sites at a range of elevations (2) to identify and quantify the drivers of 

volumetric change and their relative contributions within and across watersheds (3) to determine 

the impact of several near-channel parameters on sediment storage and transport within 

watersheds; and (4) to assess the impacts of a large-scale aerial mulching operation at scales 

from hillslopes to watersheds. Through these objectives we hope to better understand the roles of 
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site-specific characteristics on postfire sediment transport, and to better inform future mulching 

operations to minimize cost and maximize success.  
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(2) BACKGROUND AND SITE DESCRIPTION 

 

 

 

This study focuses on a portion of the East Troublesome Fire burn scar along HWY 125, 

including six tributary watersheds to Willow Creek, a few miles northwest of the city of Granby. 

A significant portion of the study area experienced moderate to high burn severity, leading to 

widespread vegetation loss and ground debris, making it an ideal candidate for mulching. Two 

unmulched and four partially mulched areas were selected for data collection, ranging from 

elevations of 2,535 m to 3,619 m ASL (Figure 1). The six areas are referred to as Upper No 

Mulch (UNM), Upper Mulch 2 (UM2), Middle Partial Mulch (MPM), Middle Mulch (MM), 

Lower Partial Mulch (LPM), and Lower Mulch 2 (LM2).  

 
 

Figure 1: East Troublesome Burn area with locations of study watersheds, data collection areas (red outlines), and 

proposed mulching areas (white and brown hatching)  

 

The lower and middle watershed pairs drain directly into Willow Creek, while the upper 

watersheds drain into Pass Creek, a tributary of Willow Creek. Each pair of watersheds share 

comparable geomorphic characteristics, as well as similar vegetative regrowth, precipitation 
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patterns, burn severity, and size (Table 1). However, these characteristics differ between the 

upper, middle, and lower portions of the study area (Figure 2). Mean slope was calculated from a 

0.5 m pre-fire LiDAR derived DEM, burn severity percentages were calculated from Burned 

Area Emergency Response (BAER) maps of the area, and vegetation was calculated from RGB 

orthomosiacs of the study area using a semi-automatic classification algorithm. The proposed 

mulching areas occupied 0 to 69% of the study areas; we use these proposed areas in our 

analysis. Actual mulch ground coverage was likely variable over the proposed areas, but on-the-

ground mulch coverage observations were not collected. 

Table 1: Summary of watershed and fire metrics for each data collection area 

 

Watershed
Area

(km
2
)

Mean Slope 

(%)

Vegetation

Cover (%)

Unburned/Low

Severity (%)

Moderate

Severity (%)

High

Severity (%)

Mulched

Area 

(%)

Elevation

range (m)

UNM 0.82 12.3 20.0 6.5 89.5 3.9 0.0 2732-2888

UM2 0.78 19.7 18.8 36.5 62.5 1.0 17.7 2654-2865

MPM 1.44 27.1 25.8 70.1 29.9 0.0 0.0 2626-2825

MM 1.19 33.8 19.3 34.3 64.9 0.8 68.5 2606-2872

LPM 0.64 39.5 27.4 67.2 32.8 0.0 45.9 2548-2812

LM2 0.61 39.6 14.0 35.1 64.9 0.0 50.1 2535-2890

(a) 

UNM 
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Figure 2: (a) Slope, (b) burn severity, and (c) classified vegetation in the 6 data collection areas 

 

(c) 

UNM 

UNM 

(b) 
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The study site falls within sedimentary mid-elevation and subalpine forest ecoregions, dominated 

by Lodgepole pine, grouse whortleberry, subalpine fir, Engelmann spruce, russet buffaloberry, 

and a variety of shrub and grass groundcovers (Chapman et al., 2006; Soil Survey Staff, 2023). 

The geology of the area includes 50% Frisco family complexes with sandstone substratum, 25% 

Howlett family moist complexes, derived from sandstone residuum and slope alluvium, 20% 

Scout family moist complexes, also derived from sandstone residuum and alluvium, with the 

remaining 5% consisting of a variety of minor components (Soil Survey Staff, 2023). 

Precipitation at the sites is extremely variable and dominated by snow in the winter and intense 

localized convective storms in the summer.  
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(3) METHODS 

 

 

 

3.1 Drone Flights 

3.1.1 Flight Planning 

Aerial imagery was collected using a WingtraOne Gen II fixed wing mapping drone, operating a 

42-megapixel Sony RX1R II camera payload. Flash flooding and extreme topography limited 

our ability to access higher portions of the watersheds, so aerial imagery was collected for areas 

near the watershed outlets, ranging from 0.61 to 1.44 km2. Between July 11th and October 13th 

each subbasin was flown 3 times to allow for identification of erosion and deposition during that 

period. Mulching was completed prior to all flights, except the initial flight for UM2, which was 

conducted 1-2 weeks before mulching was completed in that area. One moderate rainfall event 

occurred between the first flight and mulching. Flight planning was conducted using Wingtra’s 

proprietary software, WingtraHub. All flights are fully automated from take-off to landing and 

follow a set of input parameters specified during the planning process. For the watershed flights 

the drone was flown at 120 m AGL, corresponding to a ground sampling distance (GSD) of 1.6 

cm per pixel, and a side and front overlap percentage of 70, which allowed for sufficient tie 

points to be present for SfM post-processing.  

3.1.2 Flight Execution 

WingtraOne is equipped with an onboard high-precision post processed kinematic (PPK) global 

navigation satellite system (GNSS) module. Therefore, it was not necessary to use ground 

control points (GCPs) to align images during post-processing (de Haas et al., 2021). WingtraOne 

corrects the spatial data associated with each image using a relative comparison between its raw 

in-flight readings and base station data collected during the flight. A Topcon GR-5 GNSS base 
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station unit receiver was used for this study. The receiver was set up no more than 1 km from the 

take-off location for the drone and collected static data at 1-second intervals for at least one hour 

including during the flight. The drone flights were then conducted from points high in the 

watershed to allow for line of sight to be maintained at all times between the pilot and the 

aircraft.  

3.2 Post Flight Processing 

3.2.1 Structure from Motion 

The static data were then uploaded to the National Oceanic and Atmospheric Administration’s 

(NOAA) Online Positioning User Service (OPUS). OPUS ties the static coordinate recorded to 

the National Spatial Reference System NSRS usually with an accuracy of a few centimeters, 

depending on location and how long the base station was recording. Our corrected accuracies 

ranged from 0.5 cm to 6.2 cm. Image corrections were performed using Wingtra’s proprietary 

PPK software, WingtraHub, where each image location is corrected using the adjusted base 

station data retrieved from OPUS. The output from this geotagging process was an updated set of 

images with vertical and horizontal errors ranging from <1 to 5 cm.  

 

These images were then processed in Agisoft Metashape structure-from-motion software. SfM 

processing allows the user to create three-dimensional topographic datasets from a series of two-

dimensional images with associated location data. One of the major difficulties working with 

repeat surveys is ensuring they are aligned accurately and consistently. For this study, we 

followed an SfM workflow developed by the USGS (Over et al., 2021) to create dense point 

clouds, digital elevation models (DEMs), and orthomosaics for each flight. We were interested 

only in the relative differences in topography between flights, therefore we utilized a 
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coregistration workflow during SfM optimization (Cook and Dietze, 2019) which detects 

common tie points located in stable portions of the survey, minimizing relative uncertainty 

between the different flights. For this workflow, images from all flights of a given area were 

processed together in a single “chunk”, with camera locations for only one set of images being 

activated. The activated images were used as a reference for the other flight images during the 

alignment, point detection, and optimization steps. For each pair of surveys the images with the 

lowest reported error from the geotagging process were selected to be activated. Once 

optimization was completed, the images were split into individual chunks based on their flight 

date, and dense point clouds, DEMs, and orthomosaics were constructed and exported from 

Metashape.  

 

Systematic errors that can result from GCP corrections, such as doming, were not present in any 

of our data sets. Therefore, error estimations could be focused on estimating precision, a measure 

of the random error caused by measurement uncertainty and uncertainty during SfM processing, 

such as tie point estimation (James et al., 2017, 2020). The errors reported from the geotagging 

process were imported to Metashape prior to optimization, and in conjunction with values 

calculated during the SfM processing, such as tie point variance, and optimization parameters, 

were used to calculate measurement precision of each point based on a workflow developed by 

(James et al., 2020). Horizontal uncertainties (0-5 mm) were significantly smaller than vertical 

uncertainties (1-5 cm) (Table 2), therefore they were neglected in the analysis.  
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Table 2: DEM resolutions and maximum and mean uncertainties for each flight 

 

The vertical uncertainty values were then exported from Metashape and interpolated onto a grid 

with resolution equal to each DEM using kriging with a spherical semivariogram model in Surfer 

13. This allowed error statistics to be calculated for each DEM (Figure 3a) and displayed as a 

point coordinate precision map (Figure 3b). The precision error maps were then used to calculate 

the detection threshold discussed in section 3.2.2. 

 

Figure 3: (a) Histogram of precision uncertainty values for LPM October DEM (b) point coordinate precision map 

for LPM October DEM 

 

 3.2.2 Sediment Volume 

DEMs of Difference (DoDs) were calculated for each portion of the study area by subtracting the 

DEM of the earlier flight from the DEM of the later flight. The output from this calculation 

shows erosion as negative change and deposition as positive change. The next step was to filter 

Watershed Flight Date

DEM 

Resolution

(cm/pix)

Max Vertical

Uncertainty 

(cm)

Mean Vertical

Uncertainty 

(cm)

7/18/2022 3.8 2.97 1.22

9/8/2022 3.8 2.96 1.30

7/11/2022 3.9 3.65 1.26

9/8/2022 4.1 3.20 1.38

9/1/2022 4.1 4.28 1.27

10/6/2022 4.1 5.04 1.32

9/1/2022 4.4 4.25 1.39

10/6/2022 4.0 3.97 1.47

8/12/2022 4.0 3.01 1.15

10/6/2022 4.2 3.62 1.31

8/12/2022 4.3 3.68 1.26

10/6/2022 4.0 3.55 1.17
LM2

UNM

UM2

MPM

MM

LPM

(a) (b) 
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changes from the DoDs that fell below our calculated threshold of detection. Following the 

methods outlined in Dai et al. (2022), the point precision uncertainty rasters for each DEM were 

combined using the method developed in Anderson (2019):  

𝛿𝐷𝑜𝐷 = ±1.96√𝜎2
2 + 𝜎1

2     (1) 

where 1.96 is the coefficient associated with a 95% confidence level from a student t-test, 𝛿𝐷𝑜𝐷 

is the 95% detection threshold and 𝜎 is the point precision uncertainty for a given DEM, with 

subscripts 2 and 1 representing the later and earlier flights, respectively. This equation assumes 

no correlation between the uncertainties of the two flights. 

 

The combined point precision map was used as a threshold of detection at each individual raster 

cell to filter out changes in the DoD that were within the positive and negative threshold values. 

This provided confidence that all changes outside of the detection threshold were occurring in 

the watersheds.  

 

The sediment volumetric changes were then calculated by multiplying the filtered DoDs by the 

pixel area. Lastly, we calculated the uncertainty in the volumetric calculations at a 95% 

confidence interval (CI) using the approach of Rolstad et al. (2009): 

𝜎𝑣 = √𝑛𝐿2𝜎𝐷𝑜𝐷√
𝜋𝑎𝑖

2

5𝐿2
       (2) 

where σv is the absolute volume error, n is the number of cells in the DoD, L is the cell size, ai is 

the range of the semi-variogram function, and σDoD is the standard deviation of the DoD at a 95% 

CI. σDoD and ai were calculated by running a portion of the DoD through a kriging tool utilizing a 

spherical semi-variogram model.  
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3.2.3 Vegetation Filtering 

After the DoDs were calculated, it was apparent that changes due to vegetation growth and decay 

would contribute significantly to estimated volumes, therefore, it was necessary to filter areas of 

vegetation out of the DoDs. Vegetation filtering was achieved using the Semi-Automatic 

Classification Plugin (SCP) for QGIS Desktop 3.22.7 (Congedo, 2021). SCP is a supervised 

classification tool, requiring the user to select a number of areas within the remote sensed data 

and associate them with a classification ID; in our case we created a binary classification: 

vegetation or non-vegetation. We used orthomosaic images, with RGB bands produced during 

the SfM processing phase, to perform our classification. SCP then analyzes the spectral 

signatures of the selected areas and classifies the entire dataset. From this a simple binary raster 

was created and multiplied with the DoD to set all areas with vegetation present equal to zero, 

effectively filtering vegetation changes out of the final change estimates. Estimates of the 

classification accuracy were determined using a random point sampling method which indicated 

the number of true-positive, true-negative, false-positive, and false-negative predictions by SCP. 

Points were generated at equal intervals orthogonal to the main channel; at least 100 points were 

sampled for each watershed. The value of the vegetation classification raster was sampled at each 

point and then compared with the actual groundcover, determined from the orthomosiac images.  

 3.2.4 In-Channel Sediment Transport Controls 

From initial observations it was clear that the channels and riparian zones were especially 

geomorphically active, so we decided to analyze near-channel drivers of sediment transport 

separately from hillslope drivers. The channels were delineated to include the main channel, and 

near-channel areas that were inundated at least once during the study period. The channels were 

delineated by hand using DoDs and orthoimagery to facilitate the identification of change 
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resulting from channel inundation, and high-water marks. Slope (S), width (w), vegetation cover 

(V), stream power (S/w), change in stream power (ΔS/w), and change in slope (ΔS) were 

identified as potential drivers of near-channel sediment transport. Stream power is traditionally 

calculated as the ratio of the flowrate and friction slope to the channel width; however, flowrate 

data was unavailable to us, so we used S divided by w as an analog for stream power. Average S 

and w were calculated over 10-m sampling windows that extended from the channel thalweg to 

the point of observable inundation during high flows. We estimated S/w as the ratio of average 

slope to average width over the 10 m sampling windows. Slope was calculated from a 0.5-m 

resolution DEM produced using prefire LiDAR flown in 2020. Prefire LiDAR was used for this 

instead of drone DEMs because the fineness of the drone resolution led to some very large slope 

values at near-vertical topography which skewed the average slope. The change in slope and 

stream power were calculated as the difference between the value at the upstream window and 

the value at the next downstream window. Longitudinal profiles of these values were then plotted 

alongside the thalweg profile and net channel change over the 10-m windows to facilitate 

identification of trends and relationships between them. 

3.3 Regression Model for Drivers of Erosion and Deposition 

3.3.1 Model Development 

To better understand the impacts of mulching at the watershed scale it is necessary to identify 

local relationships between a variety of hydrologic and geomorphic drivers and sediment 

transport. While it has been shown that drivers such as precipitation intensity, bare soil 

percentage, and drainage area are directly correlated with erosion, the relationship between these 

characteristics can vary greatly between sites (Benavides-Solorio and Macdonald, 2005; Prats et 

al., 2016; Foltz and Wagenbrenner, 2010; Robichaud et al., 2010a; Wagenbrenner et al., 2006). It 
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is important to determine the local drivers of erosion in order to better understand the impacts of 

mulching.  

 

For this study we chose to develop a bootstrap forest regression model (Breiman, 2001) capable 

of identifying the strength of correlation between site-specific drivers, including presence of 

mulch, and vertical topographic change. Bootstrap forest regression models have been shown to 

be particularly effective at predicting hydrologic phenomena due to their ability to handle a 

variety of variables with potentially non-linear or correlated relationships, their low risk of 

overfitting to random error in the datasets, and their effectiveness at determining the relative 

importance of each input variable (Eng et al., 2017; Addor et al., 2018; Miller et al., 2018). 

Bootstrap forest, also known as random forest, is an ensemble modeling approach that combines 

outputs from a large number of independent decision trees into a single model output, based on 

random sampling of input classifiers (Breiman, 2001). 

3.3.2 Model Inputs 

Four types of model setups were used to capture effects of drivers on topographic change over 

different spatial scales. Two models were developed for each individual subdivided watershed, one 

with erosion normalized by contributing area as the dependent variable, and one with deposition 

normalized by contributing area as the dependent variable. Two additional models were developed 

using combined data from all watersheds with normalized erosion and deposition as the dependent 

variables. We subdivided the watershed areas into hillslope and catchment scale subunits ranging 

from 450 m2 to 55000 m2, with a vast majority being between 5000 and 15000 m2. The models 

developed in Kampf et al. (2020) performed well using catchments in this size range. Delineations 

were created using ESRI ArcHydro delineation Tools in Arcmap 10.8.1. This method allowed us 
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to view watershed-scale processes as a culmination of site-specific relationships at a smaller scale. 

In each case the erosion and deposition volumes were normalized by dividing them by the sub-

unit area. We then log-transformed the normalized deposition volumes, and the absolute value of 

the normalized erosion volumes, to achieve a more normal distribution of the datasets. 

 

Precipitation totals and intensities were estimated using NOAA Multi-Radar Multi-Sensor (Zhang 

et al., 2016) Quantitative Precipitation Estimates (MRMS QPEs) and compared with local rain 

gauges to verify accuracy. Radar-only QPE is corrected using the Multisensor 1-hour QPE, at 

which point the correction bias is used to resample the precipitation estimates to 1-min 

accumulations for 1 km2 grid cells using a Python script. The calculated 1-min accumulations were 

then used to calculate the daily accumulations and compare the estimated 15-min intensity with 

the on-site gauge. Because this region experiences brief, localized, intense convective storms, it is 

difficult to estimate spatial patterns of precipitation at spatial scales below 1 km2 and therefore 

verification was conducted to ensure that accumulations were occurring at similar times and with 

comparable peak values. Wilson et al. (2018) identified the 60-minute maximum intensity to be 

successful at separating precipitation events that generated sediment transport from those that did 

not. Once we were satisfied that the MRMS estimates were adequate, the daily accumulations were 

summed over the period between the first and last data collection date, and 60-min maximum 

intensities were calculated for 1 km2 grid cells. The grid was then overlayed the study area where 

the values corresponding to each subunit were exported.  

 

We then built the model in JMP, a statistical analysis software, using an 80% training, 20% testing 

data split. Prior to running the model, input variables were analyzed for collinearity within JMP, 
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to determine a set of parameters that were not significantly correlated with one another (r < 0.85). 

All model setups were run using the same independent predictor variables for each subunit, 

including, mean slope (S), hillslope length (L), mean width (w), maximum 60-minute precipitation 

intensity (MI60), total precipitation accumulation (P), mean differenced normalized burn ratio 

(dNBR), bare ground coverage, defined as areas absent of vegetation (BG), and mulch coverage 

(M). Mulch coverage values were calculated as the percent overlap between the proposed mulching 

areas and each subbasin. Bare ground percentages include any areas not classified as vegetation, 

including, bare soil, rock outcrops, ground litter, downed trees, and open water. Models were also 

run including vertical uncertainty as one of the independent variables to ensure it was not 

significantly correlated with topographic change. 

 

The dependent variables of log-transformed normalized erosion and deposition volumes reflect 

topographic differences between surveys, which were conducted at different times during the 

season for the different watersheds (Table 2). This may have an impact on the statistical analysis, 

but we aimed to minimize potential complications by computing the time-dependent precipitation 

variables (MI60 and P) using data from the time between the two flights for each watershed, so 

that measured erosion and deposition only reflect precipitation events that occurred during the 

observation period for each watershed. 

 

Model performance was assessed using both the coefficient of determination, R2, and root mean 

squared error (RMSE). Because the model relies on random sampling, we ran both models 25 

times for each watershed to ensure sufficient input data coverage, and identified the model runs 

with the highest performance metrics. The five model runs with the best performance metrics 
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were then compared with the predictions of all the model runs to determine the result that was 

most accurate and representative of the natural phenomena. This was achieved by determining 

the most common ranking for each predictor and choosing the model from the five most accurate 

that was most representative of this modal ranking. This helped to avoid choosing an anomalous 

model run that was not representative of the overall model performance. 
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(4) RESULTS 

 

 

 

4.1 Precipitation 

MRMS estimates of 60-min maximum intensity and total accumulation were first compared with 

USGS gauge 401642106051601 and an on-site tipping bucket rain gauge located at 40.249418 

N, 106.083132 W, roughly 2 km from the outlets of MPM and MM. Table 3 shows comparisons 

between the two local gauges and the MRMS estimates for each watershed. The gauges only 

provide data at a single point, so there is no maximum or minimum P, the value just represents 

the total accumulation at those points. Since MRMS provides spatially variable precipitation, the 

maximum and minimum P indicate the largest and smallest total accumulations experienced by a 

portion of the watershed, respectively. The similarity of the values gave us confidence that the 

MRMS data is representative of the conditions occurring at the sites. Each date range was 

checked for the local gauges and was found to be within a few centimeters of the MRMS 

estimates. 

Table 3: Rain gauge data compared with MRMS estimates for rain events between flights 

 

MI60

(mm/hr)

Max P

(mm)

Min P

(mm)

USGS

(7/1-10/1)
17 133 -

Tipping

Bucket

(6/20-10/18)

13 128 -

LM2

(8/12-10/6)
7 48 48

LPM

(8/12-10/6)
7 48 46

MM

(9/1-10/6)
5 23 22

MPM

(9/1-10/6)
6 27 24

UNM

(7/18-9/8)
12 124 119

UM2

(7/11-9/8)
15 124 117

M
R

M
S

(d
at

e 
ra

n
g

e)

Source

L
o

ca
l

(d
at

e 
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n
g

e)
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Figure 4 shows a few examples of the comparisons between the MRMS 15-min intensity and the 

15-min intensity at the tipping bucket gauge. It is apparent that the MRMS does not replicate the 

actual rainfall exactly, but it is successful at estimating the time and magnitude of precipitation 

relatively accurately. 
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Figure 4: MRMS simulated 15-minute intensity compared with on-site tipping bucket rain gauge 

 

Due to the coarse spatial resolution of the MRMS data there is low variability of the intensities 

and total accumulations within each watershed and pairs of watersheds. There was, however, 

significant variability across the upper, middle, and lower portions of the study area. 

Precipitation values were greatest during the earlier data collection periods, with the most 

precipitation falling during the upper watershed’s data collection period, followed by the lower 

pair, and lastly the middle pair having the lowest total accumulation. 60-minute intensities also 

followed a similar pattern, with summer storms weakening as the study period moved into fall.   

4.2 Topographic Change and Detection  

Spatial patterns of erosion and deposition varied greatly across the six study watersheds. Rilling 

and gully formation were prevalent on hillslopes for both LPM and LM2 (Figure 5a), with 

vertical changes up to 60 cm in some locations. The remaining watersheds exhibited little to no 

signs of rilling or gulley formation. Alternating areas of erosion and deposition occurred along 

the near-channel portions of each watershed (Figure 5b). Channel erosion in LPM, LM2, and 

MM appeared to be a result of aggressive head cutting of mobile bank sediment, which is 

enhanced by the high degree of confinement of those channels. MPM and the upper watersheds 

were better protected by vegetation and had better floodplain connectivity, which led to less 

extreme channel changes in these watersheds.  
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Figure 5: (a) Hillslope rilling and gulley formation in LPM, (b) near-channel erosion and deposition in LPM, red 

indicates erosion and blue deposition  

 

The level of detection for each raster cell was specified as the maximum vertical uncertainty at 

the point (Equation 1); the maximum and mean uncertainties for each DEM and DoD can be 

seen below (Table 4). Vertical uncertainties were not randomly dispersed over the study area. 

With few exceptions, the highest uncertainties occurred in locations with dense vegetation, and 

along the valley floors (Figure 6).  

(a) 

(b) 
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Figure 6: (a) UM2 orthomosaic displaying areas with dense vegetation along the stream corridor (b) propagated 

uncertainty map for UM2 showing higher uncertainty values in vegetated areas 

 

SfM processing often has difficulty identifying common tie points in areas with vegetation, 

shadowing, and standing water (Dai et al., 2022), therefore it is reasonable to expect relatively 

higher uncertainties at these locations.  

Table 4: Propagated vertical uncertainties at 95% confidence level for the six study sites  

 
 

4.3 Vegetation Filtering   

The reliability of the vegetation filtering was inconsistent, and the method noticeably struggled 

with very bright and very dark areas of the orthomosaics. This led to uneven filtering in LM2, 

LPM, and UNM (Figures 7 a, b), and generally unsuccessful filtering in UM2, MM, and MPM 

(Figures 7 c, d). Significant volumes of detected change were removed via filtering for each 

Watershed
Flight

Date

Max Propagated

Uncertainty 95% CI

(cm)

Mean Propagated

Uncertainty 95% CI

(cm)

7/18/2022

9/8/2022

7/11/2022

9/8/2022

9/1/2022

10/6/2022

9/1/2022

10/6/2022

8/12/2022

10/6/2022

8/12/2022

10/6/2022
LM2

UNM

UM2

MPM

MM

LPM

3.38

7.33

8.21

10.92

9.76

7.58

9.03

3.5

3.68

3.61

3.99

3.41

(a) (b) 
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watershed but the volumes for UM2, MM, and MPM were negligible compared to the actual 

volume changes contributed by vegetation growth and decay.  

 

 

Figure 7: (a) LPM unfiltered DoD, showing large magnitudes of change in vegetated areas (b) LPM DoD after 

vegetation filtering, showing generally successful removal of vegetation (c) MPM unfiltered DoD, showing large 

depositional magnitudes from vegetation (d) MPM DoD after vegetation filtering, showing insufficient removal of 

changes due to vegetation 

 

 

Most changes due to vegetation in MM and MPM appeared as deposition, while large erosional 

values occurred at treetops in UM2. Changes greater than 2 m were filtered out of UM2 to 

reduce vegetation effects on volume estimates, and analysis of MM and MPM was limited to 

hillslope erosion, and channel changes only.   

 

Table 5 shows the results of the random point sampling, with true-positive indicating correctly 

predicted vegetation, true-negative indicating correctly predicted bare ground, false-positive 

representing incorrectly identified vegetation, and false-negative incorrectly identified bare 

(a) (b) 

(c) (d) 
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ground. Higher FP values indicate the classification algorithm is overpredicting presence of 

vegetation, while higher FN values signify underestimation of vegetation. MM, MPM, and UM2 

had the poorest filtering results.  

Table 5: Point sampling results showing number of true-positive (TP), true-negative (TN), false-positive (FP), and 

false-negative (FN) predictions for each watershed 

 

 

4.4 Volumes of Watershed-Scale Erosion and Deposition 

MPM and UNM had no mulch coverage, UM2 had the lowest mulched area, 17.7%, with the 

other three having mulched areas ranging from 46-69%. Erosion volumes were greatest in the 

upper watersheds (Table 6), while MM, MPM, LPM, and LM2 experienced comparable 

normalized erosion depths between 4.7 and 6.1 mm (Table 7). Both lower basins were net 

depositional, which can likely be attributed to sediment being transported from higher in the 

watershed and deposited at the watershed outlet or along the channel where slopes decrease, 

and/or width increases. LM2 retained the most sediment with an excess of 1,500 cubic meters 

being deposited. UNM and UM2 were both net erosional, with UNM losing the most, roughly 

2,500 cubic meters of sediment, over the study period. 

 

 

 

 

 

WS TP TN FP FN Correct %

UNM 16 75 7 9 85

UM2 10 71 15 10 76

MPM 13 48 11 31 59

MM 11 64 11 18 72

LPM 25 108 19 15 80

LM2 8 83 6 14 82
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Table 6: Calculated volumes of erosion and deposition with uncertainties at 95% CI for watersheds and channels 

 
 

Table 7: Total, hillslope, and channel erosion and deposition volumes normalized by contributing area 

 

Figure 8 below shows erosion and deposition volumes in mulched and unmulched portions of the 

study areas. Erosion per area is lower in mulched areas than in unmulched areas in the upper and 

lower watershed pairs, and larger in MM. MPM and UNM had no mulch coverage, and 

deposition volumes for MPM and MM could not be trusted due to excess vegetation, thus no 

changes are shown for these scenarios. Deposition rates were similar for mulched and unmulched 

areas, with mulched deposition per area being slightly higher in UNM and LPM, and slightly 

lower in UM2 and LM2.  

Watershed

Net 

Change

(m
3
)

Total

Erosion

(m
3
)

Total

Deposition

(m
3
)

Hillslope 

Erosion 

(m
3
)

Hillslope 

Deposition 

(m
3
)

Channel

Erosion

(m
3
)

Channel

Deposition

(m
3
)

UNM
-2508

(±1214)

-7556

(±367)

5048

(±327)

-7219

(±367)

4717

(±321)

-337

(±10)

331

(±75)

UM2
-1422

(±653)

-4941

(±208)

3519

(±176)

-4839

(±206)

3284

(±170)

-102

(±503)

235

(±864)

MPM -
-8834

(±1639)
-

-8607

(±1639)
-

-227

(±38)

149

(±92)

MM -
-5957

(±1116)
-

-5410

(±1112)
-

-547

(±183)

1815

(±511)

LPM
310

(±1236)

-3025

(±343) 

3335

(± 432)

-1692

(±343)

2847

(±423)

-1333

(±19)

488

(±373)

LM2
1572

(±238)

-3220

(±68)

4792

(± 77)

-2812

(±68)

4108

(±76)

-408

(±6)

684

(±37)

Watershed
Net/Area

(mm)

Erosion/Area

(mm)

Deposition/Area

(mm)

Hillslope

Ero/Area

(mm)

Hillslope

Dep/Area

(mm)

Channel

Ero/Area

(mm)

Channel

Dep/Area

(mm)

UNM -3.2 -9.2 6.2 -9.6 6.3 -11.6 11.4

UM2 -1.9 -8.5 6.0 -6.7 4.5 -9.8 22.5

MPM - -6.1 - -6.5 - -17.3 11.4

MM - -5.0 - -5.0 - -18.1 59.9

LPM 0.6 -4.7 5.2 -3.2 5.3 -115.2 42.2

LM2 3.0 -5.3 7.9 -5.5 8.0 -33.0 55.4
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Figure 8: Normalized volumes of erosion and deposition for six watershed outlets subdivided by presence of mulch, 

with error bars representing uncertainty in the volumes at a 95% CI  

 

Channel dynamics were quite varied with channel contributions ranging from <1% to 44% of 

total erosion volume, and 6-15% of depositional volume. Channels demonstrated higher levels of 

erosion and deposition per area than hillslopes in all six study sites, with the lower watersheds 

experiencing 3-10 times the levels of the others (Figure 9). MM channel was net depositional, 

LPM was net erosional, and the remaining channels were relatively close to equilibrium. See 

section 4.6 for more detailed results regarding channel dynamics.  

  
Figure 9: Erosion and deposition normalized by area for the six study locations divided by total, hillslope, and 

channel areas, error bars represent the uncertainty in the volume calculations at a 95 % CI 
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4.5 Watershed-Scale Erosion Controls 

Performance of the bootstrap regression models was generally good, with R2 values ranging from 

0.53 to 0.85 and RMSE values ranging from 0.30 to 0.72 m. The performance of the testing 

datsasets were consistently poorer than the training dataset, with R2 and RMSE ranges of 0.00 to 

0.75 and 0.34 to 0.80 m, respectively. The model runs including uncertainty as an independent 

variable indicated that it was not significantly correlated with erosion or deposition, with 

contribution values falling below 5%. Model outputs included Pearson correlation coefficient 

matrices (Figure 10), relative parameter contributions (Figure 10), and partial dependence plots 

(Figures 11, 12). Correlation coefficients, parameter contributions, and partial dependence plots 

for model runs not displayed in the text can be found in the Appendix.   

 

Figure 10: (Left) Pearson correlation coefficients for combined erosion model (Right) relative contributions of each 

parameter to combined erosion; values indicate percent contribution and signs indicate positive or negative 

relationship with erosion 

 

Table 8 shows the results from the top performing model run for each set-up, emphasizing the 

complex and dynamic relationships between site-specific conditions and geomorphic change. 
 

Table 8: Contribution rankings for each model set-up including positive or negative Pearson correlation coefficient  

 

 
 

 

Combined log(Ero/A) log(Dep/A) w L S MI60 P dNBR BG M

log(Ero/A) 1.000 0.001 0.032 -0.107 0.000 -0.234 0.292 -0.128 -0.227 -0.149

log(Dep/A) 0.001 1.000 0.099 0.074 0.286 0.514 -0.265 -0.152 -0.157 0.045

w 0.032 0.099 1.000 0.072 -0.075 0.089 0.080 -0.060 -0.066 -0.186

L -0.107 0.074 0.072 1.000 0.027 0.122 -0.160 0.028 0.221 0.182

S 0.000 0.286 -0.075 0.027 1.000 0.077 -0.648 -0.179 -0.076 0.191

MI60 -0.234 0.514 0.089 0.122 0.077 1.000 -0.149 0.002 0.143 -0.031

P 0.292 -0.265 0.080 -0.160 -0.648 -0.149 1.000 0.225 0.123 -0.394

dNBR -0.128 -0.152 -0.060 0.028 -0.179 0.002 0.225 1.000 0.439 0.397

BG -0.227 -0.157 -0.066 0.221 -0.076 0.143 0.123 0.439 1.000 0.214

M -0.149 0.045 -0.186 0.182 0.191 -0.031 -0.394 0.397 0.214 1.000

Watershed UNM UM2 MPM MM LPM LM2 Combined UNM UM2 MPM MM LPM LM2 Combined

R
2 0.622 0.845 - - 0.529 0.640 0.829 0.787 0.815 0.641 0.620 0.618 0.799 0.779

RMSE 0.416 0.409 - - 0.693 0.297 0.452 0.430 0.380 0.303 0.548 0.721 0.320 0.457

Most BG (-) BG (-) - - L (-) S (+) P (-) BG (-) BG (-) BG (+) S (+) S (+) S (+) P (+)

2 L (+) MI60 (-) - - M (+) L (-) BG (-) dNBR (-) dNBR (-) S (+) M (+) dNBR (-) L (-) BG (-)

3 dNBR (-) P (+) - - S (+) M (-) S (-) L (-) L (+) dNBR (-) w (-) BG (-) M (-) dNBR (-)

4 S (-) dNBR (-) - w (+) dNBR (+) dNBR (+) w (+) S (-) L (+) BG (+) L (+) BG (-) S (+)

5 w (+) L (-) - - dNBR (+) BG (-) MI60 (+) S (+) MI60 (-) w (-) L (-) M (+) w (-) MI60 (+)

6 MI60 (-) w (-) - - BG (-) w (+) L (+) MI60 (-) P (-) MI60 (+) dNBR (+) MI60 (-) dNBR (+) L (+)

7 P (-) S (-) - - P (+) P (-) w (-) P (-) w (-) P (-) MI60 (-) w(-) P (-) w (-)

Least M (N/A) M (-) - - MI60 (+) MI60 (+) M (-) M (N/A) M (-) M (N/A) P (-) P (-) MI60 (+) M (-)

ErosionDeposition
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Figure 11: Magnitudes of model contributions for input variables of each model run 

 

4.5.1 Individual erosion models 

Mean slope (S) is indicated as contributing most to erosion in MM, LPM and LM2, and second 

most in MPM, which coincidentally have the four highest average slopes. S is indicated to have a 

positive correlation with erosion in all watersheds except for UM2. Area absent of vegetation 

(BG) is the strongest contributor to erosion in UNM and UM2 but is negatively correlated. In 

fact, BG is negatively correlated with erosion in all model runs except for MM and MPM. 

Length (L) and mean dNBR are the remaining drivers that consistently contributed greater than 

10% to erosion. L displayed a nonlinear relationship in all watersheds. In several models, the 

partial dependence plots show a positive correlation between L and erosion for lengths less than 
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250 m, and a negative correlation for longer slopes (Appendix Figures 10, 12, 15, and 16). dNBR 

was also inconsistent across the study sites, showing either negative correlations or negative 

followed by positive for values above 400 (Appendix Figures 10, 15 and 17). dNBR values 

ranging from 300-550 are classified as moderate severity, with values larger than 550 indicating 

high burn severity. Width (w), precipitation accumulation (P), and 60-minute max intensity 

(MI60) all contributed negligibly to erosion across the six watersheds. Mulch was an inconsistent 

contributor to the models with a strong positive correlation with erosion in MM, a weak positive 

correlation in LPM, and the others weakly negatively correlated.  

4.5.2 Combined erosion model 

The combined model, which included data from all six study sites, produced very different 

results than the individual model runs. Primarily, P and MI60 went from being negligible 

contributors to contributing the most and fifth most to erosion, respectively. BG is found to be 

negatively correlated to erosion, and contributes almost as much as P, around 20%. Similar to the 

individual model runs, dNBR showed a negative correlation with erosion for dNBR values under 

400 and a positive correlation with erosion for values greater than 400 (Figure 12). S also 

contributed over 10% to the model and demonstrated a positive relationship between slope and 

erosion (Figure 12). L was a small contributor and showed a negative correlation for lengths less 

than 300 m and a small positive correlation for slopes longer than 300 m.  



32 

 

 
 

Figure 12: Partial dependence plots for the combined erosion model.  

 

4.5.3 Individual deposition models 

Model runs for deposition were not conducted for MM and MPM due to insufficient vegetation 

filtering. The main drivers of deposition were variable across the individual model runs and the 

combined model. BG was the dominant driver in the upper pair, one of the smallest contributors 

in the lower pair, and was negatively correlated with deposition in all 4 sites. L was a moderate 

contributor in all four watersheds, displaying a negative relationship for lengths less than 300 m 

and positive for longer lengths in several cases (Appendix Figures 11 and 13). S was the biggest 

contributor in LM2 and third largest in LPM with strong positive correlations for slopes less than 

40 percent and a small negative correlation for slopes greater than 40 percent (Appendix Figures 

17 and 19). M had a strong positive correlation with deposition in LPM, and weak correlations in 

the other two sites. P and MI60 had considerable contributions in UM2, where deposition was 

negatively correlated with MI60 and positively correlated with P. Lastly, dNBR contributed 

moderately across the 4 individual models, with negative correlations in the upper watersheds 

and positive correlations in the lower sites.  
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4.5.4 Combined deposition model  

The combined deposition model was dominated by P, with BG, S¸ and dNBR all contributing 

above 10%. P had a strong negative correlation with deposition (Figure 13). BG also had a strong 

negative correlation with deposition, with deposition decreasing sharply for BG percentages 

greater than 60%. S was the third highest contributor with slopes below 30% being positively 

correlated with deposition and slopes larger than 30% being negatively correlated. MI60 

displayed a positive correlation for the low and high intensities and a negative correlation for the 

moderate intensities (Figure 13). dNBR had a moderate contribution at around 11% and had a 

weak correlation as burn severity increased. L, w, and M had little contribution and weak 

correlations to deposition.  

 

 
 

Figure 13: Partial dependence plots for combined deposition model 

4.6 Channel Erosion and Deposition 

Appendix Figures 31-39 show longitudinal profiles, from top to bottom, of elevation (Z), 

normalized net channel change over 10 m windows (Vol/Area), slope (S), change in slope (ΔS), 

mean width of the 10 m windows (w), stream power (S/w), change in stream power (Δ(S/w)), and 

bare ground percentage within the windows (BG), respectively. Areas where the relationship 



34 

 

between these parameters is clear are shown below in Figures 14-21. Included with the six main 

channel sections are three tributaries, from UNM, UM2, and MM, that share similar 

characteristics to the main channels. MPM and LPM were net erosional, LM2, MM, and UM2 

were net depositional, and UNM had essentially no net loss or storage. The tributaries were all 

net depositional. It is important to understand near-channel sediment dynamics as channels can 

be a significant mechanism in watershed scale sediment flux. For example, channel erosion in 

LPM was responsible for over a third of the total erosion volume in that watershed. When 

normalized by channel area, LPM, LM2, and MM were by far the most dynamic for both erosion 

and deposition.  

 

It is unlikely that there will be one dominant driver of channel change; instead, a complex and 

varying relationship between site-specific characteristics will result in different levels of channel 

change. Figures 14-21 provide evidence of these complex relationships and shed some light onto 

what combination of characteristics can result in transport or storage. LM2 and LPM channels 

were characterized by high degrees of confinement, with unstable banks, and large volumes of 

transportable sediment. This resulted in consistently narrow channel widths, and high 

percentages of BG. Therefore, increasing S and S/w proved to be the driving factors behind 

erosion (Figure 14). Deposition was influenced by all factors, with increasing w, decreasing S 

and S/w, and decreasing BG all contributing to areas of deposition (Figure 15). The middle pair 

were relatively less dynamic but identifiable trends were apparent. Erosion in MM and MPM 

was heavily dependent on the relationship between w and BG. Erosion occurred at constrictions 

with increasing S/w, as well as at widenings where BG was increasing (Figures 16-18). The 

drivers of deposition were less clear, displaying a complex relationship between the parameters 
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and additional site characteristics. The largest depositional area in MPM Appendix Figure 36 

appeared to be a result of a culvert at a road crossing which likely backed up high flows, 

dissipating energy, and allowing sediment to settle in the surrounding areas. The near-channel 

area in the upper pair of watersheds was characterized by dense grass and groundcover. This led 

to these channels having the lowest BG and high volumetric uncertainties. Despite this, there 

were clear signals that all parameters contributed to erosion and deposition in the watersheds. 

Areas with increasing w, decreasing S/w, and decreasing BG displayed significant deposition 

(Figures 19-21). Conversely, erosion occurred at locations with increasing BG, and decreasing w 

and S/w.  

 
Figures 14 (Left) and 15 (Right): Longitudinal profiles of near-channel characteristics in areas of interest in LM2 

and LPM, respectively 
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Figures 16 (Left) and 17 (Right): Longitudinal profiles of near-channel characteristics in areas of interest in MM 

 
Figures 18 (Left) and 19 (Right): Longitudinal profiles of near-channel characteristics in areas of interest in MPM 

and UM2, respectively 
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Figures 20 (Left) and 21 (Right): Longitudinal profiles of near-channel characteristics in areas of interest in UNM 
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(5) DISCUSSION 

 

 

 

5.1 Large-Scale Volumetric Change 

HWY 125 and Willow Creek reservoir are both directly affected by sediment volumes leaving 

the study watersheds and were both impacted significantly in the months and years after the East 

Troublesome Fire. Accurately quantifying sediment transport volumes is critical to the planning 

and application of post-fire mitigation strategies and the protection of downstream infrastructure. 

Hillslope erosion and deposition were the dominant contributors to sediment flux within the six 

study sites (Table 6). Similar LiDAR-based studies concluded that hillslope erosion was the 

dominant transport mechanism at the watershed scale (Rengers et al., 2021; Pelletier and Orem, 

2014), and acknowledged watershed size to be an important factor in net sediment flux. In all but 

two of our study watersheds hillslope volumes were an order of magnitude larger than volumes 

stored or transported in the channel. Channel erosion in LPM contributed 44% of the total 

erosion, and channel deposition in MM was 30% of the total deposition. Additionally, all 

channels contributed more sediment per area than their hillslope counterparts, emphasizing the 

high capacity for transport and storage near and within channels (Table 7). Channel change was 

highly variable across the study sites, with each pair having one net erosional channel and one 

net depositional channel (Figure 9). LPM in particular contributed a large volume of sediment to 

Willow Creek. Normalized channel erosion and deposition were greatest for the lower pair of 

watersheds, followed by the middle pair, and the upper pair had the smallest values. Channels in 

LPM and LM2 were confined and had abundant transportable sediment available, along with 

very little vegetation in the near-channel areas, which were likely all contributing factors to the 

elevated transport rates in these watersheds. Normalized hillslope contributions were comparable 
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across all three pairs, with the upper pair having slightly larger values than the others. 

Knowledge of the sediment flux characteristics in each watershed allows us to identify where 

and to what extent mitigation strategies should be applied.  

5.2 Controls on Topographic Change within and Across Watersheds  

Our main objective of this study was to identify what watershed characteristics were contributing 

most to post-fire erosion and deposition, to better inform management strategies. By identifying 

areas where certain drivers are strongly correlated with erosion and deposition, we can gain 

insight on how to most effectively deploy mitigation efforts. In several cases, hillslope length 

had a particularly strong nonlinear relationship across the individual model runs. Erosion was 

positively correlated with hillslope length for lengths smaller than 250 m, and deposition was 

positively correlated for lengths greater than 250 m (Appendix Figures 10, 11, 13, 15 and 17). 

This phenomenon is corroborated by several established sediment transport equations including 

the Universal Soil Loss Equation (USLE), which predicts erosion to increase with length up to 

120 m. The Revised Universal Soil Loss Equation (RUSLE) predicts this critical length to be 

around 300 m (Wischmeier and Smith, 1978; Renard et al., 1991). The physically based model 

Disturbed WEPP predicts sediment yield to increase with length up to 200 m, followed by 

decreasing yields after 250 m (Miller et al., 2011). Similar mulching studies (Prats et al., 2016; 

Schmeer et al., 2018) determined sediment yield decreased with slope length, and emphasized 

the effect of increasing complexity of slope characteristics over a large scale on total sediment 

yield. Because deposition is likely to begin as hillslope lengths increase, mulching efforts should 

be focused on hillslopes with lengths shorter than 300 m. 
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Total precipitation and maximum 60-minute intensity showed negligible correlations with 

erosion and deposition for all but one of the individual model runs but were significant 

contributors for both combined model runs. The MRMS data used to estimate precipitation for 

the study sites were gridded into fairly coarse 1 km2 grid cells, which resulted in very little 

variability over the individual sites (Table 3). However, across all six watersheds this variability 

increased, and thus the true impact of these drivers could be more accurately defined. Total 

precipitation was negatively correlated with deposition, while 60-minute intensity was positively 

correlated, and both precipitation indices were positively correlated with erosion, which 

corroborates several recent studies that identify precipitation accumulation and intensity as some 

of the most important drivers of geomorphic change (Wagenbrenner et al., 2006; Robichaud et 

al., 2013a; Schmeer et al., 2018).  

 

These studies, along with Benavides-Solorio and MacDonald (2005), identify bare ground 

coverage to be one of, if not the, strongest contributors to geomorphic change in post-fire 

landscapes. Our results are in agreement, with non-vegetated area contributing significantly in 

both the individual and combined models. In this study we combined bare soil, rock 

outcroppings, ground litter, and open water into a single classification for analysis (BG); in 

future studies the relationship between these more specialized ground covers, bare soil, and 

vegetation cover could be fleshed out by adding them as their own variables in the regression 

model. This distinction, along with variable success filtering vegetation, could be the cause of the 

varying correlations between BG and topographic change. Unfiltered vegetation resulted in 

positive and negative changes across all the basins; logically this would result in vegetation 

being positively correlated with erosion and deposition. Since our bare ground parameter was 
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calculated as all areas without vegetation, it makes sense that this could have influenced the bare 

ground correlation to be negative with erosion. Despite this variability, it is clear that BG plays 

an important role in post-fire sediment transport and should be included in the planning of 

mulching operations. 

 

Average slope, dNBR, and width all displayed varying correlations and contribution levels across 

the model runs. Notably, slope was one of the strongest contributors in the catchments with the 

highest slopes, LM2, LPM, MPM and MM and one of the lowest contributors in the catchments 

with the lowest slopes, UM2, and UNM. This demonstrates that erosion and deposition are 

driven by slope in high-slope areas, but likely driven by other characteristics, such as absence of 

vegetation and precipitation, in low-slope areas. This emphasizes that for a mitigation strategy to 

be successful, it must be dynamic, and adapt to variable site conditions. dNBR displayed a 

nonlinear relationship with erosion and deposition, that identified a positive correlation with 

deposition for low severity values, and a positive correlation with erosion for moderate to high 

severity burn values. Burn severity has been shown to be a key contributor to geomorphic 

change, especially in the first 2-5 years post-fire for several reasons, including increased soil-

water repellency and vegetation loss (Benavides-Solorio and MacDonald, 2005). As soil-water 

repellency is lost and vegetation regrows, dNBR will likely become a less effective predictor of 

geomorphic change, highlighting the necessity of acting quickly to prepare and apply models 

such as these. Width contributed marginally across all model runs, and had varying correlations 

with erosion and deposition but some of the model runs indicated a positive correlation between 

width and erosion for narrow average widths (<50 m).  
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When compared with other similar studies (e.g., Schmeer et al., 2018, Benavides-Solorio and 

MacDonald, 2005, Garter et al., 2014, Pelletier and Orem, 2014, Rengers et al. 2021), our model 

performed well. The performance of our models for the testing datasets was more varied and 

displayed lower correlations but several model runs produced testing results on a comparable 

level to the training datasets. While the goal of this study was not to produce a predictive model 

for erosion and deposition, these results emphasize that with a larger sample size of input data 

and careful collection and framing of data, bootstrap regression models could be a powerful and 

versatile tool for post-fire management. 

5.3 Near-Channel Sediment Dynamics 

Our volume estimates indicate that channels in post-fire environments are significant sources of 

sediment transport and storage and therefore should not be ignored in post-fire watershed 

management. Channel erosion was dominated by bank failure and incision in LPM and LM2 due 

to high degrees of confinement and abundant transportable sediment, likely a result of elevated 

hillslope contributions since the fire. Deposition in these sites was linked to areas where 

confinement lessened, leading to lower slopes and lessened stream power. The relationship 

between bare ground and width was a driving factor in the middle watersheds. This is likely due 

to a higher availability of mobile sediment in these areas. The upper watersheds were influenced 

considerably by dense riparian vegetation and elevated levels of floodplain connectivity. All sites 

indicate elevated levels of erosion and deposition and will continue to do so until either sediment 

loading rates decrease to pre-fire levels or the channels adapt sufficiently to handle the elevated 

levels.  
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Our study was limited to aerial data collection beginning two years post-fire. Extensive 

geomorphic changes had already occurred prior to the start of this project, denying us the ability 

to compare present channel conditions with pre-fire conditions. Additionally, we were limited to 

remote data collection techniques, so the drivers we analyzed are topographical in nature, 

parameters such as flowrate and sediment loading were not collected for this study. While these 

data would provide a more comprehensive analysis of our study sites, we were able to identify 

strong relationships between our selected parameters and channel erosion and deposition.  

 

It has been shown that post-fire sediment contributions are responsible for upwards of 75% of 

the available sediment in the Colorado Front Range (Morris and Moses, 1987), and that pre-fire 

equilibrium is very rarely achieved prior to the next disturbance (Moody and Martin 2001), so 

heavily impacted areas in these sites may never return to their pre-fire morphology. With 

knowledge of the drivers of near-channel transport and storage, managers are better equipped to 

handle highly dynamic systems such as these. 

5.4 Importance of Mulch  

The regression models suggest that mulch coverage was not the most impactful driver behind 

topographic change at the watershed scale. Our analysis used proposed coverage areas, did not 

account for coverage variability on the ground and could not verify what the ground coverage 

rates were. These limitations may help to explain the low level of mulch contribution in the 

models. While mulch has been shown to be an effective mitigation strategy on the plot to 

hillslope scale, this is not the first study to indicate that it may be less effective as scale increases. 

Robichaud et al. (2013b) and Hubbert et al. (2012) found mulch to be effective at reducing 

erosion on plot-sized slopes but decreased in effectiveness when scaled to catchment-scale sites. 
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Fernandez et al. (2011) compared a mulch coverage rate of 45% on a 500 m slope to an untreated 

slope and found the mulch was unsuccessful at limiting transport. Studies have indicated that 

mulch coverage of at least 60% is necessary to achieve measurable impacts on erosion volumes 

(Girona-Garcia, 2021, Robichaud et al., 2000, Foltz and Copeland, 2009). No official coverage 

estimates were conducted for this study, but on-ground observations suggest that coverage 

sufficient to significantly affect large-scale sedimentation was not achieved over portions of the 

watersheds. Aerial mulching makes consistent coverage a difficult thing to achieve, small clumps 

of densely covered areas were observed with very little coverage in between them. In addition, 

high-intensity rainfall events were responsible for transporting mulch downslope where it was 

either trapped by ground litter or entered the channel itself.  

 

Estimated volumes of erosion and deposition vary across mulched and unmulched portions of the 

study sites, with unmulched areas experiencing generally more erosion per area, and less 

deposition per area, though these differences fall within our uncertainty in all cases. With that 

being said, the combined models indicated a weak positive correlation between percent mulched 

area and deposition, and a small negative correlation between erosion and mulching for mulched 

area values above 60 and 80%, respectively. While these correlations are weak, and the 

individual model runs display differing relationships between mulched area and change, this may 

indicate that mulch played some role in stabilizing the slopes where it was applied. Additionally, 

mulch was applied in the areas identified as being at the highest risk for significant erosion. 

 

Given these results and on-site observations, it is apparent that mulching operations could be 

improved to maximize their potential for limiting erosion and encouraging deposition. We 
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suggest mulch application at coverage rates greater than 60% should be focused on high-risk 

areas where mulch is capable of limiting erosion. Our study identifies high-slope areas that were 

burned severely and had a high percentage non-vegetated area as locations where mulching 

could best be focused.  

5.5 Data Accuracy and Confidence Assessment 

Remote sensing techniques and SfM processing have allowed for data collection and processing 

at very fine resolutions over increasingly large spatial scales. While the resolution of the data 

may be improving, it is necessary to ensure that the quality of the data is maintained throughout 

the collection and processing phases. The relationships identified in studies like this are 

completely dependent on the accuracy and confidence of the calculated volumes. Survey errors 

were combined with uncertainties from SfM processing to estimate vertical random error (VRE). 

Random horizontal error was much smaller than vertical error, so it was neglected from 

uncertainty calculations. Our September flight of UM2 was removed from analysis because it 

displayed systematic error that could not be reconciled. VRE was then propagated for the DoD 

calculation, and a 95% confidence level was applied. This gave us a discrete detection threshold 

at every point in the DoDs. Thresholding has been shown to be critical in accurately quantifying 

erosion and deposition volumes separately but can lead to underestimation of net changes and 

increases in uncertainty (Anderson, 2019). We used the propagated VRE grid to threshold out 

changes from our DoDs, but it is important to note that this likely filtered out widespread, small, 

changes that may have affected our final volume estimates.   

 

Fixed-wing drones equipped with PPK present the next advancement in remote sensed 

geomorphic analysis. Our resolution, and maximum and mean propagated VRE, 4, 10 and 3.5 
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cm respectively, were similar, if not better, than similar studies (Ellett et al., 2019, East et al., 

2021), and much improved compared to LiDAR-based detection (de Haas et al., 2021; Dai et al., 

2022; Pelletier and Orem, 2014). Sediment movement due to rainsplash, sheetwash, and shallow 

rilling (<4 cm) are still unable to be quantified using these techniques, and due to uncertainty 

will likely remain out of reach. This study represents the cutting edge of remote sensed 

topographic change estimates and was successful in producing reasonable estimates of change 

volumes and their associated uncertainties.  

 

Vegetation growth and decay, and felled trees were significant contributors to estimated volumes, 

so it was necessary to filter out their effects. SCP allowed us to classify each site based on RGB 

bands in the orthomosaic images and then filter our DoDs based on these classifications. SCP 

had varying levels of success over the six study sites. Areas of low vegetation and low 

shadowing, specifically LPM and LM2, were classified very effectively. SCP struggled the most 

in areas with low light and significant shadowing, dense vegetation, tops of trees, and vegetation 

that was a similar color to bare ground. This led to inconsistent and inadequate filtering at the 

edges of downed trees and the channel (All), in densely vegetated riparian zones (UNM, UM2 

and MPM), and areas with dense tree coverage (MM, MPM, UM2). To mitigate these effects 

deposition was not quantified for the middle pair and all changes more than 2 m, the maximum 

in-channel change, were filtered out of UM2. Vegetation filtering presents another potential 

source of uncertainty, as riparian vegetation and dense hillslope groundcovers often capture and 

store large volumes of sediment. Any deposition occurring under vegetation that was filtered out 

was not quantified in the analysis, leading to potentially underestimated deposition volumes. 

Classification could have been improved by increasing the number of classification categories 
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from veg/nonveg, to include bare rock, shadowing, treetops, and any other site conditions present 

that do not directly fall into ground or vegetation. Additionally, more training polygons could be 

selected to provide a wider range of input signatures for the model to classify. Despite some of 

the shortcomings, SCP appears to be an effective classification tool that can be improved with 

more varied and extensive user input. 

 

Despite the sources of uncertainty mentioned above we are confident in our calculations and 

model results for several reasons: (1) uncertainties were filtered out based on a 95% confidence 

interval, which is a conservative technique proven to mitigate impacts of anomalous values, 

giving us confidence that observed differences are actually occurring; (2) erosion and deposition 

changes due to vegetation were filtered out very effectively in UNM, LPM, and LM2 (>80% 

accuracy), and erosion change due to vegetation was filtered out adequately in MM, MPM, and 

UM2; (3) volumetric uncertainties were calculated based on an established uncertainty equation 

and reported alongside the calculated volumes; (4) a variety of site-specific and combined 

drivers of the geomorphic changes were assessed using our regression model, and its results were 

generally in agreement with previous similar studies; and (5) large uncertainties in UM2 and 

deposition in MM and MPM were not included in our analysis to mitigate effects of apparent 

change due to vegetation. For future studies, the timing of data collection is imperative to getting 

accurate and representative results of the processes occurring. First, data collection should begin 

as soon after the fire is extinguished as is feasible. The first two years post-fire are when the 

majority of geomorphic change occurs, and when mitigation techniques have the potential to be 

most impactful, so in order to better inform these management strategies data collection would 

ideally begin within a year. Secondly, aerial surveys should be conducted in the spring and fall 
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when vegetation is at its lowest to mitigate its effects. Lastly, as an extra precaution a flight 

should be conducted when vegetation is at its peak to maximize filtering efforts. This study 

presents results on a relatively unprecedented spatial scale and resolution, that can be a valuable 

asset for the prediction and management of post-fire sediment flux in mountainous regions. As 

mentioned, aerial mulching operations are time and cost intensive, so it is imperative to focus 

these projects on areas where mulch can have a measurable effect, likely on high-risk individual 

plots and hillslopes, rather than across entire watersheds.  

 

  



49 

 

(6) CONCLUSION 

 

 

 

We conducted repeat aerial surveys of six, roughly 1 km2, watershed outlets two years after the 

East Troublesome Wildfire, located in the Rocky Mountains of north central Colorado. Our first 

objective was to evaluate the spatial patterns of erosion and deposition within each site and 

across the entire study area. Erosion and deposition volumes were comparable across the six 

sites. Hillslope volumes were an order of magnitude larger than channel volumes for 4 of the 

sites and 2-3 times as large for the other two sites. Rills and gullies formed in the lower pair but 

were not detected in the other sites. Channels eroded more sediment per area than hillslopes, and 

displayed alternating patterns of erosion and deposition that were linked to several site-specific 

drivers. LPM channel was strongly net erosional and likely contributed a significant volume to 

downstream Willow Creek. Both erosion and deposition volumes were comparable in mulched 

and unmulched portions of the watersheds, and no significant difference could be identified. Our 

second objective was to assess the role of the channel as a transport and storage mechanism for 

excess sediment supplied by the hillslopes, and to identify topographic drivers of near channel 

behavior. All channels were dynamic with alternating areas of incision and aggradation. Width, 

stream power, and bare ground were strong predictors of near-channel changes. Our next 

objective was to determine the controls of sediment transport on a large scale, to better inform 

post-fire management and mitigation strategies. Our regression model highlighted the complex 

and dynamic relationships between our input drivers and change. Non-vegetated area, slope, 

length and precipitation metrics contributed strongly to multiple model runs, while mulch was 

indicated as a weak predictor for all model set-ups. Our final objective was to assess the impact 

of a watershed scale mulching operation. The results from this study agree with several others 
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that indicate mulch’s impact decreases as scale increases. This does not mean that the technique 

should be abandoned or that there is nothing else to do in order to mitigate sediment flux. Mulch 

may be a more impactful, and cost-effective, treatment if applications are conducted on 

individual high-risk hillslopes immediately after the fire. Sediment transport out of these 

watersheds is a big concern as it poses a threat to downstream infrastructure and water quality. 

Our results indicate that channels are effective transporters of the excess sediment, so it may be 

advantageous to pair a hillslope mitigation strategy, such as mulching, with near-channel sinks or 

energy dissipation structures to reduce the sediment load leaving these watersheds. Lastly, this 

study shows that SfM photogrammetry using a fully PPK system can provide high-resolution, 

high-accuracy topographic datasets for large-scale projects in difficult terrain. The next steps for 

this project and similar projects in the future should include (1) surveying larger areas to 

continue to expand our knowledge of sediment dynamics at the watershed scale, (2) developing a 

consistent and reproducible approach to vegetation classification, and (3) introducing more 

parameters into regression models to better understand the complex relationship of erosion and 

deposition across scales. 
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APPENDIX 

 

 

 

 

Appendix Figure 1: Pearson correlation coefficients for LPM erosion model 

 

Appendix Figure 2: Pearson correlation coefficients for LPM deposition model 

 

Appendix Figure 3: Pearson correlation coefficients for LM2 erosion model 

 

Appendix Figure 4: Pearson correlation coefficients for LM2 deposition model 

LPM Erosion log(Ero/Area) w L MI60 P S dNBR BG M

log(Ero/Area) 1.000 0.095 0.122 -0.011 -0.422 0.441 -0.510 -0.161 -0.315

w 0.095 1.000 0.446 -0.401 0.096 -0.152 0.165 0.149 -0.058

L 0.122 0.446 1.000 -0.129 -0.228 0.001 0.126 -0.085 0.133

MI60 -0.011 -0.401 -0.129 1.000 0.260 0.060 0.196 -0.150 0.442

P -0.422 0.096 -0.228 0.260 1.000 -0.304 0.443 0.123 0.359

S 0.441 -0.152 0.001 0.060 -0.304 1.000 -0.729 -0.108 -0.414

dNBR -0.510 0.165 0.126 0.196 0.443 -0.729 1.000 -0.091 0.832

BG -0.161 0.149 -0.085 -0.150 0.123 -0.108 -0.091 1.000 -0.140

M -0.315 -0.058 0.133 0.442 0.359 -0.414 0.832 -0.140 1.000

LPM Deposition log(Dep/Area) w L MI60 P S dNBR BG M

log(Dep/Area) 1.000 0.210 -0.050 0.067 0.072 0.074 0.212 -0.071 0.340

w 0.210 1.000 0.446 -0.401 0.096 -0.152 0.165 0.149 -0.058

L -0.050 0.446 1.000 -0.129 -0.228 0.001 0.126 -0.085 0.133

MI60 0.067 -0.401 -0.129 1.000 0.260 0.060 0.196 -0.150 0.442

P 0.072 0.096 -0.228 0.260 1.000 -0.304 0.443 0.123 0.359

S 0.074 -0.152 0.001 0.060 -0.304 1.000 -0.729 -0.108 -0.414

dNBR 0.212 0.165 0.126 0.196 0.443 -0.729 1.000 -0.091 0.832

BG -0.071 0.149 -0.085 -0.150 0.123 -0.108 -0.091 1.000 -0.140

M 0.340 -0.058 0.133 0.442 0.359 -0.414 0.832 -0.140 1.000

LM2 Erosion log(Ero/Area) w L MI60 P S dNBR BG M

log(Ero/Area) 1.000 0.299 -0.465 -0.447 0.372 0.798 -0.034 -0.267 -0.358

w 0.299 1.000 0.017 -0.193 0.193 0.377 0.034 0.374 -0.311

L -0.465 0.017 1.000 0.533 -0.405 -0.408 -0.034 0.447 0.315

MI60 -0.447 -0.193 0.533 1.000 -0.832 -0.329 -0.210 0.208 0.491

P 0.372 0.193 -0.405 -0.832 1.000 0.256 0.180 -0.074 -0.338

S 0.798 0.377 -0.408 -0.329 0.256 1.000 -0.733 -0.073 -0.404

dNBR -0.034 0.034 -0.034 -0.210 0.180 -0.733 1.000 0.178 0.164

BG -0.267 0.374 0.447 0.208 -0.074 -0.073 0.178 1.000 0.202

M -0.358 -0.311 0.315 0.491 -0.338 -0.404 0.164 0.202 1.000

LM2 Deposition log(Dep/Area) w L MI60 P S dNBR BG M

log(Dep/Area) 1.000 0.082 -0.448 -0.148 0.090 0.375 0.011 -0.185 -0.059

w 0.082 1.000 0.017 -0.193 0.193 0.377 0.034 0.374 -0.311

L -0.448 0.017 1.000 0.533 -0.405 -0.408 -0.034 0.447 0.315

MI60 -0.148 -0.193 0.533 1.000 -0.832 -0.329 -0.210 0.208 0.491

P 0.090 0.193 -0.405 -0.832 1.000 0.256 0.180 -0.074 -0.338

S 0.375 0.377 -0.408 -0.329 0.256 1.000 -0.733 -0.073 -0.404

dNBR 0.011 0.034 -0.034 -0.210 0.180 -0.733 1.000 0.178 0.164

BG -0.185 0.374 0.447 0.208 -0.074 -0.073 0.178 1.000 0.202

M -0.059 -0.311 0.315 0.491 -0.338 -0.404 0.164 0.202 1.000
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Appendix Figure 5: Pearson correlation coefficients for MPM erosion model 

 

Appendix Figure 6: Pearson correlation coefficients for MM erosion model 

 

Appendix Figure 7: Pearson correlation coefficients for UNM erosion model 

 

Appendix Figure 8: Pearson correlation coefficients for UNM deposition model 

MPM Erosion log(Ero/Area) w L MI60 P S dNBR BG M

log(Ero/Area) 1.000 -0.142 0.133 0.017 -0.128 0.026 -0.170 0.183 0.000

w -0.142 1.000 -0.038 0.269 -0.001 -0.052 -0.254 -0.279 0.000

L 0.133 -0.038 1.000 -0.097 -0.045 0.023 0.330 0.311 0.000

MI60 0.017 0.269 -0.097 1.000 -0.549 0.147 -0.223 -0.079 0.000

P -0.128 -0.001 -0.045 -0.549 1.000 -0.036 -0.033 -0.418 0.000

S 0.026 -0.052 0.023 0.147 -0.036 1.000 0.029 -0.051 0.000

dNBR -0.170 -0.254 0.330 -0.223 -0.033 0.029 1.000 0.468 0.000

BG 0.183 -0.279 0.311 -0.079 -0.418 -0.051 0.468 1.000 0.000

M 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

MM Erosion log(Ero/Area) w L MI60 P S dNBR BG M

log(Ero/Area) 1.000 -0.050 -0.001 -0.032 -0.013 0.278 0.273 0.134 0.365

w -0.050 1.000 0.046 -0.156 -0.101 -0.153 -0.263 -0.235 -0.268

L -0.001 0.046 1.000 0.276 0.319 0.057 0.313 0.507 0.313

MI60 -0.032 -0.156 0.276 1.000 0.970 -0.056 0.064 0.329 0.083

P -0.013 -0.101 0.319 0.970 1.000 -0.037 0.026 0.343 0.062

S 0.278 -0.153 0.057 -0.056 -0.037 1.000 0.161 0.190 0.156

dNBR 0.273 -0.263 0.313 0.064 0.026 0.161 1.000 0.741 0.844

BG 0.134 -0.235 0.507 0.329 0.343 0.190 0.741 1.000 0.695

M 0.365 -0.268 0.313 0.083 0.062 0.156 0.844 0.695 1.000

UNM Erosion log(Ero/Area) w L MI60 P S dNBR BG M

log(Ero/Area) 1.000 0.307 -0.021 0.191 -0.375 -0.375 -0.024 -0.739 0.000

w 0.307 1.000 0.179 0.047 -0.220 -0.220 0.061 -0.330 0.000

L -0.021 0.179 1.000 0.007 0.087 0.087 -0.082 0.076 0.000

S 0.191 0.047 0.007 1.000 -0.128 -0.128 -0.072 -0.161 0.000

MI60 -0.375 -0.220 0.087 -0.128 1.000 1.000 -0.033 0.286 0.000

P -0.375 -0.220 0.087 -0.128 1.000 1.000 -0.033 0.286 0.000

dNBR -0.024 0.061 -0.082 -0.072 -0.033 -0.033 1.000 -0.029 0.000

BG -0.739 -0.330 0.076 -0.161 0.286 0.286 -0.029 1.000 0.000

M 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

UNM Deposition log(Dep/Area) w L MI60 P S dNBR BG M

log(Dep/Area) 1.000 0.045 0.309 -0.009 -0.087 -0.087 -0.107 -0.371 0.000

w 0.045 1.000 0.179 0.047 -0.220 -0.220 0.061 -0.330 0.000

L 0.309 0.179 1.000 0.007 0.087 0.087 -0.082 0.076 0.000

S -0.009 0.047 0.007 1.000 -0.128 -0.128 -0.072 -0.161 0.000

MI60 -0.087 -0.220 0.087 -0.128 1.000 1.000 -0.033 0.286 0.000

P -0.087 -0.220 0.087 -0.128 1.000 1.000 -0.033 0.286 0.000

dNBR -0.107 0.061 -0.082 -0.072 -0.033 -0.033 1.000 -0.029 0.000

BG -0.371 -0.330 0.076 -0.161 0.286 0.286 -0.029 1.000 0.000

M 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000
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Appendix Figure 9: Pearson correlation coefficients for UM2 erosion and deposition models 

 

Appendix Figure 10: Partial dependence plots for UM2 erosion model 

 

 
 

Appendix Figure 11: Partial dependence plots for UM2 deposition model 
 

UM2 log(Ero/Area) log(Dep/Area) w L MI60 P S dNBR BG M

log(Ero/Area) 1.000 0.778 -0.097 0.287 -0.221 -0.397 -0.486 -0.522 -0.777 -0.336

log(Dep/Area) 0.778 1.000 -0.120 0.183 -0.091 -0.598 -0.643 -0.750 -0.805 -0.519

w -0.097 -0.120 1.000 0.110 0.012 0.063 0.078 0.138 0.030 -0.119

L 0.287 0.183 0.110 1.000 -0.483 0.025 -0.034 -0.154 -0.170 0.015

MI60 -0.221 -0.091 0.012 -0.483 1.000 0.131 0.269 0.334 0.209 0.036

P -0.397 -0.598 0.063 0.025 0.131 1.000 0.431 0.728 0.704 0.803

S -0.486 -0.643 0.078 -0.034 0.269 0.431 1.000 0.721 0.566 0.294

dNBR -0.522 -0.750 0.138 -0.154 0.334 0.728 0.721 1.000 0.800 0.587

BG -0.777 -0.805 0.030 -0.170 0.209 0.704 0.566 0.800 1.000 0.636

M -0.336 -0.519 -0.119 0.015 0.036 0.803 0.294 0.587 0.636 1.000
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Appendix Figure 12: Partial dependence plots for UNM erosion model 

 
 

Appendix Figure 13: Partial dependence plots for UNM deposition model 

 
 

Appendix Figure 14: Partial dependence plots for MPM erosion model 
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Appendix Figure 15: Partial dependence plots for MM erosion model 

 

Appendix Figure 16: Partial dependence plots for LPM erosion model 

 
 

Appendix Figure 17: Partial dependence plots for LPM deposition model 
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Appendix Figure 18: Partial dependence plots for LM2 erosion model 

 

Appendix Figure 19: Partial dependence plots for LM2 deposition model 
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Appendix Figures 20-30: Model contributions for models not shown in text 
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Appendix Figures 31-39: Longitudinal profiles of (top to bottom) elevation (Z), normalized 

volume, slope (S), change in slope (ΔS), width (w), slope divided by width (S/w), change in slope 

over width (Δ(S/w)), and bare ground percentage (BG) 



ProQuest Number: 

INFORMATION TO ALL USERS 
The quality and completeness of this reproduction is dependent on the quality  

and completeness of the copy made available to ProQuest. 

Distributed by ProQuest LLC (        ). 
Copyright of the Dissertation is held by the Author unless otherwise noted. 

This work may be used in accordance with the terms of the Creative Commons license 
or other rights statement, as indicated in the copyright statement or in the metadata  

associated with this work. Unless otherwise specified in the copyright statement  
or the metadata, all rights are reserved by the copyright holder. 

This work is protected against unauthorized copying under Title 17, 
United States Code and other applicable copyright laws. 

Microform Edition where available © ProQuest LLC. No reproduction or digitization  
of the Microform Edition is authorized without permission of ProQuest LLC. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, MI 48106 - 1346 USA 

30568921

2023


