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ABSTRACT 

 

EVALUATING POST-FIRE GEOMORPHIC CHANGE ON PAIRED MULCHED AND 

UNMULCHED CATCHMETNS USING REPEAT DRONE SURVEYS 

 

Sediment redistribution after wildfire can dramatically alter a catchment and pose risks to 

local infrastructure and water quality. Mulch application is increasingly being used to mitigate 

post-fire hillslope runoff and erosion, although relatively little is known about its effects at the 

catchment scale. In this study we used repeat drone surveys to measure erosion and deposition 

across 6 small (0.5-1.5 km2) catchments, 3 mulched and 3 unmulched, in the 2020 Colorado 

Cameron Peak Fire burn scar. The objectives were to (1) quantify sediment volumes and spatial 

patterns of erosion and deposition on a catchment and channel scale, (2) compare geomorphic 

change to mulch coverage, vegetation cover, precipitation intensity, burn severity, and 

morphologic metrics, and (3) identify conditions in which mulch may be most appropriate based 

on findings. Initial drone surveys were gathered in the spring of 2022 shortly after mulching and 

were differenced to surveys collected in fall of 2022, capturing the erosional effects of a 

Colorado monsoon season within a 6.4 cm horizontal resolution DEM of Difference (DoD). 

Structure from motion (SfM) errors were thresholded out of the DoD to yield maximum and 

mean levels of detection at 14 cm and 5 cm respectively. Vegetation was filtered from the DoD 

by supervised classification of vegetation in the drone imagery. We found hillslope erosion 

dominated the sediment budget, with the mulched catchments eroding 141% more per area than 

the unmulched. A regression model suggested erosion to be most influenced by vegetation, 

hillslope length, and maximum 60-minute rainfall intensity. Channels were overall net 

depositional, and patterns of erosion and deposition in channels were controlled by changes in 
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slope and stream power as well as local morphologic metrics. Our analysis does not find a 

significant impact of mulch at the catchment scale especially when coverage is low (~22%) and 

highlights the importance of understanding catchment attributes and processes when making 

post-fire treatment decisions. 
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1. INTRODUCTION 

As wildfires increase in severity, frequency, and extent, understanding how they affect 

catchments is vital for management decision making. Fires remove vegetative cover, decrease 

surface roughness, and increase soil-water repellency (Benavides-Solorio and MacDonald, 2001, 

2005; Robichaud et al., 2000). Consequently, burned soils are highly susceptible to runoff and 

erosion, which can lead to flooding, debris flows, and sedimentation. 

To mitigate these risks, post-fire treatments such as mulch may be applied to high priority 

burn areas. Mulching is one of the most common post-fire management techniques (Prosdocimi 

et al., 2016), as it provides immediate ground cover for exposed soil and protection from 

raindrop impact and overland flow (Foltz and Wagenbrenner, 2010; Robichaud et al., 2010a; 

Wagenbrenner et al., 2006). Furthermore, wood strand mulch is advantageous in that it can be 

derived from native forest materials, is easily transported to burned sites, and is durable. 

Robichaud et al. (2013a) found that wood strands reduced hillslope (~200 m2) sediment yields by 

79% and 96% for two different burn sites in Colorado during the first-year post-fire. On the plot 

scale (30 m2), wood strands applied three years post-fire was shown to reduce runoff and 

sediment yields regardless of the volume of rainfall (Kim et al., 2008). Studies evaluating mulch 

beyond the hillslope scale are rare (Girona-Garcia et al., 2021), yet the few that have been 

conducted show mixed results. Fernandez et al. (2011) found no reduction in soil erosion for 

wood mulched swales (500 m2) relative to untreated controls during the first-year post-fire. Prats 

et al. (2019) found an 84% decrease in soil loss on wood mulched swales (500-800 m2) in the 

first-year post-fire while losses in the following years were more dependent on swale 

characteristics. Further field-studies are necessary to evaluate wood shreds on a catchment scale, 

since the larger scale involves a wider range of hydrologic processes and a greater level of 
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complexity. Mulched hillslopes are better protected against rainsplash, sheet flow, rilling, and 

gullying erosion, but downstream channel erosion and catchment deposition can continue to 

occur. Thus, upscaling sediment delivery from hillslopes may result in unreliable estimates of 

catchment scale sediment production (Moody and Kinner, 2006; Stoof et al., 2012).  

Considerable advancements have been made in monitoring post-fire sediment movement. 

Early studies measured sediment yields using sediment fences or collection troughs constructed 

in the lab (e.g., Foltz and Wagenbrenner, 2010), on-site with a rainfall simulator (e.g., 

Benavides-Solorio and MacDonald, 2001; Johansen et al., 2001), or on-site under field 

conditions (e.g., Robichaud et al., 2013; Schmeer et al., 2018). These methods, however, are 

labor intensive and limit the volume of sediment that can be collected. In the past decade, remote 

sensing methods have become a prominent tool in topographic change detection. Effective 

change detection requires repeat surveys of an area of interest at relevant geomorphic time scales 

(Cook, 2017). Among survey methods, airborne Light Detection and Ranging (LiDAR) and 

Unmanned Aerial Vehicle (UAV) Structure from Motion (SfM) have become widely used in the 

geoscience community. Airborne LiDAR can collect topographic datasets over areas up to 1000 

km2, but its decimeter-scale uncertainty limits change detection to stream channels and valley 

bottoms where change exceeds uncertainty (Pelletier and Orem, 2014; Rengers et al., 2021). 

With recent advances in Unmanned Aerial Vehicles (UAV) and Structure from Motion (SfM) 

processing, UAV surveys have surpassed LiDAR in terms of cost and resolution. UAVs 

equipped with real-time kinematic (RTK) positioning systems can develop Digital Surface 

Models (DSMs) as fine as 5 mm with uncertainties around 3 cm (Alexiou et al., 2021; Nota et 

al., 2022). Surveys can also be flown with more convenience at desired time scales, such as leaf 
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off, at a fraction of the cost of LiDAR. Still, few studies have been done applying UAV-SfM to 

understand post-fire catchment response. 

Accordingly, this study attempts to monitor post-fire erosion and deposition across six 

small catchments in the Cameron Peak Burn area using UAV-SfM photogrammetry. In 2020, the 

Cameron Peak Fire (CPF) burned over 830 km2 of the Cache la Poudre basin, making it the 

largest wildfire in Colorado history. Mulching operations followed a year after the fire and 

created a unique paired comparison between adjacent catchments; three were mulched with 

wood strands and three were kept unmulched as controls. Shortly after mulching, we gathered 

repeat drone surveys of the 6 catchments to quantify change over a single monsoon season that 

occurred 2 years post-fire. The objectives of this study are to (1) quantify sediment volumes and 

spatial patterns of erosion and deposition on a catchment and channel scale, (2) compare 

geomorphic change to mulch coverage, precipitation patterns, contributing area, and 

morphologic metrics, and (3) identify conditions in which mulch may be most appropriate based 

on findings. 

2. METHODS 

2.1 Study Site 

We selected six adjoining catchments, three mulched and three unmulched, to investigate 

the impacts of mulch on post-fire geomorphic response. The catchments burned in the Cameron 

Peak Fire, drain into Bennett Creek to the northeast, and range in size from 0.57-1.49 km2 

(Figure 1). Elevation ranges from 2342 m to 2779 m and mean slope ranges from 24.5% to 

28.5%. The catchments burned to a comparable severity, mostly moderate with high severity 

patches surrounding the channels. The dominant vegetation in the area pre-fire included 

ponderosa pine (Pinus ponderosa), Douglas-fir (Pseudotsuga menziesii), and lodgepole pine 



4 

 

(Pinus contorta) as well as a diverse understory of shrubs and grasses (USGS, 2006). The 

underlying geology is primarily biotite granite and schist (USGS, 2018). Soils are classified as 

Cypher-Ratake families complex and Bullwark-Catamount families complex with frequent rock 

outcrops (Soil Survey Staff, 2022). The mean annual precipitation of the site ranges from 400 

mm to 500 mm (PRISM Climate Group), characterizing the study site climate as semi-arid. 

Convective thunderstorms are common in the summer, while spring and fall tend to bring lower-

intensity frontal storms. During winter months, snow is the predominant form of precipitation, 

and makes up approximately 40% of the annual precipitation (Colorado Climate Center). 

 

Figure 1. Location and burn severity of the Cameron Peak Fire (CPF) in Colorado with 

elevations and mulch coverage of the Bennett Creek catchments 
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The channels within each catchment are characterized by step pools in which large wood 

form the steps and sandy vegetated beds are upslope from headcuts. This pattern, shaped by the 

catchment topography, follows an aggradation, incision cycle up the channel. Streamflow for 

each catchment is low, relatively steady, and sourced by groundwater seeps and precipitation. 

Channels within the MM, UE, and UW catchments have been observed to run dry in the late 

summer. 

Wood mulch was applied aerially to portions of the three easternmost catchments during 

late summer of 2021. Approximately 23%, 31%, and 33% of the Mulched West (MW), Mulched 

Middle (MM), and Mulched East (ME) catchments were mulched respectively at a coverage of 

about 22%, although the coverage was found to be inconsistent across the study area. Cover was 

measured within the mulch footprint by laying a 50 cm x 50 cm quadrat over a plot and taking 25 

point measurements of mulch, soil, rock, wood, or plant at each 10 cm grid intercept. In total, 92 

cover plots were measured along 12 diagonal line transects, resulting in 71 m spacing between 

individual cover plots. 

 

Table 1. General catchment metrics for the Bennett catchments 

Catchment Contributing 

Area (km2) 

Elevation 

Range (m) 

Mean 

slope (%) 

Low Severity 

(%) 

Moderate 

Severity (%) 

High Severity 

(%) 

Mulched 

Area (%) 

UW 1.03 2454-2779 24.7 11 81 8 0 

UM 0.57 2406-2652 24.5 11 74 14 0 

UE 0.62 2369-2649 26.6 5 80 15 0 

MW 1.49 2354-2759 27.7 15 74 12 23 

MM 0.71 2342-2639 28.5 20 74 6 31 

ME 1.37 2384-2681 25.9 18 71 11 33 
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Figure 2. Catchment attributes show spatial patterns of slope, vegetative cover classified from 

the drone imagery, and burn severity post-fire 

 

2.2 Data Collection 

We collected imagery across the six catchments using a DJI Phantom 4 RTK drone 

during May and October of 2022. Surveys were done by autonomous nadir flight, and images 

were taken with a 1-inch 20MP CMOS mechanical shutter camera. Each image was geotagged 

based on the RTK base station and available satellites. The RTK base station was set over known 

coordinates from previous RTK-GPS surveys, and its coordinates were inputted into the drone 

pre-flight. Flights were programmed to operate under uniform parameters: terrain following 

mode allowed each photo to be taken 100 m above ground level (AGL) relative to an imported 

10 m digital elevation model (DEM) in WGS84 coordinates. Photos were taken by distance with 

70% horizontal and 80% vertical overlap, a 3:2 photo ratio, and an average metering mode. Prior 

to UAV flights, 54 GCPs were spray painted as Xs on boulders across the study site and 

surveyed with an RTK-GPS to further align and reference the DEMs. A channel cross section 

and longitudinal profile were also surveyed in each catchment to verify the UAV generated 

DEMs and track smaller in-channel geomorphic changes. 
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2.3 UAV-SfM Processing 

We employed Agisoft Metashape to process the drone images into dense point clouds and 

digital elevation models (DEMs). The algorithms used by Metashape recognize identical 

features, or tie points, between the photos to stitch them together into a model. Our general 

procedure followed the photo alignment, GCP matching, and optimization guidelines from the 

USGS Structure from Motion Documentation (Over et al., 2021). Only easily identifiable GCPs 

were used in processing (24 total). Thus, we incorporated coregistration of the 2 surveys which 

has demonstrated nearly identical distribution of measured change compared to the classical 

GCP approach (Cook and Dietze, 2019). During alignment we loaded both surveys into a single 

chunk and checked images from one survey to act as a reference for the second survey. After 

these steps, dense point clouds, DEMs, and orthomosaics were generated. DEMs of 6.4 cm 

horizontal resolution were differenced to produce a DEM of Difference (DoD) for each 

catchment where negative change represents erosion and positive change represents deposition. 

The DoD was further filtered to mask out errors and vegetation. Since horizontal errors 

were much smaller than vertical errors, we assumed their effects were negligible and did not 

incorporate them into the DoD error analysis. Vertical error was more substantial and includes 

both systematic and random error (James et al., 2020). Systematic error is associated with 

measurement accuracy and quantifies relative offsets between 2 surveys likely arising from flight 

design, in-camera image processing, and SfM post-processing (James et al., 2020; James et al., 

2017a). Our DoDs were assessed visually and at control points to find little to no spatially 

uniform error suggesting no obvious systematic error. 

Random error, associated with measurement precision, arises from SfM image processing 

such as tie point matching and optimization (James et al., 2020). Spatial random errors were 
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accounted for using a workflow by James et al. (2020) where precision estimates as XY points 

were extracted from Metashape for each DEM. Precision estimates for each DEM were gridded 

by Kriging into a raster of 6.4 cm resolution. We then propagated the DEM random errors to the 

DoD under the assumption that errors were Gaussian and independent between the two surveys 

(Brasington et al., 2003; Lane et al., 2003) where δDoD is the propagated DoD error and δMay and 

δOct are the random errors of the May and October DEMs. 

 𝛿𝐷𝑜𝐷 = ±1.96√𝛿𝑀𝑎𝑦
2 + 𝛿𝑂𝑐𝑡

2  (1) 

To minimize the effect of random errors, we applied a 95% confidence threshold to the level of 

detection, so only cells with values outside of the 95% threshold were regarded as having real 

change. For example, if 𝛿𝐷𝑜𝐷 at a certain pixel was 8 cm, all change between -8 cm and +8 cm 

was regarded as having 0 change. 

A visual check of the thresholded DoDs revealed that elevation change was greatly 

influenced by seasonal vegetation growth. Thus, we used the Semi-Automatic Classification 

QGIS Plugin (SCP) to classify vegetation from the drone imagery and filter it out of the DoD. 

SCP classifies ground cover by comparing pixel spectral characteristics based on RGB band 

combinations (Congedo, 2020). We identified 25-30 regions of vegetation and 20 regions of bare 

soil in each catchment’s Fall imagery to be used as training input into the Maximum Likelihood 

classification algorithm. This algorithm calculates the probability distributions for each class, 

related to Bayes’ theorem, and is one of the most common supervised classifications (Congedo, 

2020). Its output classified each pixel of the imagery as vegetation or bare soil in the form of a 

binary raster (see Figure 2). We tested 100 random points over the output raster to calculate its 

accuracy. The raster was then multiplied to the DoD to neglect areas of vegetated cover.  
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2.4 Sediment Budget 

Volumetric estimates of gross erosion and deposition were calculated by summing the 

DoD change multiplied by cell area. Our sediment budget explores erosion volume change on 

the catchment scale and both erosion and deposition volume change on the channel scale. 

Channelized zones, which included main channels and tributaries, were delineated manually 

according to orthomosaics and upstream contributing drainage area thresholds: tributaries 

represent all areas 10,000 - 100,000 m2 and channels represent areas >100,000 m2.  

When calculating volume uncertainties, spatial correlation of the DoD error is likely to 

influence the results and should be considered (Anderson, 2019). Here we use statistical methods 

for propagating spatially correlated random errors presented in Rolstad et al. (2009) by 

converting each raw, unfiltered DoD to points and running a semi-variogram analysis. A 

spherical semi-variogram model with no nugget was generated using the ArcMap Kriging tool to 

yield the DoD’s semi-variance and range. Volume uncertainty can then be calculated using the 

following error propagation formula (Rolstad et al., 2009): 

 𝜎𝑣 =  √𝑛𝐿2𝜎𝑠𝑐√
𝜋𝑎𝑖

5𝐿2
 (2) 

where n is the number of cells, L is the cell size, σsc is the square root of the semi-variance at the 

sill, and αi is the fitted range. Finally, we multiply σsc by 1.96 for consistency in reporting 

estimates to the 95% confidence interval (Anderson, 2019). 

2.5 Precipitation 

Rainfall accumulation and intensity across the study site were monitored using NOAA 

Muti-Radar Muti-Sensor Quantitative Precipitation Estimates (MRMS QPE) and verified with 4 
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tipping bucket rain gages stationed in the Bennett catchments. After obtaining the gridded 1-km 

hourly MRMS data, a python script corrected the Multisensor 1 hour QPE by the radar only QPE 

and resampled the output to 1 min accumulation (Zhang et al., 2016). Daily precipitation was 

summed for each 1 km grid cell beginning from the day of the initial drone flight (10 May 2022) 

to the day of the final drone flight (29 October 2022) to yield total accumulation. A time series of 

15-minute intensities for each cell was calculated from the 1 min QPE estimates and compared to 

a time series of 15-minute intensities for each tipping bucket gage. After verification, a spatial 

map of maximum 60-minute intensity estimates was generated from the MRMS data. We used 

maximum 60-min rather than 30-min or 15-min intensity values as 60-min intensity thresholds 

have been identified to separate rain storms that generated sediment delivery responses from 

those that did not (Wilson et al., 2018). 

2.6 Catchment Scale Erosion Controls 

A mix of catchment-scale and channel-scale controls operate to transport sediment 

throughout the catchments. To examine these controls, we analyze catchment-scale volumes and 

longitudinal channel change separately but acknowledge that the two are interconnected. 

On the catchment scale, we calculated correlations (r) between erosion and predictor 

variables and used a bootstrap forest regression model to quantify drivers of erosion. A bootstrap 

forest or random forest model takes a nonparametric machine learning approach to fitting 

numerous predictors with potentially nonlinear relationships by creating decision trees based on 

random data subsets to determine an optimal model (Breiman, 2001; Zipper et al., 2021). We 

chose the bootstrap forest technique as it was relatively simple to run in JMP Pro, yielded a 

stronger predictive model than a multi-linear technique, and has relatively low risk of overfitting. 

Catchments were first delineated into hillslope sub-units of 5,000 – 50,000 m2 using ArcHydro 
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Tools, and erosion volume was summed within each hillslope unit. In the model, the dependent 

variable was erosion volume divided by sub-unit area, and the predictor variables were mean 

slope, hillslope length (L), hillslope width (w), area, shape (categorical; i.e., convergent, 

divergent, planar), elevation range, maximum 60 minute intensity (MI60), accumulated 

precipitation (P), mean burn severity (dNBR), fraction of the area mulched, fraction of the area 

with vegetation, and the SfM error raster. Predictor variables were sourced from our drone data, 

MRMS precipitation analysis, and BAER burn severity maps. Select variables such as 

normalized erosion, hillslope length, width, area, and slope were log-transformed to limit skew. 

Variables were evaluated for collinearity to find none highly correlated (r > 0.85). We then 

constructed the model in JMP using an 80% training and 20% testing data split, and measured 

model performance for both training and testing sets with R2 and root mean squared error 

(RMSE) metrics. Because of the random sampling of the bootstrap forest technique, we ran the 

model 100 times and chose the model with the best performance to inform relative influence of 

each predictor variable. 

2.7 In-Channel Sedimentation Controls 

Within the channel, both positive and negative changes were examined based on the 

following metrics: slope, change in slope (Δslope), stream power, and change in stream power 

(Δstream power). A series of ArcMap tools and MATLAB scripts were used to determine 

channel centerlines for each DEM and extract slope, channel change, and channel widths at 1-

meter intervals along the centerline. Given that the 6.4 cm DEMs depict such fine local detail, 

we resampled the DEMs to 1 m to calculate slope along the centerline. Topographic change was 

also resampled to take the maximum value across 1 m intervals. Positive and negative changes 

appeared to cancel out when binned into slope and stream power intervals. So, we implemented a 
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6 m average window for the slope, width, and change, as it was long enough to show patterns of 

change between the segments. Thus, Δslope was quantified by differencing 6 m segments where 

a positive change in slope represents a decreasing slope while a negative change in slope 

represents a steepening in slope. Unit stream power (ω), often used to predict erosion and 

deposition, is expressed as: 

 𝜔 =
𝛾𝑄𝑆𝑓

𝑤𝑐
 (3) 

where γ is the specific weight of water (N m-3), Q is discharge (m3 s-1), and Sf is the friction slope 

(m m-1). In our analysis, we instead used the ratio of channel slope to width (
𝑆

𝑤𝑐
) as a proxy for 

stream power since continuous flow data were not available. Change in stream power was then 

computed similarly to Δslope, subtracting upstream and downstream 6 m segments.  

3. RESULTS 

3.1 Precipitation 

MRMS estimated total precipitation to be highest over the western unmulched 

catchments while maximum 60-minute intensity was highest over the lower portions of each 

catchment (Figure 3). High intensity localized storms occurred over lower UM, UE, and MW 

which is corroborated by the on-site rain gages.  
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Figure 3. MRMS QPE over study period with field rain gage locations indicated 

 

The tipping bucket rain gages inconsistently recorded rainfall for the period of study, 

sometimes skipping weeks of rainfall at a time. Only the UE gage recorded continuously, so the 

intensity of rainfall at the UE gage was compared to the MRMS estimates to verify radar use. 

Figure 4 plots the 15-minute intensity of the UE gage against the radar estimate for select rainfall 

events. Overall, MRMS tends to overestimate intensity and accumulation compared to the gage; 

however, it is not consistent event-by-event. For example, MRMS predicts more than double the 

intensity tracked by the gage on 7/16, while it underestimates the intensity tracked on 7/24 

(Figure 4). A large event on 7/28 indicates similar intensities for both the gage and MRMS 

estimate. In other events, MRMS overestimated values for high-intensity storms (>40 mm/h) and 

underestimated values for low-intensity storms (<10 mm/h). Given that storms in the Colorado 

Front Range are often very localized and intense, a resolution of 1 km horizontal cannot predict 

the intensity and accumulation at an exact location such as a gage. Still, the overall pattern of 

intensity tracks with the gage, indicating the MRMS QPE provides a reasonable description of 

spatial patterns of precipitation across the Bennett catchments. 
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Figure 4. Event based 15-minute intensities verify the use of MRMS estimates with the UE rain 

gage 

 

3.2 Level of Detection and Topographic Change 

Our SfM error analysis yielded spatially distributed levels of detection with the maximum 

and mean levels of detection shown in Table 2. The errors did not randomly distribute in space; 

high errors concentrated in the valleys where vegetation was present, whereas bare hillslope 

errors were usually smaller. The MM survey experienced widespread shadow errors, so we 

decided to neglect MM results in this analysis. 

Table 2. Maximum and mean vertical and horizontal errors for each catchment 

Catchment GCPs 

used 

Max horizontal 

error (m) 

Mean horizontal 

error (m) 

Max vertical 

error (m) 

Mean vertical 

error (m) 

UW 7 .039 .006 0.13 .042 

UM 4 .039 .007 0.14 .043 

UE 2 .036 .007 0.12 .050 

MW 6 .038 .006 0.13 .044 

MM 2 .056 .011 0.16 .067 

ME 4 .043 .008 0.14 .052 
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Due to such fine resolution and vegetation signals, DoD change at the catchment scale is 

difficult to view (Figure 5a). Zooming in to the hillslope scale, we find select hillslopes with 

widespread erosion and rilling, for example a hillslope in MW (Figure 5). The greatest vertical 

topographic change takes place within the channel: up to 2.5 m of erosion and 0.75 m of 

deposition (Figure 6). Incision and aggradation alternate along each channel with erosion 

occurring at meander bends and deposition occurring upon widening. Hillslope tributaries are 

marked by straight erosional pathways converging downstream to the main channels. 
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Figure 5. DoD. a) Topographic change across the entire study area. Boxes show locations of 

detailed maps in (b) and (c). b) Zooming in to the channel scale, incision and aggradation 

alternate upstream. c) Hillslope scale changes are detected where overland flow and rills become 

a tributary despite upslope mulch coverage. 
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Figure 6. The greatest vertical change occurred within the channels. Left: a headcut in 

ME precedes 2.5 m of vertical incision. Right: a reach in UE displays ~0.3 m of aggradation. 

 

Despite efforts to filter vegetation, the DoD displays patches of positive change from 

summer vegetation growth (Figure 5). Testing the SCP classification raster at 100 random points 

indicated a 77% accuracy in identifying vegetation versus ground points. The vegetation signals 

remaining in the DoD interfered with our ability to quantify deposition on the catchment scale 

accurately.  Thus, we only quantify erosion volumes over the catchments. We found erosion to 

be less associated with vegetation since our Spring survey was flown directly after snowmelt and 

little vegetation was available to die off and appear as erosion. Delineated channel zones were 

relatively free from vegetative effects, so we focus analysis on channel change and erosion 

across the catchment.  

3.3 Sediment Budget 

Estimated sediment volumes show the mulched catchments had a greater erosional 

response compared to the unmulched catchments. Hillslope yields dominated the sediment 
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budget over channel erosion with hillslope erosion accounting for 90-92% of erosion for all 

catchments except UE where hillslope erosion accounted for 50% (Table 3). Channels made up 

1-2% of each catchment’s total area. After normalizing the volumes by area (Figure 7a), the 

mulched catchments eroded 141% more than the unmulched catchments. Deposition at the 

catchment scale was not calculated due to widespread vegetation growth that could not be 

filtered accurately. Channels were overall net depositional and acted as sinks for the hillslope 

sediments. The upper portions of ME, MW, and UW were depositional whereas the lower 

portions of UE and UM were depositional. Erosion volumes in the channels and tributaries 

indicate UE had the most sustained channel erosion for its area with the mulched catchments 

experiencing slightly less. Channel response was variable with respect to several factors such as 

slope, stream power, and their downstream change and are explored more in Section 3.4.  

Table 3. Sediment volumes for each catchment 

  UM UW UE MW ME 

Gross erosion 

(m3) 

-1546 -1276 -841 -5955 -5775 

(±1288) (±1384) (±448) (±3677) (±2346) 

Erosion in 

channels (m3) 

-122 -102 -423 -469 -583 

(±324) (±469) (±370) (±1088) (±748) 

Deposition in 

channels (m3) 

698 603 488 1704 550 

(±518) (±627) (±256) (±1146) (±563) 

 

3.4 Catchment Scale Erosion Controls 

Sediment yields varied between the catchments and exhibited complex behavior with 

respect to slope, mulch, and upstream contributing drainage area. All catchments had their 

greatest fraction of area within the 20-30% slope range. Yet, the greatest erosion for the 

unmulched catchments occurred in the low slope range of 10-20% (Figure 7c). The unmulched 

catchments had few areas with slopes above 40% (<5% of total area) as shown in Figure 

compared to MW and ME (18% and 13% respectively). MW and ME experienced more erosion 
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per area in the high slope range of 30+% even with many of the steep slopes mulched. Compared 

to total catchment erosion, mulched areas in ME eroded less per area while mulched areas in 

MW eroded more per area (Figure 7b). All catchments exhibited an increase in eroded sediment 

volume with an increase in contributing area, although volumes between the catchments are not 

constrained (Figure 7c). Unmulched volumes were generally less than mulched volumes for 

similar contributing areas. The volume-area curve (Figure 7c) for ME is significantly steeper, 

even for small areas. The MW curve follows the UW and UE curves until it hits a contributing 

area of 106 m2 where it steepens considerably. 
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Figure 7. a) Sediment volumes divided by catchment area. Positive values indicate deposition, 

negative values indicate erosion, and verticals bars indicate uncertainty. b) Mulched and 

unmulched erosion divided by catchment area mulched or unmulched. c) Normalized erosion 

volumes binned by slope. d) Gross catchment erosion as a function of contributing area.  

 

The bootstrap forest model of hillslope erosion performed adequately and obtained a 

training dataset R2 and RMSE of 0.762 and 0.239 m respectively (Figure 8). The resulting model 

used 326 observations, 9 decision trees, and sampled 9 of the 11 terms per split. Notably, the 

testing dataset produced a weaker performance of R2 = 0.370 and RMSE = 0.435 m. We, 
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however, do not plan to use the model for predictive purposes and analyze its performance solely 

to understand drivers of erosion.  

 

Figure 8. Bootstrap forest model performance shown as predicted vs. observed erosion. A 1:1 

line is shown for reference (left). Component contributions are listed in order of contribution and 

“+” indicates a positive Pearson correlation to erosion, “-” indicates negative correlation, and “*” 

indicates insignificant correlation (right). For partial dependence plots with a more complete 

variable-response relationship, see Figure 10. 

 

The resulting model identified vegetation, hillslope length, and maximum 60-minute 

rainfall intensity as top drivers of erosion (Figure 8). Vegetation and hillslope length contributed 

to the model substantially, although maximum 60-min intensity, elevation range, slope, and 

accumulated precipitation also played a significant role. Burn severity (dNBR) and hillslope 

width contributed somewhat to the model, and mulch, error, and shape contributed little. No one 

variable dominated the component analysis, least of all mulch, which highlights the complex 

feedbacks and processes between predictors occurring at the catchment scale. By the correlation 

matrix (Figure 9), vegetation was negatively correlated with erosion, hillslope length weakly 

negatively correlated, and MI60 weakly positively correlated.  
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Figure 9. Pearson correlation matrix showing the relationship between predictor and response 

(log_erosionN) variables. No coefficient exceeds 0.85, so all predictors were used in the model. 

 

Since random forest models capture nonlinearities, the model output does not give a 

direct relationship between variables, rather variables build upon each other to give a response 

(Breiman, 2001). Thus, partial dependence plots give a more complete impression than Pearson 

correlation coefficients. Our partial dependence plots (Figure 10) showed erosion to consistently 

decline with increasing vegetation.  
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Figure 10. Partial dependence plots for the bootstrap forest regression model show a nonlinear 

predictor-model response relationship more informative than Pearson correlations. For all plots, 

the y-axis indicates volume of erosion divided by area and the x-axis indicates predictor values 

 

Erosion fluctuated with different hillslope lengths increasing with length up to ~240 m 

and then generally decreasing for hillslopes exceeding 240 m. Surprisingly, the partial 

dependence plot and correlation matrix showed a slight decrease in erosion with increasing 

accumulated precipitation while the MI60 partial plot showed an increase in erosion for 

intensities above 17 mm/hr. The partial plot and Pearson coefficient agree for range indicating a 

negative relationship to erosion. Hillslope length was more correlated with elevation range, and 
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elevation range follows the same length-erosion relation. Plotted erosion fluctuated with 

increasing slope although the correlation indicates a positive relationship between slope and 

erosion. The relationship between erosion and error differed between the partial plots and 

Pearson coefficients; erosion did not change with increasing error, while the Pearson correlations 

indicated a weak positive relationship. Despite this discrepancy, the component contribution of 

error confirmed that the detected erosion was not primarily a result of data collection and 

processing errors. 

3.4 In-Channel Sedimentation Controls 

Figure 11 shows erosion in the channels is generally higher where slope increases in the 

longitudinal profile. This trend is further mapped in Figure 12, which plots mean change for 

slopes binned into 0.1 m/m intervals and stream power binned into 0.5 m-1 intervals. Here we see 

a slight negative relationship between slope and topographic change, although a steep slope or 

high stream power did not always indicate erosion. Change in slope and stream power also show 

an approximate positive linear relationship. Positive change in slope indicates concavity in the 

channel and often leads to deposition; while negative change indicates convexity, or a steepening 

in slope, and leads to erosion. Changes in sediment transport occur when slope or stream power 

changes, which explains the sustained erosion in the less variable UE channel. Visual 

observations reveal a change in slope or stream power to drive downstream change often beyond 

the 6 m sampling interval. Thus, the graphs still show scatter, more so in the Δ S/w figures.  

Other sources of variability include discontinuities within the channel such as in-stream 

wood, tributary junctions, channel planform, vegetation, and local geomorphic effects. Points of 

greatest incision in the mulched catchments occurred in confined valleys where eroding 

hillslopes met the channel (500 and 800 m upstream in ME; 100 and 500 m upstream in MW; 
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Figure 11). Valley confinement in UE and UM was observed visually in the headwater reaches 

where sustained incision was measured. The lower reaches in UE and UM had low gradients, 

fine deposits, multiple flow paths, and well-established vegetation, all factors encouraging 

deposition. Vegetation acted to both confine and obstruct the channel, leading to incision or 

multiple flow paths. Variable planform such as bends allowed erosion; and widening, deposition. 

Channel spanning logs often produced erosion upstream or downstream of the structure. These 

channel specific interactions highlight the complex sediment connectivity between hillslope-

channel linkages. 
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Figure 11. Erosion and deposition along each catchment’s longitudinal profile as a function of 

distance from the outlet (primary y-axis) as well as the local slope along the longitudinal profile 

(secondary y-axis). Change and slope were resampled with a 6 m average window. 
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Figure 12. Topographic change in channels over 6 m intervals is binned into slope (S) intervals 

of 0.1 m/m and stream power (S/w) intervals of 0.5 m-1 intervals to highlight the relationship 

between change, slope, and stream power. Despite scatter, all 4 metrics seem to affect change 

with S and S/w showing a negative relationship and ΔS and Δ S/w showing a positive 

relationship. The graphs show MW to have the largest range in slope and UE to have the smallest 

range. 

 

4. DISCUSSION 

4.1 Sediment Redistribution Processes 

Our findings demonstrate that the bulk of the erosion came from hillslopes while 

deposition occurred in the low-gradient reaches of the channels. Channels were net depositional, 

and we were unable to calculate sediment exported out of the catchment due to our challenges 
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filtering vegetation. Prior LiDAR studies also found hillslope yields to dominate catchment 

erosion (Rengers et al., 2021; Pelletier and Orem, 2014) but recognize that catchment size 

strongly influences sediment delivery. According to Rengers et al.’s (2021) slope-area curve, 

sediment yield increases linearly with contributing area for catchments of our size 0.5-1 km2. At 

this size, Rengers et al. conclude fluvial processes dominate the channel network, and more 

eroded sediment passes through the channel than is deposited. Given our magnitude of erosion, 

we can trust that each of our study catchments exported volumes of sediment downstream 

despite channel deposition. Likely, volumes exported correlate in magnitude with catchment 

gross erosion, although the development of alluvial fans at the base of UE and UM and differing 

catchment attributes may suggest differences in predictions. 

4.1.1 Model Predictor Response 

Our bootstrap forest regression results showed that erosion volumes were primarily 

driven by vegetation, hillslope length, and precipitation intensity. Pearson coefficients between 

erosion and predictor variables found weak or negligible correlations, so we also use partial 

dependence plots given by the bootstrap forest model to better understand nonlinear predictor-

response behavior. Erosion fluctuated with hillslope length; increasing up to 240 m length, and 

declining for longer slopes. This nonlinear trend follows the relationship assumed by the 

Universal Soil Loss Equation (USLE) which posits sediment yield to increase with slope length 

up to 120 m or up to 300 m in the case of the Revised Universal Soil Loss equation (RUSLE) 

(Wischmeier and Smith, 1978; Renard et al., 1991). Disturbed WEPP, a physically based model, 

indicates that erosion in dry climates increases with slope lengths up to 200 m and then declines 

after 250 m (Miller et al., 2011). At longer lengths, concentrated channelized flow dominates 

over rainsplash, sheetwash, and shallow rilling. Schmeer et al. (2019) found an overall decrease 
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in sediment yield with slope length for a study site like ours and notes the complexity of erosion 

and deposition along flow paths at larger spatial scales.  

The direct influence of vegetation and precipitation intensity is corroborated by past 

studies that claim ground cover and rainfall intensity are two of the dominant controls on the 

amount of sediment generated after wildfire (Wagenbrenner et al., 2006; Robichaud et al., 

2013a; Schmeer et al., 2018). Vegetation regrowth explains why sediment yields drastically 

decline after the first years post-fire. It reduces rainsplash erosion and increases the rainfall 

intensity threshold that allows overland flow to concentrate into rills, mitigating upslope erosion 

processes (Robichaud et al., 2013b).  

Our study found rainfall intensity rather than total precipitation to be an important control 

on erosion response. There is consensus in this finding (Moody and Martin 2001; Robichaud 

2005; Wischmeier and Smith; 1978), although total precipitation was surprisingly negatively 

correlated with erosion and showed a slight negative trend in the partial plots. This may indicate 

an error in the MRMS precipitation data. On the other hand, intensity, which was also derived 

from MRMS data, behaved as expected and was verified for various events with a rain gage 

(Figure 4). The negative correlation may be due to variable interaction, as total precipitation was 

correlated with vegetation.  

Slope, elevation range, and burn severity have been proven to play a key role in erosion 

(Benavides-Solorio and MacDonald, 2005; Benavides-Solorio and MacDonald, 2001). Slope was 

weakly positively correlated with erosion while range was weakly negatively correlated with 

erosion. This opposition is most likely due to the variable interaction. Elevation range was highly 

correlated with hillslope length and acted similarly. Slope was negatively correlated with 

vegetation which confirms it to be a main control in vegetation recovery. Contrary to other 
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studies, burn severity had a slight negative relationship with erosion. Burn severity maps 

indicated greatest severity within valley bottoms, which suggests a drastic change in vegetation 

cover pre and post fire (BAER, 2020). Despite the high burn severity in valley bottoms, we 

found valleys to be more depositional than erosive, and so we see the negative relationship given 

in the model. 

We found it important to include our spatial error map in the model to understand its 

relative influence on our calculated erosion volumes. Given that errors were propagated and 

thresholded out to a 95% confidence interval, areas with high errors had a coarser level of 

detection. So, we expect to find less change where errors are high. The partial plot displays no 

real relationship between erosion and error. Pearson coefficients, however, show a weak positive 

correlation between error and erosion. We do accept that errors play a role in our findings, 

specifically 2.94% of the regression model results, but this relatively low contribution of error in 

the prediction model verifies that the detected erosion wasn’t primarily a result of erroneous 

change. 

We emphasize that the model found significance in all predictor variables and the 

sediment yield data exhibited wide variability. Our model testing performance was relatively 

weak. For this reason, we do not report a sediment yield prediction equation. Other studies report 

similar variability, and published empirical models seek to predict sediment yields within an 

order of magnitude when applied in the right setting (Rengers et al., 2021; Pelletier and Orem, 

2014; Nyman et al., 2020, Gartner et al., 2014). The variability is likely due to small-scale spatial 

heterogeneity that is hard to measure with predictor variables and compare between study sites. 

For example, Benavides-Solorio and MacDonald (2005) found soil water repellency and texture, 

variables not measured in this study, explained 77% of the variability in sediment production 
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rates at very small scales. More variables such as erosivity, soil erodibility, infiltration capacity, 

and ground cover metrics such as litter and rock could be added to the model to attain better 

prediction performance. 

4.1.2 In-Channel Sedimentation Controls 

Channel response was no less complex than hillslope response and has been proven to be 

dependent on site-specific interactions (Shahverdian, 2015; de Vente and Poesen, 2005). Patterns 

of erosion and deposition within our channel networks were somewhat explained by slope and 

stream power but showed high irregularity. A change in slope or stream power often marked a 

change in sediment transport, although tributary inputs, hillslope confinement, vegetation, large 

wood, and channel planform likely also regulated the transport. Previous studies have 

highlighted the challenges predicting channel response even when lateral inputs and sediment 

delivery rates are known due to reach morphology and the timing and magnitude of flows 

(Shahverdian, 2015; Eccleston, 2008; Legleiter et al., 2003; Lane et al., 2008). Additionally, 

channel inputs and response are episodic, and our study does not capture change after discrete 

events but instead shows an accumulation of many episodic changes. Furthermore, we measured 

change during the second year post-fire when sediment supply within the channels was already 

high, and channel erosion may have reflected incision through deposits left from the year prior. 

As the channels move through stages of geomorphic sensitivity based on time since fire and 

episodic activity, our ability to determine statistically significant relationships is confounded. 

4.2 Evaluation of Mulch 

The results of this study suggest that mulch had little impact on hillslope erosion at the 

catchment scale. Our SfM imagery showed the mulched catchments experienced the most 
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erosion per area, but they also had higher slopes and less established vegetation than the 

unmulched catchments as well as numerous other differing factors. Even so, our regression 

model indicated mulch to have the least influence on erosion after shape. Despite the number of 

studies proving the effectiveness of mulch at hillslope and smaller scales, our results are not 

unforeseen. Fernandez et al. (2011) found a 45% coverage of wood strand mulch to be 

ineffective in reducing soil loss on an inclined 500 m2 slope relative to an untreated control. 

Other researchers found mulch to be effective on the plot scale but much less effective on larger 

scales up to a catchment (Robichaud et al., 2013b; Hubbert et al., 2012). Researchers have 

suggested that at least 60% cover is needed to reduce post-fire hillslope erosion rates (Robichaud 

et al., 2000; Orr, 1970; Foltz and Copeland, 2009). Our mulch coverage of ~22% pales in 

comparison to the suggested coverage. Though 22% coverage may be an incremental step 

towards retaining sediment on hillslopes, it does not reach the threshold needed to significantly 

reduce sediment yields. We attribute such low coverage to aerial mulching application. In our 

experience, we observed it difficult for helicopters to drop wood mulch in the desired locations 

to the desired coverage. Coverage also declined over time due to mobilization during high-

intensity events, and mulch was found deposited in tributaries and caught behind felled logs. 

Declining coverage over time is not necessarily unfavorable as studies show sediment yield to 

decrease each year after the fire (Schmeer et al., 2018; Robichaud et al., 2013b); thus, mulch 

would no longer be necessary. Given the widespread recovery of vegetation at our site, our 

results may have differed if we had evaluated mulch during the first year post-fire.  

The decision on where to apply mulch is typically based on burn severity, slope 

steepness, geologic characteristics, and downstream values at risk (Cannon et al., 2001; 

Robichaud, 2000; Rathburn et al., 2018). In the case of the Bennett catchments, mulch was 
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applied to steep, severely burned hillslopes to mitigate large sediment fluxes into a downstream 

drinking water source, the Cache La Poudre River. Given our findings on mulch effectiveness, 

we suggest if mulch is used, it be on steep hillslopes where sheetflow dominates with little to no 

ground cover promptly after burn to mitigate small scale sediment yields. For catchment scaled 

restoration, we recommend future efforts to be directed towards promoting deposition in valley 

sinks and vegetation recovery on the hillslopes. Catchment attributes, climate, and downstream 

catchment connectivity should also be evaluated to predict the risk of debris flows and sediment 

delivery. Lastly, physical complexity in streams should be promoted as it often allows for the 

greatest sediment recovery and watershed resiliency (Rathburn et al., 2018).  

4.3 Data Accuracy Assessment 

The success of topographic change studies is fully dependent on separating real change 

from apparent change due to error. In this study, we minimize survey errors, both horizontal and 

vertical, to reveal actual change. We neglected horizontal error and vertical systematic error 

since estimates were much smaller than vertical random error. This may underestimate the DoD 

error. Uncertainty was then dominated by vertical random error, which we propagated and 

applied a confidence level to threshold the DoDs. Anderson (2019) found that thresholding is 

crucial when quantifying gross changes but has potential to degrade net change estimates and 

associated uncertainty. Given that we are most interested in quantifying total erosion volumes for 

the catchments, we use error thresholding but acknowledge that thresholding loses significant 

measurements in the process. Our average uncertainties of 5 cm and maximum uncertainties of 

14 cm limit us in detecting processes such as rainsplash, sheetwash, and shallow rilling. Even so, 

our levels of detection are average for similar SfM studies and low for LiDAR studies (de Haas 
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et al., 2021; Dai et al., 2022; Pelletier and Orem, 2014) and give us the resolution needed to 

understand erosion at the hillslope scale. 

Separating sediment movement from ground change was also a challenge. Logs 

migrating downslope would appear as a line of erosion followed by a line of deposition on the 

DoD. A sprouting shrub would appear as a patch of deposition. Although a 6.4 cm resolution 

DoD is helpful in showing fine in-stream bed movement, it can be overwhelming in making 

sense of change at the catchment scale. Because upland catchments are mostly hillslopes, 

potentially erroneous values can collectively sum to a large proportion of change. Classifying 

vegetation using SCP allowed us to filter most of the erroneous change due to vegetation, 

downed trees, and shadowing, although it was not perfect. The imagery showed vegetation to be 

widespread in our Fall survey in contrast to our Spring survey, although it was seasonally brown 

and dying. This made separating vegetation from bare soil a challenge for SCP. If we trained 

SCP using a survey flown mid-summer when vegetation was green, SCP would have performed 

better, perhaps to the point of identifying only real deposition. Even with advanced vegetation 

removal methods, vegetation can act as a riparian buffer and obscure sediment deposited within 

it, making it difficult to quantify depositional yields from the DoD along the channels. Despite 

these challenges, we can be confident in our sediment yields for 5 reasons: (1) thresholding the 

DoD based on spatial error estimates is a conservative measure to filter out erroneous values; we 

believe that in thresholding out significant change, the erroneous change present beyond the level 

of detection is compensated for; (2) we were able to classify vegetation to a 77% accuracy and 

filter out most of its erroneous change; (3) we calculate and include large uncertainty volumes 

(4) we use a statistical model to verify our hillslope erosion and its drivers are comparable to 
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those found in past erosion studies; and (5) we do not analyze deposition or the MM catchment, 

which was visually clouded with errors. 

Our experience processing SfM imagery indicates the need to collect surveys efficiently 

and as soon as possible following a fire, collect elevation surveys at the same time each year 

during leaf-off as well as a vegetation survey, and visually investigate the study site to verify the 

drone imagery from a ground perspective. As SfM processing and machine learning advances, 

vegetation and error removal will become more seamless and increase our confidence in ground 

change. New technologies such as PPK processing and fixed-wing drones will allow larger 

catchments to be flown and analyzed without ground control. Our results are a step forward in 

cost-effectively identifying and predicting sediment redistribution post-fire and ultimately 

helping guide catchment managers in decision-making. 

5. CONCLUSION 

 In this study we used repeat drone surveys to analyze the catchment scale effects of 

mulch on sediment movement 2 years after the 2020 Cameron Peak Fire. Our first objective was 

to understand the spatial patterns of erosion and deposition by quantifying sediment volumes 

across the catchment and within the channel. We found erosion to be primarily sourced from 

hillslopes, while channels acted as depositional sinks. The mulched catchments eroded more per 

area than the unmulched catchments likely because they had larger areas of steep slopes. We 

were not able to measure deposition on the catchment scale due to challenges filtering vegetation 

growth. Our second objective sought to determine the drivers of change within the catchments 

and channels. Vegetation, hillslope length, and precipitation intensity were the most influential 

variables in the regression model, although all predictor variables had some influence on the 

model highlighting the complex relationship between catchment attributes. Within the channels, 
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physical complexity such as changes in slope and stream power drove incision and aggradation. 

Our last objective was to evaluate mulch and propose conditions in which it is useful. We found 

wood strand mulch at a coverage of ~22% to have little to no influence at the catchment scale. If 

mulch is to be used, it should be applied on steep hillslopes less than 250 m long, with low 

vegetative cover directly after fire. This study highlights the importance of understanding 

catchment processes when making post-fire treatment decisions. We find quantifying change 

using UAV-SfM techniques to be a progressing yet effective way to understand post-fire 

sediment redistribution and treatment priority. Future research should focus on mapping change 

over larger catchments and training algorithms to detect and filter vegetation and erroneous 

change. 
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