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ABSTRACT 

 

 

MULTI-SCALAR RESPONSE OF AN EXPERIMENTAL FIXED-WALL MEANDERING 

CHANNEL TO A SEDIMENT SUPPLY INCREASE 

 

Meandering river planforms are prevalent and well-studied features in the natural 

landscape. These rivers commonly exhibit a characteristic morphology of fine-grained point bars 

along the inner banks of meander bends with coarser pools along the outer banks. If subjected to 

a change in sediment supply, these rivers are likely to respond at various spatial and temporal 

scales through adjustments to sorting patterns, cross-sectional shape, and reach-scale 

morphology. In this study, a flume experiment was conducted to document the temporal 

progression of responses across scales of a fixed-wall meandering channel to a sediment supply 

increase. The 0.344 m wide experimental channel consisted of four meander bends following a 

sine-generated trace with a 20-degree crossing angle, meander wavelength of 2.75 m, and a 

unimodal sediment mixture with median grain size of 0.62 mm. The channel was provided 

constant flow and sediment supply until an initial equilibrium was established, after which the 

sediment supply was doubled until a new equilibrium state was reached. The experimental 

channel developed characteristic bar-pool morphologies and sorting patterns with superimposed, 

mobile, scaled gravel-dune bed forms during both phases of the experiment. After the sediment 

supply increase, dynamic adjustments occurring from smaller to larger scales took place. 

Initially, the dunes essentially disappeared, after which the relief of the bars decreased. Both of 

these sub-reach-scale responses were temporary, however, and ultimately the dunes and bar-pool 

morphology returned to their conditions at the beginning of the sediment supply increase. The 
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long-term and largest-scale response to the supply increase was a 44% increase in bed slope. To 

explain these observations, we propose a conceptual model wherein the channel undergoes a 

temporal progression of responses from smaller to larger spatial scales, with the total response 

potential at each scale related to the conditions and constraints at that scale. This conceptual 

understanding allows us to reconcile seemingly divergent outcomes from previous research on 

how meandering rivers adjust to sediment supply changes. 

 

 

  



iv 

ACKNOWLEDGEMENTS 

 

I would like to thank my advisor Dr. Peter Nelson for providing me the opportunity to 

work with him on this research project and for his thoughtful perspective and guidance 

throughout my time at Colorado State University, returning to graduate school has been all I 

could have hoped for and more. Thank you to my committee members, Dr. Ellen Wohl and Dr. 

Ryan Morrison, for their constructive input regarding this work and for their wonderful classes 

which I thoroughly enjoyed. 

To my wife Nika, thank you for your constant love and support and for being 

adventurous in moving halfway across the country to Fort Collins so I could return to school. To 

our dog Zena, thanks for always making sure I remembered to take breaks from thesis writing to 

take you on walks, you never forgot. Thank you to my parents and brother for always being 

supportive and believing in me, and for tolerating me talking about the intricacies of conducting 

a flume experiment more than the average person should probably have to. Lastly, I would like 

to thank Ryan Brown, Danny White, Nick Brouillard, Beau Van Der Sluys, Ben Tyner, and 

Taylor Hogan for their assistance, comradery, and friendship both in and out of the lab. 

  



v 

TABLE OF CONTENTS 

 

 

 

ABSTRACT.................................................................................................................................................. ii 

ACKNOWLEDGEMENTS ......................................................................................................................... iv 

LIST OF TABLES ...................................................................................................................................... vii 

LIST OF FIGURES ................................................................................................................................... viii 

NOTATION ................................................................................................................................................. ix 

1 Introduction ........................................................................................................................................... 1 

2 Methods ................................................................................................................................................ 6 

2.1 Experimental Overview ................................................................................................................ 6 

2.2 Experimental Design ..................................................................................................................... 7 

2.3 Experimental Construction ........................................................................................................... 8 

2.4 Experimental Procedure .............................................................................................................. 10 

2.5 Structure-from-Motion (SfM) Modeling..................................................................................... 12 

2.6 Sediment Supply and Bed Load Sampling ................................................................................. 14 

2.7 Water Surface Measurements ..................................................................................................... 14 

2.8 Hand-Drawn Facies Mapping ..................................................................................................... 15 

2.9 Surface Sediment Sampling ........................................................................................................ 16 

2.10 Topographic Dataset Processing ................................................................................................. 17 

2.11 Spectral Analysis Bed Form Separation ..................................................................................... 17 

2.12 Zero-Crossing Analysis............................................................................................................... 19 

2.13 Bed Observations and Dune Spatial Tracking ............................................................................ 21 

2.14 Bed Roughness Mapping ............................................................................................................ 22 

3 Results ................................................................................................................................................. 23 

3.1 Overview of Runs 1 and 2........................................................................................................... 23 

3.2 Bed Slope Adjustments ............................................................................................................... 27 

3.3 Bar-Pool Bed Form Adjustments ................................................................................................ 28 

3.4 Dune Bed Form Adjustments ...................................................................................................... 28 

3.5 Spatial and Temporal Dune Observations .................................................................................. 30 

3.6 Spatial Probability of Dunes ....................................................................................................... 32 

3.7 Sediment Sorting Adjustments.................................................................................................... 34 

4 Discussion ........................................................................................................................................... 37 

4.1 Temporal Progression of Channel Response to Increased Sediment Supply .............................. 37 

4.2 Meandering Channel Response as System Wide Resistance Optimization ................................ 39 



vi 

4.3 Conceptual Model of Channel Response and Response Potential .............................................. 43 

4.4 Reconciling Previous Research on Meandering Channels .......................................................... 46 

4.5 Implications for River Management and Restoration ................................................................. 48 

5 Conclusion .......................................................................................................................................... 49 

References ................................................................................................................................................... 51 

Appendix A ................................................................................................................................................. 58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

LIST OF TABLES 

 

 

 

Table 1 Experimental measurement overview and sampling frequency ...................................... 12 

Table 2 Calculations of total system resistance at Equilibrium 1 and Equilibrium 2. ................. 42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 

LIST OF FIGURES 

 

 

Figure 1 Spatial and temporal scales of channel response variables in alluvial rivers .................. 3 

Figure 2 Experimental channel overview ...................................................................................... 9 

Figure 3 Bulk sediment grain-size distribution ............................................................................ 10 

Figure 4 Example of spectral analysis procedure ........................................................................ 19 

Figure 5 Example of zero-crossing analyses for topographic datasets ........................................ 20 

Figure 6 Experimental results ...................................................................................................... 24 

Figure 7 Sediment supply and bed load sample grain-size distributions. .................................... 25 

Figure 8 Mean bed profiles for Runs 1 and 2 (0 hrs – 220.1 hrs) ................................................ 27 

Figure 9 Space-time raster plot of dune coverage on the flume bed............................................ 31 

Figure 10 Dune spatial probability plots of the bed for specific time periods ............................. 33 

Figure 11 Sorting patterns from Equilibrium 1 and Equilibrium 2 .............................................. 36 

Figure 12 Conceptual model of fixed-wall meandering channel response. ................................. 44 

 

 

 

 

 

 

 

 

 

Figure A1a High-pass topographic data for 0 hrs to 61.9 hrs  ..................................................... 59 

Figure A1b High-pass topographic data for 64.1 hrs to 230.1 hrs .............................................. 59 

Figure A2a Low-pass topographic data for 0 hrs to 61.9 hrs ...................................................... 59 

Figure A2b Low-pass topographic data for 64.1 hrs to 230.1 hrs ............................................... 59 

Figure A3a Detrended topographic data for 0 hrs to 61.9 hrs ..................................................... 59 

Figure A3b Detrended topographic data for 64.1 hrs to 230.1 hrs .............................................. 59 

 

 

 



ix 

NOTATION 

 

 

𝐵𝑃𝑎 
 

Mean bar-pool amplitude 

𝐵𝑃𝑤  Mean bar-pool wavelength 

𝐷𝑎  Mean dune amplitude/height 

𝐷𝑤  Mean dune wavelength 

𝐻𝑚  Reach-averaged depth 

𝑄𝑏  hourly-averaged bed load transport 

𝑆𝑏  Reach-averaged bed slope 

𝑆𝑣  Valley slope 

𝑆𝑤  Reach-averaged water surface slope 

𝑑50  Median grain-size diameter 

𝑓𝑏𝑝 ″  Within-channel resistance attributed to bar-pool bed forms 

𝑓𝑑  ″  Within-channel resistance attributed to dune bed forms 

𝑘𝑠
′   Roughness height, assumed to be equal to surface 𝑑50 

𝜏∗  Dimensionless boundary shear stress 

𝜏∗𝑐  Dimensionless critical shear stress for incipient motion, assumed to be 0.03  

𝐷  Depth 

𝑀  Total streamwise distance for a single meander 

𝑅  Hydraulic Radius 

𝑊  Width 

𝑌  Flow depth  



x 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑓 ′  Grain-scale resistance to flow 

𝑓 ″  Within-channel resistance to flow 

𝑓 ′″  System wide resistance to flow due to sinuosity 

𝑓𝑠𝑦𝑠  Total system resistance to flow 

𝑔  Acceleration due to gravity 

𝑠  Streamwise distance along a single meander 

𝑢  Mean flow velocity 

𝜑  Deviation angle of the trace from the down valley direction 

𝜔  Maximum angle deviation from the down valley direction  
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1 Introduction 

 

Meandering rivers are widely prevalent and well-studied features in the natural landscape. 

These rivers commonly exhibit a characteristic morphology of point bars composed of fine 

sediments along the inner banks of meander bends and coarse sediment pools along the outer 

banks (Bridge, 1977; Gary Parker & Andrews, 1985; Dietrich & Whiting, 1989; Whiting & 

Dietrich, 1991). This bar-pool morphology reflects a balance of flow and sediment transport in 

curved channels. Channel curvature induces helical flows and spatial variations in boundary 

shear stress (Dietrich & Smith, 1983; Dietrich & Whiting, 1989) which along with topography-

induced gravitational forces gives rise to the observed sorting patterns of coarse sediments in 

pools and fine sediment on bars in meandering channels (Bridge, 1977; Gary Parker & Andrews, 

1985; Dietrich & Whiting, 1989; Whiting & Dietrich, 1991; Clayton, 2010). These sorting 

patterns and the tendency to route coarse sediments through the pools and fines toward the bars 

are believed to help maintain and stabilize bar-pool morphology under conditions of dynamic 

equilibrium (Whiting & Dietrich, 1991; Clayton & Pitlick, 2007).  

It has long been understood that streams will respond to changes in hydraulics and 

sediment supply (Gilbert, 1917; Mackin, 1948; Lane, 1955; Schumm, 1968). Efforts to 

understand what determines a channel’s equilibrium condition have produced a variety of 

explanations and theories such as Lane’s balance, the concept of the graded river, and extremal 

hypotheses (e.g., minimum stream power, maximum friction factor, principle of least action) 

(Mackin, 1948; Lane, 1955; Chang, 1979; Davies & Sutherland, 1983; Huang & Nanson, 2000). 

Eaton et al. (2004) further proposed a rational regime model whereby a channel achieves 

equilibrium by maximizing the total resistance of the system, where the resistance is defined as: 
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 𝑓𝑠𝑦𝑠 =  𝑓 ′ +  𝑓 ″ +  𝑓 ′″ (1) 

where 𝑓𝑠𝑦𝑠 is the total resistance of the alluvial system, 𝑓 ′ is the grain resistance, 𝑓 ″ is the 

within-channel resistance such as dunes, bars, and other types of in-channel features, and 𝑓 ′″ is 

the reach-scale form resistance due to channel sinuosity. According to this model, discharge, 

sediment supply, and valley gradient are identified as the dominant independent variables to 

which an alluvial system will respond though adjustments to one or more of the components of 

total system resistance.  

The specific manner in which an alluvial system will respond, however, has been observed 

in field and flume studies to come in many different forms. Braudrick (2013), and references 

therein, summarized six ways that a channel can respond to a sediment supply increase: 1) a 

fining of the bed sediments, 2) shoaling of pools, 3) bar growth into pools thereby decreasing 

cross-sectional relief, 4) slope increase by aggradation of the bed, 5) channel planform changes 

such as straightening, avulsions, or cutoffs, and 6) active channel width changes that occur faster 

than the depth declines. Buffington (2012) summarized channel adjustments as a series of 

“successive, overlapping, spatial and temporal scales of morphologic response,” that included 

grain-scale adjustments, bed form adjustments, altered channel geometry, and finally altered 

stream gradient (Figure 1). In this framework, he described the potential for a “progression of 

successive scales of response” depending on the geomorphic work conducted by a competent 

flow event and the time necessary for a given scale of response to occur (Wolman & Miller, 

1960; Buffington, 2012). These temporal and spatial relationships between channel response 

mechanisms to sediment supply changes have, to our knowledge, not been documented in flume 

experiments for meandering channels.  
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There have been a number of field and flume studies that have documented the effects of 

sediment supply on bed surface sorting patterns (Dietrich et al., 1989; Lisle et al., 1993; 

Buffington & Montgomery, 1999; Nelson et al., 2009), riffle pool morphology (Lisle, 1982; 

Lisle & Hilton, 1992; Lisle & Madej, 1992; Wohl & Cenderelli, 2000; Rathburn & Wohl, 2003), 

alternate bars (Lisle et al., 1993; Cui et al., 2003; Nelson et al., 2010; Venditti et al., 2012; 

Podolak & Wilcock, 2013; Bankert & Nelson, 2018), variable-width channels (Nelson et al., 

2015; Brew et al., 2015; Morgan, 2018) and meander migration (Constantine et al., 2014). These 

studies have shown bed surface patchiness and grain size to be directly affected by changes in 

sediment supply, with a coarsening of the bed occurring in response to a decreased supply and a 

fining of the bed to an increase in supply. In an experiment in a straight flume, Venditti et al. 

(2012) found that termination of upstream sediment supply caused alternate bars fixed in place 

by a channel constriction to be stripped out in place via erosional processes, while alternate bars 

that formed and stabilized under sediment feed conditions began to migrate downstream leaving 

behind a plane bed. This differed from the observations of Lisle et al. (1993) who reported that 

decreased sediment supply in a straight flume with alternate bar bed forms led to a coarsening of 

Figure 1 Reproduction from Buffington (2012), after Knighton (1998): 

Spatial and temporal scales of channel response variables in alluvial rivers 
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the bed, incision of the thalweg, and ultimately an emergence of the alternate bars under a 

significantly reduced sediment supply.  

Field studies of riffle-pool morphology have shown deposition of sediment in pools in 

response to prescribed reservoir sediment releases (Wohl & Cenderelli, 2000; Rathburn & Wohl, 

2003), dam removals (Brew et al., 2015), and flood induced landslides (Lisle, 1982). Cui et al. 

(2003) found that sediment pulses temporarily subdued cross-sectional relief and alternate bars in 

straight-walled flume experiments on high-gradient mountain streams. Studies have shown that 

sediment pulses comprising materials finer than the bed sediment increased the mobilization of 

coarse grains (Cui et al., 2003; Venditti et al., 2010a, 2010b), while coarser pulses left bed armor 

layers unaffected (Cui et al., 2003). Additionally, Cui et al. (2003) observed that the degree to 

which alternate bar relief was subdued by a sediment pulse was related to the relative differences 

between the bed material grain size and the pulse sediments. Similarly, a field study by Madej 

(2001) also found that sediment pulses had the short-term effect of decreasing channel roughness 

and structure, indicating decreased relief, and that those effects decrease over time with the 

number of mobilizing flow events. In flume studies investigating the effects changing sediment 

supply on straight, variable-width channels, Nelson et al. (2015) found that an increase in the 

slope was the main response to a doubling in sediment supply under constant flow rates and 

Morgan’s (2018) unsteady-flow experiments found that the primary response to a sediment 

supply increase was a reduction in relief between riffles and pools rather than a significant slope 

increase.  

For meandering rivers, only a few flume studies have investigated the effects of sediment 

supply on bar-pool morphology and sediment sorting (Eaton & Church, 2004, 2009; Erwin, 

2013; Braudrick, 2013). Eaton and Church (2004) performed a series of stream table experiments 
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studying equilibrium conditions for scaled gravel-bed meandering channels under varying 

sediment supply conditions where the channel bed and banks were free to adjust. In their study, 

they found that slope change was the dominant adjustment response as their channels approached 

equilibrium through vertical degradation and lateral erosion of bank materials. Eaton and Church 

(2009) further investigated the effects of sediment loading on meandering channels with a fixed-

wall condition and found that a doubling of the sediment supply could largely be accommodated 

by grain-scale changes to the surface sorting on the bed with little effect on slope. Erwin (2013) 

conducted a field-scale study of a point bar and pool at the St. Anthony Falls Laboratory at the 

University of Minnesota and observed that a 5-fold increase in sediment supply caused changes 

to the cross-sectional relief via shoaling in the pool and a lateral widening of the point bar into 

the pool. Braudrick (2013) observed changes to a scaled meandering channel with fixed walls 

and nine bends of varying curvature to a doubling in sediment supply and found that a slope 

increase via aggradation was the primary response, along with a decrease in the spatial extent of 

coarse facies and an increase in finer facies, with little change to bar-pool morphology. His 

investigations concluded that the amount of aggradation experienced by the channel would likely 

have caused avulsion or cutoff in a real-world setting. These somewhat contradictory 

observations highlight the need for additional research to improve our understanding of the 

mechanisms by which meandering channels will respond to changes in sediment supply, as well 

as the possible temporal progression of potential responses. 

In this paper, we aim to better understand the temporal progression of the geomorphic 

response of meandering gravel-bed rivers to sediment supply increases. We present results from 

an experiment in a fixed-wall meandering flume in which we developed dynamic equilibrium, 

then doubled the sediment supply and documented the response. Our work seeks answers to the 
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following questions: 1) to what extent does increased sediment supply alter the sorting, bar-pool 

morphology, and equilibrium slope in a fixed-wall meandering channel experiencing an 

increased sediment supply; and 2) what is the temporal progression of the scale of response in 

meandering channels undergoing an equilibrium shift? Further, during our experiments we 

observed development of scaled gravel-dune bed forms which raised an additional question: 3) to 

what extent do gravel dunes respond to an increase in sediment supply in bed load-dominated 

meandering channels? In our experiment, small-scale changes at the scale of individual cross-

sections and meanders constituted the initial response, but these were temporary and ultimately 

overwhelmed by a large-scale slope increase. Our results suggest a conceptual understanding of 

meandering river response to sediment supply increases, wherein the channel undergoes multiple 

spatial and temporal scales of response that occur simultaneously over different time-scales and 

that dynamically interact.  

2 Methods 

 

2.1 Experimental Overview 

The results presented herein are from an experiment conducted at the Engineering 

Research Center Hydraulics Laboratory at Colorado State University. In these experiments, a 

scaled gravel-bed meandering channel with fixed walls was observed under conditions of 

constant flow rate at two sediment supply rates in order to observe the effect of increased supply 

on a meandering channel. First, a dynamic equilibrium was established (Equilibrium 1) by 

operating the flume with an initial sediment supply, starting from a flat screeded bed, to allow for 

self-generated bar-pool morphologies to develop. Dynamic equilibrium conditions were 

determined from observations of averaged water-surface slopes, bed slopes, and bed load 
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transport rates. Once this equilibrium was achieved, the sediment supply was doubled and 

detailed measurements were collected to record the response of the channel until it reached a 

new equilibrium condition (Equilibrium 2). In this paper the duration of the experiment up until 

Equilibrium 1 is referenced as Run 1, and the duration of the experiment where the channel 

transitions from Equilibrium 1 to Equilibrium 2 is referred to as Run 2.  

2.2 Experimental Design 

The experimental conditions were selected to create a generic, scaled, meandering river 

model with hydraulic conditions and transport processes representative of those found in 

meandering gravel-bed rivers. The flume width, slope, flow rate, and bulk sediment grain size 

were selected such that a bed of mixed sand with a median grain size (𝑑50) of 0.62 mm would 

predominately be transported as bed load with a flow strength sufficient to fully mobilize the 

range of bed sediments. This was accomplished using a target ratio of the dimensionless 

boundary shear stress 𝜏∗, to dimensionless critical boundary shear stress 𝜏∗𝑐, equal to 2, where 

𝜏∗𝑐 was assumed to be 0.03 for the sediments used in this experiment (Wilcock & McArdell, 

1993). The flume design also sought to replicate a width-to-depth (𝑊/𝐷) ratio of 20, with a bed 

slope of 0.005, which are conditions typical of many gravel-bed rivers (Braudrick, 2013). Using 

a scaling factor of 1/50 (following the methodology of Parker et al., 2003), our flume 

corresponds to a field prototype with a 𝑑50 of 31 mm, width of 17 m, and flow rate of 35.3 𝑚3

𝑠
, 

which are characteristic of meandering gravel-bed rivers summarized in a database compiled by 

Braudrick (2013). Normal depth calculations were used to select the flow rate and initial bed 

slope and the Wilcock and Crowe (2003) bed load transport relation was used to estimate the 

initial sediment supply.  
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The planform geometry of the experimental channel was broken up into 6 sections: a 

straight entrance section, 4 bends (Meanders 1-4), and a straight exit section (Figure 1).  

Each meander section had a wavelength of 2.75 m and a wavelength-to-width ratio of 8, which 

resulted in a channel width of 0.344 m. The centerline of the meander sections was described 

using a sine-generated trace (Langbein and Leopold, 1966) as described by: 

 𝜑(𝑠) =  𝜔 sin (
𝑠

𝑀
2𝜋) (2) 

where 𝜑 is the deviation angle of the trace from the down-valley direction, 𝜔 is the maximum 

radian angle deviation from the down-valley direction, s is the streamwise distance along a single 

meander, and 𝑀 is the total streamwise distance for a single meander. For this experiment 𝜔 was 

set to 0.349 radians, or 20 degrees. 

2.3 Experimental Construction 

The experimental channel was constructed within a larger 1.22-m-wide by 18-m-long 

flume (Figure 2) using a 3/4” marine plywood base and 1/8” acrylic sheeting for the channel 

sidewalls. The meandering planform of the channel was cut into the plywood base using laser cut 

templates and a router to form grooves into which the acrylic walls were secured using silicone 

caulking. At the upstream end, a headwall and weir were constructed to direct flow from the 

larger flume headbox into the upstream end of the inset meandering channel and similarly, a 

plywood sediment weir and flood wall was constructed at the downstream to serve as an 

elevation control point and facilitate filling of the flume. 
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The flume was filled with a sediment mixture ranging in size from 0.0125 to 2.8 mm with 

a median grain size of 0.62 mm (Figure 3). The sediment was placed into the flume while 

slightly damp to reduce the likelihood of vertical grain sorting during placement, and the bed was 

smoothed and screeded to a relatively planar surface with an initial slope of approximately 0.005. 

The bed was tamped down by hand but was not compacted. A gravel-filled sandbag was placed 

just downstream of the headbox weir to provide scour protection as the flow entered the flume 

from the headbox. 

Exit Section Meander 4 Meander 3 Meander 2 

Entrance 

Section Meander 1 

Sediment Supply 

Location Bed Load 

Collection 

FLOW 

H
E

A
D

B
O

X
 

T
A

IL
B

O
X

 

Figure 2 Experimental channel overview (bottom), with view looking downstream (upper left) and upstream (upper right). 

Headwall  Flood Wall and 

Sediment Weir 
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Water supply for the experiment was delivered through a three-inch firehose connection to 

a large supply pipe from the nearby Horsetooth Reservoir. A manifold system was constructed at 

the flume with a three-inch globe valve and gate valve to facilitate turning flows on and off as 

well as for fine flow adjustments throughout the course of the experiment. Flow monitoring was 

accomplished using a Badger M2000 electronic flow meter, set to display with a Damping Factor 

of 20 seconds with a reported accuracy within 0.2% of the flow rate.  

2.4 Experimental Procedure 

Both Run 1 and Run 2 were conducted using a constant flow rate of 2.0 l/s and differed 

only in the sediment supply rate applied to the upstream end of the flume. The sediment supply 

was added to the flume manually, every 5 minutes, by spreading prefilled containers of the bulk 

sediment uniformly across the channel 0.5 m downstream from the inlet (Figure 2). During Run 

1 the sediment supply was 20 g/min added in 100 g increments; in Run 2 the supply was 40 

Figure 3 Bulk sediment grain-size distribution 
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g/min added in 200 g increments. Containers were prefilled periodically during the runs using a 

laboratory scale with accuracy of ± 0.01 g.  

Run 1 proceeded until quasi-equilibrium conditions were achieved (described in Section 

3.1), a duration of 80.1 hours (80 hours and 5 minutes), at which point Run 2 began and 

proceeded until a new quasi-equilibrium was established, a duration of an additional 150 hours. 

During Run 2, the flume was run in daily increments usually lasting 10 hours, while run times 

varied more during Run 1 while developing measurement methodologies. Between these daily 

increments, detailed topographic measurements of the bed were collected to document the 

evolution of the channel (see Section 2.5). After Run 2, there was a 20 hr period where the flume 

was run with no sediment supply to confirm experimental methodologies during which limited 

measurements were recorded. 

At the beginning of each day the flume was filled with water from the downstream end 

until the bed was fully submerged prior to turning on the full flow rate. This procedure was 

adopted during Run 1 to limit disturbances while filling the flume due to the small grain size of 

the bed material and the bar-pool morphology that developed. A scour hole that formed at the 

inlet to the entrance section was also filled separately to prevent significant erosion from 

downstream-filling water. This method of start-up caused only minor erosional impacts to the 

downstream end of the pools when water first began to spill into the empty pools and to dune bed 

forms as water first overtopped dune crests. These impacts were monitored each day and were 

typically not visible at the time of the first bed observation, usually 15 minutes after starting the 

full flow rate each day. Once the flume bed was submerged, the prescribed 2.0 l/s flow rate was 

turned on and the tailbox gate was gradually lowered to slowly increase the velocities in the 

flume until water freely spilled over the sediment weir at the tailbox.  
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A variety of measurements were collected throughout each daily segment of the 

experiment. These measurements have been summarized in  Table 1 and are described in further 

detail in subsequent sections. 

 Table 1 Experimental measurement overview and sampling frequency 

 

2.5 Structure-from-Motion (SfM) Modeling 

Bed topography was measured using structure-from-motion photogrammetry using 

methodology similar to that described in Morgan et al. (2017) and which generally followed the 

procedures of USGS National UAS Project Office (2017). Photos of the bed were taken after the 

bed had drained and dried, typically on the day following a run segment. A Canon Rebel T3i 

DSLR camera with an EF-S 24mm prime lens was mounted to a computer-controlled 

Type of 

Measurement 

Description of Sampling Method Typical 

Frequency 

 (during Run 

2) 

Additional 

Info 

Topography  Photo collection for Structure-from-Motion 

photogrammetry. 

Every 10 hours 

of flume run 

time 

Section 

2.5 

Bed Load 

Sampling 

Bed load sediment collection in tailbox 

using milk crates lined with fine mesh bags. 

Every hour Section 

2.6 

Sediment 

Supply 

Sampling 

Collection of sediment from the bulk mix 

providing the supply. 

1-3 samples 

per day 

Section 

2.6 

Water Surface 

Elevation 

Profile generated from 5 ultrasonic sensors 

connected to a computer-controlled 

measurement cart. 

Every 0.5 

hours 

Section 

2.7 

Dune 

Observation 

Sketches 

Sketches were drawn denoting the spatial 

coverage of dune bed forms and other 

observations of interest. 

Every 0.5 

hours 

Section 

2.13 

Facies Mapping Hand-drawn facies map of observed 

sediment sorting patterns using visual 

observations, orthophotos, and DEM 

topography. 

End of Run1 

and end of 

Run 2 

Section 

2.8 

Surface 

Sediment 

Sampling 

Grease block sampling of sediment facies 

types  

End of Run 1 

and end of 

Run 2 

Section 

2.9 
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measurement cart that moved along rails traversing the length of the flume. The upstream 

portions of the flume were unable to be photographed from the cart from all angles, so 

supplemental photos were taken using a tripod positioned along the flume walls. Multiple camera 

angles were used to ensure that the flume bed was captured in photos with sufficient overlap due 

to the meandering planform and translucent acrylic walls; including facing up/down the flume 

(40 degrees from horizontal), perpendicular to the bed (90 degrees downward), and angles aimed 

toward the center of the flume taken from the each side of the flume walls. As described in 

Morgan et al. (2017), it is difficult to quantify a percentage overlap when using multiple camera 

angles in a flume, therefore, we adapted our photograph collection strategy until we achieved 

satisfactory modeling results during preliminary tests and consistently had greater than 9 

photographs covering every portion of the flume bed.  

Two sets of photographs were taken during each topographic measurement during Run 2, 

used to generate two types of photogrammetric products for this study. One set was composed of 

approximately 500 photos which captured the floor, walls, and wall tops of the flume as well as 

the inset meandering channel planform. This set of photographs also captured 8 georeferenced 

targets, set along the tops of the flume walls, which were used to transform the SfM model to the 

local flume coordinate system and to assess the accuracy of each SfM dataset. This photo set was 

processed in Agisoft Metashape at “medium” quality to produce a three-dimensional topographic 

point cloud. Average RSME error for the topographic datasets was 0.0013 m. A second set of 

approximately 350 photos was also collected, taken perpendicular to the flume bed, at a much 

closer distance of about 0.35 m to 0.38 m above the bed. This second set of photos was 

processed into an “ultra-high” quality point cloud of only the flume bed, a detailed orthophoto, 

and ultra-high-resolution digital elevation model (DEM) with a cell size of 0.083 mm (145 



14 

pix/mm2). The ultra-high-resolution DEM captured grain-scale roughness elements for the 

coarser size fractions of the bed sediment and met criteria proposed by Morgan (2017) for using 

SfM to capture grain-scale topography for particles > 0.68 mm with greater than 100 pixels per 

particle.  

2.6 Sediment Supply and Bed Load Sampling 

Samples of the sediment supply were collected by setting aside 1-2 containers of the pre-

measured bulk sediment throughout each day the flume was run. Typically, these samples came 

from the start of the day, end of the day, or at times where a new batch of bulk sediment was 

being pre-weighed into containers. Samples were sieved and weighed to obtain grain-size 

distributions and confirm that a consistent sediment supply was maintained throughout the 

experiment.  

All sediments transported through the flume were collected in the tailbox by diverting 

flows and sediments into a plastic milk crate fitted with a fine mesh nylon bag with an opening 

size of 0.125 µm. Preliminary testing of this collection method indicated that approximately 3 

percent (by weight) of the finest sediments were lost through flushing out of the mesh openings. 

Two crates with bag liners were alternately swapped each hour to provide hourly-averaged bed 

load samples. Each time the crates were alternated, the bag was emptied and the sediment 

collected was oven dried, weighed, and bagged. Samples were later sieved to obtain grain-size 

distributions of the bed load at five-hour intervals throughout the duration of the experiment. 

2.7 Water Surface Measurements 

Water surface measurements were collected by scanning the flume using five Massa 

ultrasonic sensors mounted on the flume cart. Software was used to control and record the 

position of the cart, sensors, and sensor readings during each scan. Water surface scans typically 
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consisted of 5 passes along the flume, resulting in 25 longitudinal profiles with an average lateral 

spacing of approximately 5 cm or less, and each scan took approximately 15 minutes to 

complete. The data were processed in MATLAB® to: 1) exclude sensor readings outside of the 

meandering flume walls, 2) filter out erroneous sensor readings that bounced off the flume walls, 

and 3) apply a calibration offset developed to adjust for subtle bends in the brass rails that the 

cart uses to traverse the flume. The filtered elevations were transformed into streamwise 𝑠 and 𝑛 

coordinates, where 𝑠 is the streamwise stationing and 𝑛 describes the transverse coordinate 

(Smith & Mclean, 1984; Legleiter & Kyriakidis, 2007). Water surface elevations were then 

plotted by their 𝑠 coordinate and smoothed with a robust quadratic regression line to generate an 

estimate of the continuous water surface. Therefore, water surface elevations reported should be 

considered a representation of the mean water surface elevation at any cross section. Due to the 

low velocities anticipated in this experiment, super elevation of the water surface around 

meanders was not anticipated nor likely measurable with the accuracy of the Massa sensors 

(RSME = 0.0003 m).  

2.8 Hand-Drawn Facies Mapping  

Sediment sorting patterns were recorded at the end of Runs 1 and 2 using hand-drawn 

maps. The bed was divided into course, medium, and fine facies types characterized as follows: 

1) coarse patches consisting primarily of coarse sediments with readily discernable grain sizes 

(𝑑50 ~ 0.81 mm), visible voids, and few to no fine surface sediments, 2) medium patches 

consisting of fine and coarse sediments with a nearly homogeneous texture or consisting of fines 

embedded with larger discernable particles and sparse texture (𝑑50 ~ 0.51 mm), with few to no 

visible voids, and 3) fine patches consisting of nearly all fines with a homogenous texture (𝑑50 ~ 

0.36 mm), few to no large discernable grains, and grainsizes small enough that the observer 
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cannot readily identify individual grains. The maps were created digitally by drawing shapefile 

outlines onto an orthophoto of the flume bed. Direct observations of the bed, the orthophoto, and 

high-resolution DEM were all used in conjunction for the generation of the facies maps.  

2.9 Surface Sediment Sampling 

The sediment facies types delineated on the hand-drawn facies maps for Equilibriums 1 

and 2 were further characterized through physical surface sampling using a grease block 

technique (Ingle, 1966; Bunte & Abt, 2001). To the extent practicable, sample locations of all 

facies types spanned the length of the flume such that each facies type was sampled twice per 

meander wavelength with one sample located in the entrance and exit sections of the flume, for a 

total of 10 samples per facies type.  

Sampling was conducted using a 3.5-cm square of cardboard coated in petroleum jelly to a 

thickness that allowed the largest surface particles to become imbedded when applied with 

pressure to the bed. Care was taken to try not to remove subsurface layers, but due to the fine 

grain size and moisture content of the bed sediments, some subsurface grains were also removed 

due to clumping. In these cases, light brushing was used to remove obvious subsurface sediments 

while leaving the layer affixed to the petroleum jelly undisturbed. The cardboard sampling 

squares were then rinsed with hot water into cups containing a mixture of hot water and dish 

detergent to separate the sediment sample from the cardboard and petroleum jelly; oils from the 

melted petroleum jelly floated on the water surface while sediments settled to the bottom. The 

mixtures were then decanted several times with additional hot water and dishwashing detergent 

to fully separate the sediment grains. Samples were later oven dried and sieved obtain area-by-

weight grain-size distributions. Reported distributions have been converted into a grid-by-

number distribution using the method of Marion and Fraccarollo (1997), developed for similar 
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surface wax sampling, for easy comparison with the bulk sediment sample distributions, reported 

as volume-by-weight (Bunte & Abt, 2001). 

2.10 Topographic Dataset Processing  

The medium-quality point clouds generated for topographic analysis were post-processed 

using the open-source CloudCompare software package (CloudCompare, 2020). Point clouds 

were filtered to a 2 mm point spacing, which reduced the size of the cloud from approximately 

50 million to 10 million points. The point clouds were then clipped to extract the meandering bed 

surface from the rest of the flume and filtered with a Statistical Outlier Removal (SOR) filter. 

Additional manual point removal was used to clean the clipped clouds to remove portions of the 

flume walls that remained within the clipping boundary. The cloud was then exported and 

gridded using Surfer® 13 by Golden Software, LLC into a 5 mm grid using a kriging method for 

analysis in MATLAB®. MATLAB® was used to transform the gridded data into 𝑠 and 𝑛 

coordinates (Legleiter & Kyriakidis, 2007) and detrend the data by subtracting a least-squares 

linear fit of the average cross-sectional bed elevations (the mean of unique 𝑛 elevations) from the 

raw gridded elevations. 

2.11 Spectral Analysis Bed Form Separation 

Two scales of bed forms became evident throughout the experiment: 1) bar-pool 

morphology forced by the meandering planform of the channel and 2) spatially and temporally 

varied dune bed forms superimposed over the underlying topography. This posed a challenge to 

making inferences regarding channel response directly from the gridded topographic data sets. 

For example, large topographic differences in a cross-section could easily be misinterpreted as 

rapid changes to the bar height rather than a transient dune moving downstream. To better 

understand the channel response at each of these spatial scales, a spectral analysis procedure was 
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applied to our topographic datasets to extract and separate the two types of bed form features. 

Spectral analysis has been applied to study patterns of multiple spatial scales in topography 

(Perron et al. 2008) and has wide application for the analysis of dune morphology (van Dijk et 

al., 2008; Lisimenka & Kubicki, 2017; Wang et al., 2019, 2020).  

Similar to a bandpass filter used for signal processing, spectral analysis can be utilized to 

filter topography based on the wavelength, or actual length of a physical feature. The spectral 

analysis was used to separate the long undulating bar-pool features from the relatively short-

wavelength dunes. Our analysis applied a 1-D spectral analysis filtering procedure, similar to 

those found in Perron et al. (2008) and Wang et al. (2019), to each streamwise profile in our 

detrended topographic grids (Young, 2020). The topographic grids were first broken up into a 

collection of 1-D streamwise profiles according to their transverse n coordinate. Then, each 

profile was: 1) transformed using a Fast Fourier Transform (FFT) into the frequency domain, 2) 

filtered with a Gaussian weighted mask to smoothly remove wavelengths less than 2 m (Perron 

et al., 2008), 3) transformed out of the frequency domain using an inverse FFT, and 4) 

recombined with all of the processed 1-D filtered profiles of the original gridded data.  

The result of this process was a “low-pass” filtered topographic grid representing physical 

features that were larger than 2 m in length in the streamwise direction (Figure 4). In this 

experiment the bar-pool wavelength was the same order of magnitude as the meander 

wavelengths, roughly 2.75 m, and was therefore retained in the low-pass filter. The low-pass 

filtered elevation grid was then subtracted from the original unfiltered elevation data to obtain a 

“high-pass” topographic grid of only the physical features smaller than 2 m, which contained all 

of the shorter-wavelength dune bed forms. Because our analysis only sought to separate out long 

undulating bar-pool features from the smaller dune bed forms, a 1-D spectral analysis in the 
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streamwise direction was sufficient to achieve our needs in lieu of a 2-D spectral analysis 

procedure. 

2.12 Zero-Crossing Analysis 

The 5-mm low-pass and high-pass topographic grids were used to characterize the 

geometric characteristics of the bar-pool morphology and the dunes observed during the 

experiments. We used a zero-crossing analysis similar to van der Mark et al. (2008) and Nelson 

and Morgan (2018). For the low-pass topographic grids containing bar-pool topography, 1-cm 

strips of the left and right (in (s, n) space) portions of the grid, corresponding to topography near 

the left and right channel walls, were first subtracted to create a profile of elevation differentials 

(Figure 5b). The points where the profile crossed the zero line (zero-crossing) were then 

Figure 4 Example of spectral analysis procedure. (a) Shows the detrended topography gridded data before the analysis. (b) 

Shows the extracted low-pass bar-pool topography. (c) Shows the extracted high-pass dune topography. If the extracted 

topographic grids are summed, the result is the original detrended grid (i.e., (a) = (b) + (c)). 
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identified and used to locate local maxima and minima between adjacent zero-crossings, which 

were identified as bar tops and pool bottoms, respectively. Bar-pool amplitudes were defined as 

the elevation difference between a bar top and the downstream pool bottom and bar-pool 

wavelengths were defined as the distance between two subsequent bar tops. For each data set, 

calculated bar-pool characteristics were averaged for the middle 4 bar pool units within the 

meander sections to avoid entrance and exit effects.  

For the high-pass topographic grid containing the dune topography, dune geometries were 

characterized by performing a zero-crossing analysis on a manually-delineated trace drawn along 

the channel which captures a typical path along which dunes were most frequently observed 

throughout the experiment (Figure 5a). Although this approach does not capture all the dunes for 

any one topographic dataset, we found it to provide a consistent characterization of dune 

geometry across all our datasets. Zero-crossings along the elevation profile of the trace were 

used to identify local maxima and minima which defined the dune crests and troughs. Dune 

Figure 5 Example of zero-crossing analysis for the high-pass and low-pass gridded topographic datasets. (a) Results from 

the high-pass gridded data containing the dune topography at hour 180. (b) Results from the low pass gridded data 

containing bed form topography.  
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heights were defined by the elevation difference between a crest and downstream trough. Dune 

wavelengths were measured by the distance between two subsequent dune crests. Average values 

of the amplitudes and wavelengths of all dunes identified along the trace were used to 

characterize the dune morphology for each topographic dataset. 

2.13 Bed Observations and Dune Spatial Tracking 

Observations of the flume bed were made every 30 minutes throughout the last 16 hours of Run 

1 and all of Run 2 to track the spatial extent of actively migrating dunes and any notable bed 

morphological changes such as exposed bars and depositional trends. These observations were 

recorded as hand-drawn sketches onto pre-printed worksheets with an outline of the flume walls, 

and grids of the local coordinate system. Dunes were only noted if visible transport was observed 

on the bed forms. If dunes became inactive relict features over multiple observation periods or if 

they were determined to be part of larger depositional trends, they were noted but not mapped as 

active dunes. Some subjectivity is inherent in these types of observations; however, in aggregate 

they provide significant insights into the spatial and temporal patterns that would otherwise be 

difficult to quantify. These sketches were later georeferenced and digitized using QGIS to create 

shapefiles representing the spatial and temporal locations of active dunes at Equilibrium 1 and 

throughout all of Run 2. MATLAB® processing was used to generate two visualizations from 

these sketches: 1) a space-time raster map tracking the fraction of each cross section occupied by 

dunes throughout the experiment, and 2) spatial probability plots that represent the fraction of 

time an area was observed with dunes based on the number of observations made during the 

determined time. 
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2.14 Bed Roughness Mapping 

Direct or photographic measurement of the grain-size distributions of the entire flume bed 

was not possible due to the fine-grain bed sediments, so we characterize bed surface texture 

using a roughness proxy calculated from the ultra-high resolution DEMs. First, a DEM of grain-

scale topography was created by applying a moving-average window across the original DEM 

and subtracting the mean windowed elevation from the raw elevations. The grain-scale DEM 

was then processed by a moving window standard deviation filter that calculated, for each pixel 

on the DEM within the moving window range, a standard deviation of the grain-scale elevations. 

This produced a map of standard deviations where larger standard deviations correspond to 

coarser sediments and increased void spaces on the surface. The DEMs used for this analysis had 

pixel resolutions of 0.083 mm and used a moving-average window size of 2 mm for the skin 

roughness extraction and a standard deviation window size of 4 mm.  

To track the changes in roughness over time, the DEM of standard deviations for 

Equilibrium 1 was divided into two classes, a “rough” class which included the areas with 

standard deviations in the top 25th percentile of standard deviations ( > 0.11 mm) and a “fine” 

class which included standard deviations less than the 25th top percentile (< 0.11 mm). We found 

that subdividing the data into more, smaller standard deviation bins was not useful as this tended 

to capture the inherent background “noise” of the DEM likely related to inherent uncertainties in 

the DEM generation process. The class limits characterized for the Equilibrium 1 DEM were 

then applied to the subsequent DEMs to track changes during the experiment relative to 

Equilibrium 1. 
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3 Results 

 

3.1 Overview of Runs 1 and 2 

Figure 6 provides results for the entire duration of Runs 1 and 2 of the experiment. During 

the beginning of Run 1, deep pools and shallow bars became readily identifiable by 11.3 hrs as 

the flume bed developed bar-pool morphology (Figure A2a and A3a). A non-uniform settling of 

the bed was observed during the first hours of the run due to the consolidation of previously 

unsaturated bed sediments, which contributed to a notable drop in bed slope from 0.0039 to 

0.0026 between 0 and 17.3 hrs (Figure 6b), after which the bed appeared to have largely 

stabilized. In response to the settling of the bed, several large depositional features were 

observed forming along the length of the flume as sediment wedges formed in depressed 

elevation areas.  

Sediment transport was not continuous throughout the flume initially, as reflected in the 

bed load transport rates which dropped from the initial rate of 23.6 g/min to 1.2 g/min by 17.3 

hrs (Figure 6a). Sediment transport continuity was first observed through the exit section of the 

flume at 16.1 hrs and soon after bed load transport rates began to increase. The bed load 

transport during Run 1 peaked at 35.7 hrs at a rate of 21.0 g/m, with a sustained high average rate 

of 19.7 g/min between 30.7 to 38.8 hrs, before declining and stabilizing around 12.4 g/min 

during the last 16 hours of Run 1.  
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Figure 6 Results for the entire experiment of: (a) hourly averaged bed load transport, with horizontal dashed lines 

indicating the sediment feed rate, (b) reach-averaged bed slope, (c) reach-averaged water surface slope, (d) mean water 

depth, (e) mean bar-pool amplitude, (f) mean bar-pool wavelength, (g) mean dune height, (h) mean dune wavelength, 

and (i) percent coverage of rough facies type, as determined by the standard deviation roughness mapping procedure and 

defined by the top 25th percentile standard deviations from Equilibrium 1 roughness DEM. Vertical dashed lines indicate 

the end time of Runs 1 and 2. 
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 The first dunes were noted at 14.3 hrs, after which dunes were only occasionally 

observed in isolated occurrences until the period between 33.7 hrs and 37.8 hrs, when multiple, 

more persistent, dunes were observed along the channel. Between 43.5 and 47.6 hrs, long 

“patches” of multiple dunes in succession were noted forming along the channel thalweg. For the 

remainder of Run 1, dune patches appeared with greater frequency and often extended and 

migrated downstream from their initial observed location. Dune patches were also observed to 

disappear and be smoothed over as sediments transported from upstream deposited on them. 

Direct recording of the spatial extent of dunes on the bed began during the final 16 hours of Run 

1, from 64.1 hrs to 80.1 hrs. Run 1 was confirmed to have reached a quasi-equilibrium state at 

80.1 hrs, as determined from the observation of a stable bed slope of 0.0027 and average water 

surface slope of 0.0028 during the last 16 hours of the Run 1. Bed load grain-size distributions 

were also found to be largely similar to the sediment supply (Figure 7b).  

Figure 7 Comparison of sediment supply grain-size distribution metrics with the bed load samples. 

a) Grain-size distributions for sediment supply and bed load samples, with average grain-size 

distributions for both. b) Key grain-size metrics from the sediment supply and bed load samples over 

time. 



26 

When the sediment supply was doubled for Run 2, the bed load transport measured at the 

tailbox remained relatively stable for 10 hours before an increase was observed (Figure 6a). 

Dune bed forms were commonly observed throughout Run 2. The duration of Run 2 lasted 150 

hours from 80.1 hrs to 230.1 hrs, until a new quasi-equilibrium condition was able to be 

confirmed. However, the magnitude of changes observed after 190.1 hrs decreased significantly, 

likely indicating that equilibrium conditions were achieved prior to 230.1 hrs. At Equilibrium 2, 

the average bed slope stabilized at 0.0039 between 200.1 hrs and 220.1 hrs. Although Run 2 was 

continued until 230.1 hrs, the SfM model generated for that time was found to contain systematic 

doming errors that could not be rectified and has been excluded from our topographic analysis 

(Figure 6b, d, e, f, g, h). Data for 220.1 hrs will be used to discuss Equilibrium 2 conditions, 

where appropriate. Water surface slope measurements largely stabilized after 190.1 hrs and 

averaged 0.0037 during the last 20 hrs of Run 2. The bed load transport rate during the last 20 

hrs of Run 2 stabilized at 32.3 g/min and bed load sediment grain-size distributions matched well 

to the bulk sediment supply throughout Run 2, indicating that, on average, all grain-size fractions 

were generally mobile (Figure 7). 

Although the bed load transport exiting the flume never fully matched the rate of 

sediment input, a morphological equilibrium was observed for both Equilibrium 1 and 

Equilibrium 2, where changes in the physical bed were largely stabilized (Figure 8). We suspect 

that the deficit in observed bed load transport likely stemmed from the initial bed being placed 

while damp, yet unsaturated, which would have had a greater initial porosity than a bed of bulk 

material that was fully pre-saturated with water. It is likely that the consolidation observed 

during the first hours of Run 1 continued after 17.1 hrs, albeit at a greatly reduced magnitude, 

due to filling/draining the bed and transport processes reworking the bed surface sediments. Our 
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observations of the dynamic equilibrium conditions indicated that the major physical adjustments 

were complete regardless of this transport deficit.  

3.2 Bed Slope Adjustments 

During Run 2, the reach-averaged bed slope increased by 44 percent from 0.0027 to 0.0039 

from 80.1 hrs to the end at 220.1 hrs (Figure 6b, and Figure 8). As mean bed slopes increased 

throughout Run 2, the mean depth decreased from 0.024 m at 80.1 hrs to 0.02 m at 220.1 hrs 

(Figure 6d). The depth change occurred rapidly at first, with a 16% decrease occurring between 

80.1 hrs and 120.1 hrs, after which after depths fluctuated between 0.019 m and 0.021 m and 

ended at 0.020 m at 220.1 hrs, a 16.7% decrease from Equilibrium 1 conditions. Width-to-depth 

ratios increased from 14.2 at 80.1 hrs to 16.9 at 220.1 hrs. 

Figure 8 Mean bed profiles for Runs 1 and 2. Initial, Equilibrium 1 and 

Equilibrium 2 average bed profiles are identified by color, other profiles are plotted 

with a gradient of grey, from light to dark, representing times from the start to the 

end of the experiment (0 hrs – 220.1 hrs). 
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3.3 Bar-Pool Bed Form Adjustments 

The mean bar-pool wavelength remained relatively consistent throughout the entire 

experiment, averaging 2.79 m with some fluctuations that varied above and below the mean by 

5% and 5.3%, respectively (Figure 6f). There was an initial decline in the bar-pool wavelengths 

between hours 3.7 and 17.2, likely due to how the developing bar-pool morphology and bed 

settling was interpreted by the zero-crossing analysis. The largest decrease in mean bar-pool 

wavelength, down 5.3% from the mean to 2.65 m, occurred at 110 hrs, 30 hours after the 

sediment supply was doubled. The largest average bar-pool wavelength of 2.94 m occurred at 

80.1 hrs, at Equilibrium 1. 

Bar amplitudes generally increased during Run 1 from 0.023 m at 3.6 hrs to 0.042 m at 

80.1 hrs, indicating the developing bar-pool morphology from the initially plane bed (Figure 6e). 

After doubling the sediment supply at the start of Run 2, there was a slight increase in bar 

amplitude to 0.044 m at 90.1 hrs followed by a persistent decrease for 20 hours to a minimum of 

0.029 m at 110 hrs, a 31% decrease from the amplitude at Equilibrium 1. Subsequently, the mean 

bar-pool amplitude increased over the next 30 hours to 0.045 m at 140.1 hrs, 7.1 percent higher 

than the amplitude at Equilibrium 1. After 140.1 hrs, the mean bar-pool amplitude remained 

relatively consistent for the remainder of Run 2. No substantial decreases in mean bar-pool 

amplitude was observed after the low at 110.1 hrs. At the end of Run 2, the mean bar amplitude 

was 0.037 m, 12% lower than at 80.1hrs, and the average between 140.1 hrs and 220.1 hrs was 

0.042 m. 

3.4 Dune Bed Form Adjustments 

Migrating dunes were a common observation during the experiment after 30.7 hrs into Run 

1. These bed forms were commonly arranged in groups of multiple dunes but sometimes 
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occurred as single dunes that appeared, migrated, and disappeared periodically throughout the 

experiment. Typically, dunes first appeared along the thalweg along the outer bank, in the pool 

where secondary flow patterns would be expected. The dunes usually began as small, hardly 

distinguishable, rough patches of sediments or perturbations in the bed that, over time, grew 

larger as they migrated along the bed. Often times, additional dunes formed downstream of the 

initial dune creating trains of dunes that migrated down the channel following the thalweg, 

alternating from one side of the channel to the other, slightly out of phase with the channel 

planform (Figure 11c). Dune crests were typically oriented perpendicular to the flow pattern, 

sometimes skewed in relation to the higher velocities nearer to the center of the channel. At 

various times the dune patches expanded and covered the entire bed, covering both the bars and 

the pools. 

The development of the dunes can be identified in Figure 6g and Figure 6h from the 

increase in dune heights and decrease in dune wavelengths up until the end of Run 1 at 80.1 hrs. 

As the channel approached Equilibrium 1, the mean dune height was observed to increase from 

0.005 m to 0.013 m between 61.9 hrs and 80.1 hrs (Figure 6g). The increase in dune height 

during this time corresponded with a decrease in the average wavelength between dunes, from 

0.86 m down to 0.40 m. Reported dune heights of less than 0.005 m were generally indicative of 

a lack of dune presence along the bed as can be seen from the lack of dunes in the high-pass and 

detrended topography at 61.9 hrs (Figures A1a, A3a). Similarly, relatively long dune 

wavelengths, such as 0.86 m at 61.9 hrs, were also indicative of a bed generally devoid of dunes. 

During the final 16 hours of Run 1, a well-developed set of dunes had formed on the bed. 

During Run 2, mean dune heights decreased from 0.013 m to 0.005 m between 80 hrs and 

100 hrs while the wavelength increased from 0.4 m to 0.82 m. These reported measurements 
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indicate that the dunes had a decreased presence over the first 20-hours after doubling the 

sediment supply. This observation was further confirmed from the visualizations of the dune 

spatial tracking sketches provided in Figure 9 and Figure 10. For the remainder of Run 2, 

between 100.1 hrs and 220.1 hrs, the dune heights trended higher, while the dune wavelengths 

trended lower. The zero-crossing analysis of our topographic datasets indicated oscillations 

between periods of time with high and low average dune heights and short and long dune 

wavelengths after 100 hrs until the end of Run 2. During this time, the low dune heights in this 

oscillating trend never revisited the low attained at 100 hrs, while the high points in the trend 

tended to increase, but never significantly higher than at Equilibrium 1. The highest reported 

average dune height was 0.015 m at 220.1 hrs, a 15% increase from Equilibrium 1, and were 

within 7.6% (0.014 m) when averaged between 200.1 hrs to 220.1 hrs. Dune wavelengths at 

220.1 hrs were 0.36 m, 10% lower than Equilibrium 1, and relatively unchanged (0.4 m) when 

averaged between 200.1 hrs and 220.1 hrs. 

3.5 Spatial and Temporal Dune Observations 

 Figure 9 summarizes the spatial and temporal patterns of dunes for the last 16 hours of 

Run 1 at 64.1 hrs until 20 hours after the end of Run 2 at 250.1 hrs. In the figure, temporal 

variability in the presence of dunes is indicated by horizontal banding of color that changes as 

dunes were observed to appear and disappear. Migrating dune patches can be identified by a 

diagonal banding pattern along the upstream or downstream edge of the colored bands, while 

locations of persistent dune patches are indicated by consistent bands of color down the plot in 

the vertical direction. The color represents the fraction of the bed width covered in dunes, where 

yellow intensities indicate that the full width of the channel was covered by dunes and cooler 
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intensities represent only partial coverage, such as when dune patches were in long trains along 

the thalweg only.  

Dunes were persistently observed downstream of the bend apices on the outside of the 

bends, just downstream of where the high-velocity flow cores were deflected by the channel 

wall. For example, between the middle and end of Meander 1 (M1) at approximately 6 m down 

the channel, dunes were nearly always observed. The dune observations shown in Figure 9 

confirm several observations discussed in section 3.4, including the development of large 

migrating patches of dunes at Equilibrium 1 as identified from the large bands of color that 

Figure 9 Temporal raster plot of dune coverage on the flume bed alongside bed load transport rate. Color gradient 

represents the percent of the cross section covered in dune patches. Red lines denote the Equilibrium 1 and Equilibrium 

2 conditions that bracket Run 2.  
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appeared and migrated downstream between 64.1 hrs and 80 hrs. Additionally, the significant 

decrease in dune presence in the beginning of Run 2, between 80 hrs until just before 110 hrs, 

can be seen from the low intensity banding during this time period. This trend started with a 

significant smoothing of dunes in the upper 12 m of the flume during the first 10 hrs after supply 

was doubled, followed by nearly 20 hours of very few dunes on the bed until just before 110.1 

hrs. After this time, dunes began to redevelop, and continued to develop, migrate and disappear 

throughout the remainder of the Run 2 as can be identified from the horizontal color banding 

during this time. After Run 2, the flume was run for 20 additional hours in a sediment-starved 

condition, which appeared to have little impact on the occurrence or spatial distribution of dunes. 

This served to help confirm that the dune formation observed during the experiment was not 

likely caused by the methods used to supply sediment to the flume, in small batches every 5 

minutes.  

Some of the variability in the measured average bed load transport rates was observed to 

correspond with the spatial distribution of dune bed forms. The first significant increase in bed 

load transport during Run 2 did not begin until a significant decrease in dune coverage occurred 

at 100.1 hrs (Figure 9). Additionally, periods of low bed load transport also correlated with times 

in which dune bed forms covered at least a portion of the downstream portion of the exit section. 

On multiple occasions this was observed to cause a pocket to form against the sediment weir 

where turbulent eddies formed. Once deposition in the pocket smoothed the surface, bed load 

transport rates increased.  

3.6  Spatial Probability of Dunes 

The spatial probability plots shown in Figure 10 provide a more visual perspective of many 

of the trends observed with the dune bed forms that have been discussed in Sections 3.3 and 3.4. 
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Throughout the last 16 hours of Run 1 and Run 2, dunes were most likely observed along the 

thalweg, alternating from pool to pool, with observations of dunes covering the entire width of 

the channel being much less frequent (Figure 10a). The location where dunes were observed 

most frequently can be seen along the second half of Meander 1, where they were noted in 

greater than 90% of all flume observations. During Equilibrium 1, it can be seen that dunes 

occurred more frequently in the upstream portions of the flume, they often covered large portions 

of these areas more than 50% of the time, and they were never observed extending into the exit 

section (Figure 10b). Dunes were also observed during Equilibrium 1 as far upstream as the 

entrance section, which was not observed nearly as frequently early during Run 2 (Figure 10c) or 

Equilibrium 2 (Figure 10d). During Run 2, it was significantly less probable to observe dunes 

Figure 10 Spatial probability plots from observations of the bed for specific time periods during the experiment, 

including: (a) the entire duration of Run 1, (b) last segment of Run 1 during which Equilibrium 1 was confirmed, 

(c) first 30 hours of Run 2, early in the transition to the increased sediment supply, (d) last 30 hours of Run 2 

where Equilibrium 2 is established, and (e) 20 hours after Run 2, which was run in a sediment-starved condition. 
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over large portions of the bed during the first 20 hours after the sediment supply was doubled 

(Figure 10c), as compared to the other time periods shown (Figure 10b, d, e). There were only 

select locations along the flume during this first 20 hours where dunes were observed 50% or 

more of the time, while in most parts of the bed dunes were observed 30% or less of the time. 

During the last 30 hours of Run 2, selected to represent Equilibrium 2, dunes were much more 

likely to be observed along the thalweg of the channel (Figure 10d). During this period of the 

experiment dunes were primarily observed extending from the middle of Meander 1, 

downstream through the end of the exit section. During the sediment-starved condition after Run 

2, the spatial observance of dunes was very similar to Equilibrium 2, with the exception that 

dunes were seen in the entrance section during approximately 10-20% of observations. 

3.7 Sediment Sorting Adjustments 

Patterns of sediment sorting are presented in Figure 11a-e for Equilibrium 1 and 

Equilibrium 2. Both the hand drawn facies maps (Figure 11a, d) and the standard deviation 

roughness mapping (Figure 11b, e) indicated similar sorting patterns on the flume bed for each 

respective equilibrium. Generally, sediment sorting patterns at Equilibriums 1 and 2 and 

indicated the development of coarse patches in the pools, along the thalweg, where flows were 

convergent with the wall. Patches of fine sediments were observed on the bar tops downstream 

of bend apices, in areas sheltered from the higher velocity flows. Sorting patterns were also 

observed to vary spatially and temporally in conjunction to the presence of dunes, and course and 

fine patches were often observed followed the course of the thalweg at cross-overs when dunes 

were present (Figure 11a-f). Coarse patches were observed in dune troughs and fine patches were 

observed on the dune crests which changed rapidly as dunes migrated through the channel. 
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 The hand-drawn facies mapping indicated a fining of the bed between Equilibriums 1 and 

2. Of the area recorded on the facies maps, course patches decreased from 14.5% to 4%, medium 

patches increased from 61.5% to 67.1%, and fine patches increased from 24.5% to 28.9% 

(Figure 11a, d). Grain-size samples of the patches indicate that the coarse patches got coarser 

between Equilibrium 1 and 2, with the d50 increasing from 0.69 mm to 0.95 mm. The medium 

patches were found to remain essentially unchanged, changing only from 0.51 mm to 0.52 mm 

between equilibriums, and the fine patches got slightly finer, decreasing from 0.38 mm to 0.35 

mm, respectively. Area-weighted surface grain-size 𝑑50 for the entire mapped area decreased 

slightly between Equilibrium 1 and 2, from 0.51 mm to 0.49 mm. Simply summarized, the areal 

extent of fine and medium facies increased and the extent of the coarse facies decreased during 

Run 2; fine patches became slightly finer, coarse areas became coarser, and medium patches 

remained relatively the same. 

Temporal mapping of the roughness proxy described in Section 2.14 from the grain-scale 

DEMs generally corroborates the response of the bed shown in the facies mapping (Figure 11b, 

e). The roughness mapping used a slightly different metric, based on solely on surface texture 

rather than texture and grain-size, and detected a very slight decrease in the rough areas of the 

bed with standard deviations greater than 0.11 mm between 80.1hrs and 230.1 hrs. The percent 

coverage by areas classified as rough was 25 percent at 80.1 hrs and fluctuated between a low of 

21.9 percent at 120 hrs and a high of 29.8 percent at 130.1 hrs, with no discernable trend 

throughout Run 2. Although a transient minimum between equilibrium conditions was observed 

at 120.1 hrs, it is not known if a 3.1% decrease in roughness is within the threshold of detection 

for our roughness mapping procedure and should be considered with caution (Figure 6i). Rather, 

we consider results of the roughness mapping as largely corroborating the sorting pattern and 
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fining trends identified on the hand-drawn facies maps during Run 2, however small the overall 

effect on the bed grain-sizes. Therefore, we believe the impact on bed load transport was likely 

not significant.  
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4 Discussion 

 

4.1 Temporal Progression of Channel Response to Increased Sediment Supply 

Following the ideas of Buffington (2012), we expect the channel response to increased 

sediment supply to progress from small scales (grain size) to larger ones (bar morphology, 

slope), in order of increasing magnitude of geomorphic work required. We focus on the 

following reported measurements to illustrate the temporal progression of the channel response: 

1) the grain-scale roughness proxy (Figure 6i), 2) cross-sectional scale mean dune amplitude 

(Figure 6g), 3) meander-scale mean bar-pool amplitude (Figure 6e), 4) reach-scale average bed 

slope (Figure 6b), as well as the bed load transport measurements (Figure 6a). 

Although grain-scale roughness was difficult to quantify in our experiment, previous 

research indicates that the fining of surface sediments is a plausible first response if sediment 

supply overwhelms capacity (Eaton & Church, 2009). Although our channel may have exhibited 

temporary and local areas of surface fining, we did not detect those in our measurements and the 

bed roughness proxy was largely unchanged from Run 1 to Run 2 (Figure 6i). This is not 

necessarily surprising, because a) the range of sizes in the bulk grain size distribution was 

somewhat narrow (Figure 3) and b) the fully-mobile conditions of Run 1 resulted in a bed that 

was generally unarmored (e.g., (Venditti et al., 2017)). The grain-scale response (spatial scale ~ 

0.00062 m), therefore, was not a major component of the overall channel response to the 

sediment supply increase.  

At the cross-section scale, changes occurred to the smaller-scale dune bed forms (spatial 

scale ~ 0.4 m). The development of dunes during Equilibrium 1 agrees with bed-state phase 

diagrams, which indicate our experimental hydraulic conditions were in the range favorable for 



38 

dune development (Southard & Boguchwal, 1990; Carling, 1999; Kleinhans, 2005). 

Furthermore, the high sediment supply during Runs 1 and 2 also provided conditions favorable 

for the development of scaled gravel dunes (Pitlick, 1992; Venditti et al., 2017). The dunes 

exhibited a maximum response at 100.1 hrs when they became largely absent from the flume 

(Figure 9), and the dunes that did remain had decreased average height (Figure 6g). This likely 

reduced overall form drag and increased the overall sediment transport capacity in the channel 

temporarily, although the dunes redeveloped shortly afterward and their height progressively 

increased throughout the rest of the experiment.  

At the meander-scale (length scale ~2.79 m), the bar-pool morphology responded to the 

sediment supply increase with a temporary decrease in bar amplitude, which was most 

pronounced at 110.1 hrs (Figure 6e). Experiments in variable-width straight channels have 

shown that bar-pool relief can decline in response to supply increases (Morgan, 2018), and field 

studies of dam removal have observed temporary pool-filling due to sediment supply increases 

(East et al., 2015). In our experiment, the reduction in bar amplitude should have decreased 

overall form drag and increased transport capacity, and as the bar height subsequently increased 

again slope adjustments (discussed below) likely maintained the increased transport capacity. 

At the reach-scale, the bed slope increased 44 percent over the course of Run 2, but at a 

much slower rate than the smaller-scale responses. While the dunes and bar morphology were 

temporarily adjusting, the bed slope response was essentially paused, as seen by the plateau in 

the increasing average bed slope between 90.1 hrs and 110.1 hrs (Figure 6b). During this pause 

in the bed slope response, sediment transport continued to increase, indicating that the response 

of the dunes disappearing and subsequent decrease in topographic relief from the bar-pool filling 

was likely temporarily decreasing bed form resistance resulting in increased transport capacity. 
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Once the smaller-scale responses were observed to reach their maximum effect, slope became 

the dominant response for the remainder of the run.  

The reductions in dune and bar-pool amplitude were found to be largely transient, in that 

soon after their maximum response, as slope continued to increase, their amplitudes began to 

adjust back toward their Equilibrium 1 state. Throughout the remainder of Run 2, fluctuations in 

the bar-pool amplitude and dune height indicate that dynamic interactions between the channel 

response mechanisms were constantly evolving. By the establishment of Equilibrium 2, the 

dunes and bar-pool morphology were similar as in Equilibrium 1, which supports the idea that 

slope increase was the dominant long-term response.  

4.2 Meandering Channel Response as System Wide Resistance Optimization 

To better understand the response of our channel, we considered its total system resistance 

as described by from Eaton et al. (2004): 

 𝑓𝑠𝑦𝑠 =  𝑓 ′ +  𝑓 ″ +  𝑓 ′″ (1) 

where the system roughness 𝑓𝑠𝑦𝑠 is defined as: 

 
𝑓𝑠𝑦𝑠 =

8𝑔𝑅𝑆𝑣

𝑢2
 (3) 

where 𝑆𝑣 is the valley slope, 𝑔 is gravitational acceleration, 𝑅 is the hydraulic radius, and 𝑢 is the 

mean channel velocity. As such, the system is understood to have a quantifiable total resistance 

imposed on the system by the dominant independent variables of discharge, sediment supply and 

valley slope. Eaton et al. (2004) hypothesized that this total system resistance is maximized when 

the system is at equilibrium. The components of total system resistance can be derived using the 

Darcy-Weisbach friction factor f using the bed slope S: 
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𝑓 =

8𝑔𝑅𝑆

𝑢2
 (4) 

to quantify the total within-channel resistance to flow. Grain-scale resistance can be 

approximated by the methods of Millar (1999): 

 𝑓′ =  [2.03 log (
12.2𝑌

𝑘𝑠
′

)]
2

 (5) 

where 𝑌 is the flow depth and 𝑘𝑠
′  is the roughness height, assumed equal to the surface d50 

(Nikuradse, 1933). The within-channel resistance due to dunes, bed forms, and other types of in-

channel features 𝑓 ″ is the difference between the grain-scale resistance to flow and the total 

within-channel resistance to flow: 

  𝑓 ′′ =  𝑓 − 𝑓′ (6) 

The reach-scale form resistance due to sinuosity f‴ is then equal to the remainder of the total 

system resistance after subtracting the within-channel resistance: 

 𝑓′′′ =  𝑓𝑠𝑦𝑠 − 𝑓  (7) 

In our experiment, doubling the sediment supply in Run 2 reduced the equilibrium value 

of total system resistance 𝑓𝑠𝑦𝑠 for the meandering channel system, as total system resistance 

would have to decrease in order to increase transport capacity. This would need to be 

accomplished through reductions in 𝑓′, 𝑓 ′′, or 𝑓′′′.  

Using Equations (1) and (3)-(7), the impact of a sediment supply increase on total system 

resistance during this experiment may be calculated for both Equilibrium 1 and Equilibrium 2. 

Using the prescribed flow rate, reach-averaged depth, reach-averaged bed slope, area-weighted 

d50, and assuming a rectangular cross section, we estimated the total system resistance and each 

component of resistance for our experiment (Table 2). In these calculations, the valley slope was 
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calculated as the slope of a straight line between the upstream and downstream weirs in the 

flume. These calculations show that 𝑓𝑠𝑦𝑠 was reduced from 0.13 to 0.088 between Equilibrium 

1 and Equilibrium 2. Total within-channel resistance decreased slightly but remained largely the 

same (0.76 to 0.75), which is consistent with the observed lack of significant surface-sorting 

changes and largely unchanged bed form conditions between the two equilibria. Once the grain-

scale resistance component is extracted, the model highlights the relatively consistent influence 

of both grain-scale changes 𝑓′ (0.32 to 0.33) and bed form resistance 𝑓 ′′ (0.44 to 0.42) at both 

equilibrium conditions. Most importantly, the model correctly highlights that the majority of 

decrease in total system resistance came from the reduction in the form resistance due to 

sinuosity 𝑓′′′ (0.54 to 0.14), via the dominant response of a slope increase. In our flume 

experiment the sinuosity was fixed, so the effects of any increase in slope would ultimately 

decrease the total system resistance (Equation (3) and the relative importance of reach-scale 

resistance due to sinuosity, Equation (7)). Had our channel walls not been fixed, we might expect 

that our channel would have responded in other ways, such as channel straightening, avulsions, 

or cutoffs (Braudrick, 2013). 
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4.3 Conceptual Model of Channel Response and Response Potential 

The idea of channel response as a modification to a total system resistance serves as a 

convenient conceptual model to seek answers to some of the more complex and intriguing 

interactions observed during the response of our meandering channel to a doubling in sediment 

supply. For this purpose, we break down the bed form resistance 𝑓 ′′ into 𝑓𝑑  ″ and 𝑓𝑏𝑝 ″, 

representing the portion of bed form resistance attributable to the dunes and the bar-pool relief, 

respectively, such that: 

 𝑓 ′′ = 𝑓𝑑  ″ + 𝑓𝑏𝑝 ″ (8) 

Substituting Equation (8) into Equation (1), and arranging the right hand side in order of 

increasing spatial scale we have: 

 𝑓𝑠𝑦𝑠 =  𝑓 ′ + 𝑓𝑑  ″ + 𝑓𝑏𝑝 ″ + 𝑓 ′″ (9) 

which now includes all of the observed degrees of freedom that our fixed-wall experimental 

channel had to respond to a sediment supply increase. 

As discussed previously, the observations from this experiment indicate that multiple 

scales of response were occurring simultaneously during the transition to Equilibrium 2, 

according to a timescale in proportion with the geomorphic work required. It seems reasonable to 

assume that each component of resistance in Equation (9) for the system has a maximum 

magnitude of response possible. For example, surface grain-size resistance 𝑓 ′ adjustments would 

be impossible in a channel with a uniform sediment size, while bed form resistances 𝑓𝑑  ″ and 

𝑓𝑏𝑝 ″ would be limited to a scale where the bed forms are completely suppressed. These 

maximum response potentials are likely different and unique for each alluvial system, but the 
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cumulative effect must be able to provide a system-wide reduction in resistance such that the 

channel is able to fully adjust any new imposed condition.  

We therefore propose a conceptual model for the response of an alluvial fixed-wall 

meandering gravel-bed system to altered sediment supply (Figure 12). The model describes 

channel responses across spatial and temporal scales, with particular attention to scale-dependent 

response potential and implicit constraints that may explain the channel response in our 

experiment. Using this model, we propose that our experimental system had a low response 

potential for grain-scale resistance change 𝑓 ′, likely due to the lack of armoring of the bed 

Figure 12 Conceptual model of fixed-wall meandering channel response. The magnitude of response 

potentials, indicated by arrow and circle sizes, have been idealized for the current flume experiment but 

are not to scale. 𝑓 ′ represents resistance response potential for grain-scale adjustments, 𝑓𝑑  ″ represents 

resistance response potential for dune bed forms, 𝑓𝑏𝑝  ″ represents resistance response potential for the 

bar-pool morphology, and 𝑓 ′″ represents the response potential for system resistance due to sinuosity. 

The large arrow indicates the temporal progression of response in order of geomorphic work required. 
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sediments observed at Equilibrium 1 (Eaton & Church, 2009). This would explain why we saw 

little detectable response in the surface sorting and negligible contribution to the decrease of total 

system resistance 𝑓𝑠𝑦𝑠; that is, for our system 𝑓 ′ is relatively fixed. The dunes present at 

equilibrium 1 had a higher response potential such that dune bed form resistance 𝑓𝑑  ″ could 

decrease more than f′. This matched well with our observation of a full suppression of dunes that 

reached its maximum response at 100.1 hrs.  

If the total system resistance to the new sediment supply in Run 2 remained too large 

even after the dunes were largely eliminated, it could continue to adjust by further changing the 

larger-scale bar-pool morphology 𝑓𝑏𝑝 ″. After the bar-pools were observed to achieve their 

lowest amplitude at 110.1 hrs, the only response with any potential left was a reach-scale slope 

increase that decreased 𝑓 ′″. Our observations confirm that this is what occurred for the 

remaining duration of Run 2. The unchanging slope between 90.1 hrs and 110.1 hrs can be 

interpreted using this model as an interaction between varying time and spatial scales of 

responses, where the smaller-scale responses with sufficiently large response potentials were 

occurring faster than the slower reach-scale adjustments, reducing the system resistance enough 

temporarily to increase transport capacity without requiring additional slope increases. Once the 

system had exhausted the full potential of these smaller scale responses, the slope continued to 

increase.  

It is interesting to note that the two transitory responses, in the dunes and bar-pool 

morphology, largely returned to their original conditions after the shift to Equilibrium 2 was 

complete. This observation could indicate that at a long-enough time scale the slope increase 

alone provided a sufficient reduction in total system resistance to fully accommodate the 

sediment supply. This raises additional questions as to what influences the persistence of any one 
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scale of response in a meandering channel to a change in sediment supply. Perhaps at long time 

scales, the bar-pool morphology of our fixed-wall meandering channel is not influenced by 

sediment supply. Similar observations have been observed in the field and laboratory studies 

with variable width channels, where riffle-pool morphology was largely forced by channel 

planform (Brew et al., 2015). Similarly, gravel dunes may be more driven by hydraulic forces 

and a threshold of available sediment supply than a specific sediment supply. If true, so long as 

the new long-term equilibrium maintained the hydraulic and sediment supply conditions for 

gravel dunes to form, they could reestablish without increasing the system resistance too much. 

More research is needed to fully understand the transient nature of these responses.  

4.4 Reconciling Previous Research on Meandering Channels 

If we consider the response of a meandering channel to changes in sediment supply in 

terms of our conceptual model (Figure 12) we can more easily understand the wide range of 

results that have been reported in previous research and see that they may not be as contradictory 

as they appear. Similar to our experiment, Braudrick (2013) reported a slope increase and bed 

fining as the dominant responses of a meandering fixed-wall channel to a doubling in sediment 

supply. For his experimental system, if the potential for grain-scale resistance changes were low 

compared to the large change in sediment supply, and any bar-pool response is largely transient 

due to the forcing of channel planform, it follows that the only response with enough potential to 

accommodate their supply change would have also been an increase in bed slope. Interestingly, 

Braudrick (2013) noted dunes present on the fine facies of the bed at the start of his experiment 

but did not report any subsequent observations regarding them, so we do not know to what extent 

dunes may have influenced the response of the channel, even during the transition. 
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Erwin (2013) reported that in her experiment, the field-scale meandering flume 

accommodated a 5-fold increase in sediment supply via shoaling of pool and a lateral expansion 

of the bar. She concluded that the increase in sediment supply likely far exceeded the ability of 

textural changes to accommodate, which would imply that grain-scale response potential was 

low for her system. Additionally, the cobble riffles in the flume may have served as a hydraulic 

control, potentially fixing the reach-scale resistance due to sinuosity so that the only response 

readily available to the system was through cross-sectional scale changes, as she observed. 

Alternately, it was noted in Erwin (2013) that the transport though the system at the end of the 

high sediment run had not fully matched the 5-fold sediment supply increase. It is possible that 

due to the long time-scale required for a slope response in the flume, the experimental duration 

primarily captured the smaller time-scale responses. With a longer duration, a reach-scale slope-

change may have eventually occurred. 

Eaton and Church’s (2009) observation that a doubling of sediment supply could be 

accommodated by fining the bed without significant slope change can be understood if we 

consider the differences in grain-scale response potential as compared to our experiment. In their 

experiments, they observed various degrees of armoring ratios, the ratio of the d50 of the surface 

to the subsurface material, that decreased as the imposed sediment supply increased. They 

observed that in flume runs where the armor ratio neared unity that the surface had no capacity to 

fine, and aggradation occurred. Eaton and Church (2009) went further to show on a theoretical 

basis that up to a 4-fold increase in sediment supply could be accommodated though a fining of 

the surface armor layer using Parker’s (1990) fractional sediment transport relation. These 

observations imply that their alluvial system had a much higher potential for grain-scale 

resistance response than ours did, such that many of their experimental channels were able to 



48 

fully adjust to different imposed sediment supply conditions without much progression of the 

larger-scale responses.  

4.5 Implications for River Management and Restoration 

An improved understanding of the temporal and spatial progression of channel response 

should prove to be beneficial to river managers, engineers, ecologists, and those seeking to 

mitigate the impacts of sediment disturbance due to natural events or anthropogenic activity. 

Human activities such as dam construction and gravel mining operations often alter the natural 

sediment supply delivered downstream, (e.g., Williams & Wolman, 1984; Kondolf & Matthews, 

1991), and have been observed to lead to a variety of changes in the downstream river, including 

armoring of bed substrates, downcutting, changes to channel geometry, and vegetation 

encroachments (Kondolf & Matthews, 1991; Bunte, 2004; Harvey et al., 2005). These changes in 

morphology and sorting patterns can negatively impact fish populations, which rely on both the 

bed substrate and river morphology for spawning and habitat (Kondolf & Wolman, 1993; Harvey 

et al., 2005; May et al., 2009). Restoration efforts often seek to restore the sediment supply to the 

river to induce beneficial geomorphic and habitat changes in the form of reservoir sediment 

releases, dam removals, or gravel augmentation. The temporal and spatial manner in which these 

restoration measures elicit responses in the channel could have important consequences for the 

habitats that they seek to improve, and as our research shows, those changes could be temporary 

or permanent, and may take place at different times following the restoration activity. A better 

understanding of the persistence and temporal relationships of channel response to sediment 

supply changes can help guide restoration planning and project designs such that the range and 

duration of positive and negative impacts of those activities on aquatic habitat during critical life 

stages for aquatic species may be better foreseen.  
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5 Conclusion 

 

We conducted a flume experiment to explore the response of a scaled fixed-wall gravel-bed 

meandering channel to a doubling in sediment supply. During our experiment, we observed 

multiple scales of simultaneous responses as the channel adjusted to an increase in sediment 

supply. Channel adjustments were observed to occur according to a timescale in proportion with 

the geomorphic work required; at a long enough time-scale, slope increase was the dominant 

response observed for our channel. The response of scaled gravel-dune bed forms and bar-pool 

morphology to increased sediment supply were observed to be transient and largely unaffected at 

each equilibrium condition during the experiment. This may indicate that gravel dunes and bar-

pool morphology are not dependent on a specific sediment supply. 

We characterized the relative influences of the observed responses using an total system 

resistance approach (Eaton & Church, 2004), which corroborated our observation that slope 

increase was the dominant mechanism by which the channel decreased long-term system 

resistance and increased transport capacity. We propose that this may be because the smaller 

spatial scale responses in our system had less response potential to reduce system resistance. A 

conceptual model for the response of a meandering channel to increases in sediment supply has 

been proposed to explain the observations seen in our experiment across spatial and temporal 

scales; the model acknowledges the importance of response potentials at each scale, as well as 

the implicit constraints on the channel that influence the overall system response. Further 

research is needed to better understand and quantify the response potentials for the various scales 

and types of responses for alluvial systems, as well as understand what drives the persistence 

some channel responses over others. Presently, this model provides a framework to reconcile the 
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variety of responses that have been observed in meandering channel studies experiencing 

sediment supply changes. 
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Figure A1a High-pass topographic data for 0 hrs to 61.9 hrs. 
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Figure A1b High-pass topographic data for 64.1 hrs to 230.1 hrs. 
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Figure A2a Low-pass topographic data for 0 hrs to 61.9 hrs. 
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Figure A2b Low-pass topographic data for 64.1 hrs to 230.1 hrs. 
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Figure A3a Detrended topographic data for 0 hrs to 61.9 hrs. 
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Figure A3b Detrended topographic data for 64.1 hrs to 230.1 hrs. 
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