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ABSTRACT 
 

 

 

MODELING RISK OF LANDSLIDE INTIATION AND RUNOUT IN THE COLORADO 

FRONT RANGE UNDER CURRENT AND FUTURE CLIMATES  

 

 

 

Precipitation-induced landslides pose risks to humans through property damage, 

disruption of infrastructure, injury, and loss of life. Due to the spatial and temporal heterogeneity 

of soil moisture and landscape characteristics that impact slope stability and potential impacts of 

climate change on landslide location, quantifying landslide risk to humans is difficult as 

uncertainties are not represented in available datasets. Recent developments have improved our 

ability to probabilistically model landslide initiation, thus allowing for the incorporation of 

spatial and temporal uncertainty in the prediction of the onset of hillslope failures. The ability to 

incorporate uncertainty in landslide models is particularly valuable for considering how climate 

change, which could impact vegetation cover and associated root cohesion, might alter the 

vulnerability of people and infrastructure to landslides. The aim of this analysis is to 

probabilistically forecast landslide susceptibility under climate change by incorporating changes 

in the type and distribution of vegetation while accounting for uncertainties in key properties. 

Using Landlab, a Python-based toolkit for landscape modeling, we perform Monte Carlo 

simulations with an infinite slope stability model to make spatially explicit calculations of the 

probability of landslide initiation. The soil moisture input to the landslide model is from the 

Equilibrium Moisture from Topography, Vegetation, and Soil (EMT+VS) model, which 

downscales coarse-resolution soil moisture by incorporating the dependence of soil moisture on 

topographic, vegetative, and soil characteristics. We evaluate model sensitivity and identify that 
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vegetation, which impacts cohesion and soil depth, has a large impact on the model. We evaluate 

model performance by simulating landslide susceptibility over a 1333 km2 area of the Colorado 

Front Range as there is a large inventory of more than 1300 landslides from an extreme 

precipitation event in 2013. One anticipated effect of climate change in the Colorado Front 

Range is a reduction in the survivability of trees, which we incorporate through applying 

reductions to vegetative cohesion and vegetation cover. For the 2013 event, the model predicts 

79.6% of the mapped landslides and 5.8% of the rest of the study area as being unstable. A 

deterministic model using mean values from the probability model and assuming FS ≤ 1 is 

unstable captures only 42% of observed landslides, supporting the use of the probabilistic model. 

The probabilities are low (P(F) < 0.2) for the majority of predicted failures with a concentration 

at higher (P(F) > 0.8) values, with the latter having higher slopes and lower vegetation. 66% of 

nodes with P(F) > 0 occur on south facing slopes where trees are less abundant. After 

incorporating climate change, we see an increase in the areas susceptible to landslides and a shift 

to more instability on north-facing slopes.  Our study suggests that vegetation changes due to 

climate change could result in major shifts in the people and infrastructure susceptible to 

landslides in the Colorado Front Range.  

In conjunction with landslide initiation, determining landslide runout is important to fully 

analyze landslide risk. Landslide runout modeling for large areas is difficult due to limited 

information and the complexity of landslides. The difficulties of physically modeling landslides 

on large spatial scales have led to the development of empirical methods based on topographic 

attributes. While empirical models are limited in that they require calibration in new areas and 

thus can only be applied to areas with landslide inventories, they provide a way to model 

landslide runout at large spatial scales and identify areas for further, potentially more physically-
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based, analyses.  We investigate whether topographic controls can be used to predict landslide 

termination. We develop a landslide runout model and apply it to a 10-m elevation grid. Our 

model routes landslides downslope with d8 flow direction method and uses a critical slope, 

defined as a minimum slope a landslide must encounter to end, and slope persistence, defined as 

the distance the landslide must travel under the critical slope, to represent landslide stopping 

locations. We apply our model to see if it can replicate landslide runout in the Colorado Front 

Range due to a large landslide inventory from a 2013 precipitation event that induced  

approximately 1300 mapped landslides. The calibrated model has a critical slope of 3° and a 

slope persistence of 20 m and predicts landslide distance in both the calibration and evaluation 

areas with a Nash-Sutcliffe (NS) value of 0.69 and 0.58, respectively. We compare our calibrated 

model to an angle of reach approach, an approach that has been applied previously for landslide 

runout mapping which determines the slope between the start and end of a landslide, and 

determine that the best NS value of 0.14 occurs at an angel of 20°. Our results show that within 

our study area, topographic controls provide plausible initial estimates of runout endpoints and 

an improvement over similarly simplistic methods such as the angle of reach. The potential of 

using critical slope combined with slope persistence to capture topographic controls to predict 

runout endpoints is a promising opportunity for landslide hazard mapping at large spatial extents.   
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CHAPTER 1: INTRODUCTION AND BACKGROUND 
 

 

 

1.1 INTRODUCTION 

Landslides pose risk through economic losses to infrastructure, damage to the 

environment, and loss of human life. Quantifying risk considers where landslides will occur and 

where they will travel once initiated to determine what people, infrastructure, and downslope 

environments are susceptible.  

Modeling landslide initiation at large extents requires accurate spatial data for all input 

variables, including topography, hydrology, and vegetation. While some input data, such as 

elevation, are readily available for most parts of the world, other data may be unavailable, low 

resolution, or highly uncertain. Soil moisture, due to its dependence on elevation, vegetation, soil 

type, and soil texture, is one variable that is particularly difficult to quantity for precipitation-

induced landslides. Soil moisture is often coarse in resolution, requiring downscaling for 

accurate values if applied to regional models. Peng et al. (2016) discusses approaches to soil 

moisture downscaling, which includes relating land surface temperature with vegetation and 

relating vegetative dryness and vegetation temperature controls. Another variable that is difficult 

to quantify at large spatial extents is soil texture, which impacts infiltration rates and water 

holding capacity of a soil, both of which impact soil moisture and thus slope stability. Pauly et al. 

(2020) found that spatially averaged soil texture worked as well as spatially varied soil texture 

for soil moisture downscaling due to uncertainties. Grieco et al. (2018) identified that using 

global landuse data in soil moisture downscaling did not improve performance due to variable 

uncertainties and potential misclassifications. These studies demonstrate that while accurate soil 

data are necessary for soil moisture evaluation, and thus precipitation-induced landslide models, 
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providing accurate soil characteristics for input into models applied over broad spatial extents is 

challenging. Deterministic predictions for landslide susceptibility are particularly challenging 

due to these issues. A probabilistic approach can improve upon a deterministic approach by 

incorporating some of these uncertainties.  

Landslide runout can be considered in a variety of ways. While all approaches are aimed 

at quantifying risk, modeling approaches might consider rules-based, topographic control 

approaches (Milledge et al., 2019), hazard mapping based on representing the frictional and 

momentum losses of landslides as they travel (Gibson and Sanchez, 2020; Horton et al., 2013; 

Quan Luna et al., 2016), and empirical evaluations of landslide inventories (Clerici et al., 2010). 

Similar to landslide initiation, many modeling approaches have limitations particularly when 

applied at large spatial extents. One setback is that the data required for some modeling 

approaches, such as relating distance traveled to landslide volume, are not readily available in all 

landslide inventories, leading to the inability to apply models that use that approach over broad 

extents. Another limitation is that physically characterizing mass movements, particularly debris 

flows, is a challenge due to the complexity and unsteady spatial extents and temporal aspects 

(Iverson, 1997) due in part to solid-fluid interactions leading to non-Newtonian behavior (De 

Blasio, 2011). This leads to challenges in applying runout models to large spatial extents if the 

physical components of the landslides are fully represented. We aim to develop a simple 

landslide runout model that evaluates topographic controls to determine whether they represent 

landslide end points, which could allow for easier and more rapid applications of landslide 

runout to large spatial extents.  

A final component of modeling precipitation-induced landslide risk across large spatial 

extents is considering how to incorporate the impacts of climate change. Understanding the 
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difference between current and future landslide initiation locations is important to consider but is 

challenging to quantify. Predicting the impacts of climate change on precipitation-induced 

landslides requires considering both the changes to hydrologic factors and changes to vegetation 

as they both can impact landslide susceptibility (Bernardie et al., 2021). Climate models 

themselves have built-in assumptions and limitations, including often having large spatial extents 

and thus having similar downscaling problems as soil moisture. In considering the hydrologic 

impacts of climate change, downscaling is often needed as the duration and intensity of rainfall 

can differ between regional-level models and local weather (Mahoney et al., 2013). Hydrologic 

changes are most often incorporated into landslide models through changes to soil moisture. In 

considering changes to vegetation, the compounding considerations of changes to vegetation 

patterns due to temperature, precipitation, and competition is difficult to quantify (Cannone et 

al., 2007). The impacts of climate change on vegetation are less often incorporated into landslide 

models, though landuse changes have been considered previously and do impact slope stability 

(Bernardie et al., 2021).  We aim to assess the changes to the risk of landslide initiation due to 

the impacts of climate change on vegetation in the Colorado Front Range through applying a 

probability model.  

1.2 CASE STUDY 

In September 2013, a storm stalled over the Front Range in Colorado. The corresponding 

rainfall, which lasted almost a week, led to flooding and landslides that resulted in several 

deaths, thousands of houses being damaged, and millions of dollars in damage to infrastructure. 

More than 1300 landslides were initiated by the precipitation event, some traveling as far as 5 

km (Coe et al., 2014).  The storm was unprecedented in the Front Range due to both the large 

spatial extent and the duration that it remained stationary (Coe et al., 2014). The impacts of the 
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event provides an opportunity to consider regional impacts of precipitation events on landslide 

susceptibility in the Front Range. The mapped landslides from the event are used to assess model 

performance for both models applied in this study.  

1.3 THESIS STRUCTURE 

This thesis is divided into two analyses. The second chapter considers a probabilistic 

landslide initiation model, which includes consideration of soil moisture downscaling, sensitivity 

of landslide initiation to landslide model inputs, and a comparison of methods to analyze a 

probabilistic model. These analyses guide an evaluation of the impacts of climate change on 

landslide susceptibility in the Front Range. The third chapter presents the development, 

calibration, and implementation of a landslide runout model. Both chapters 2 and 3 are formatted 

for publication and as such, are stand-alone texts. A synthesis of the two papers is provided in 

the conclusion.  
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CHAPTER 2: LANDSLIDE SUSEPTIBILITY IN CURRENT AND FUTURE CLIMATES IN 

THE COLORADO FRONT RANGE  
 

 

 

2.1 INTRODUCTION 

  Landslides pose risk to society in the form of property and infrastructure damage, 

personal injury, and loss of life. Petley (2012) estimates that 2600 landslides resulted in more 

than 32,000 deaths worldwide between 2004 and 2010. Schuster and Fleming (1986) estimated 

that landslides in the United States resulted in more than $1 billion in damages annually. With 

climate change influencing multiple variables that impact slope stability, the distribution of 

predicted landslide locations is expected to change (Alvioli et al., 2018; Bernardie et al., 2021; 

Kim et al., 2015) thus impacting the areas, infrastructure, and people that are susceptible to them. 

Haque et al. (2019) evaluated landslides that resulted in loss of life and determined that between 

1995-2014, there was an increasing trend of loss of life due to landslides and increased landslides 

from extreme precipitation events. There is a trend of increasing high-intensity precipitation 

events (Wuebbles et al., 2017), and this shift toward extreme precipitation is projected to 

increase in frequency under climate scenarios (Pendergrass and Knutti, 2018), thus increasing the 

potential for precipitation-induced landslides. This means that determining which areas of the 

landscape are susceptible to landslides under current and projected climate scenarios is 

increasingly important to minimize risk to people and infrastructure.  

Quantifying landslide risk requires considerations of the spatial and temporal aspects 

affecting landslide susceptibility. Landslide risk can be calculated from multiplying frequency, 

which is how often a landslide will occur, with vulnerability, which is the damage to 

infrastructure and people once they occur (van Westen et al., 2006; Salvati et al., 2010). 
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Landslide initiation models can also be combined with landslide runout to distinguish the full 

area susceptible to landslides, leading to the ability to fully capture and represent landslide risk.  

Factors that impact slope stability include topography, soil texture, and vegetation. 

Accurate topographic data is readily available for most areas. Soil texture, which can impact soil 

moisture and pore water pressures that lead to slope failures, can be difficult to quantify. Pauly et 

al. (2020) found similar model performance for a soil moisture downscaling model applying 

spatially averaged soil texture as applying spatially varied texture due to uncertainties. 

Vegetation includes both vegetation cover and type of vegetation. Vegetation indirectly impacts 

slope stability by influencing soil moisture, thus effecting the hydrologic component of 

landslides, and directly impacts slope stability through vegetative cohesion forces. Grieco et al. 

(2018) found that due to uncertainties and misclassifications in global landuse data, model 

performance for a soil moisture downscaling model did not improve by incorporating landuse. 

These studies demonstrate the difficulty in representing precipitation-induced landslides due to 

the uncertainties in available datasets. Applying deterministic landslide models can be 

challenging due to not representing the spatial uncertainties in vegetation and soil characteristics. 

Probabilistic approaches can improve upon a deterministic approach by incorporating and 

representing some of these uncertainties.  

Particularly for risk analyses for regional applications, climate change is important to 

consider in landslide modelling to assess how landslide susceptibility and location might be 

impacted. The impacts of climate change on precipitation-induced landslides are primarily 

considered in one of two ways: through assessing changes to hydrologic drivers that could lead 

to landslides (Alvioli et al., 2018; Bernardie et al., 2021; Rosso et al., 2006; Mahoney et al., 

2013) and through assessing the impacts of changes in vegetation or landuse on landslide 
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susceptibility (Bernardie et al., 2021; Gariano et al., 2018; Vanacker et al., 2003).  Bernardie et 

al. (2021) evaluated the impacts of climate change on landslide susceptibility in the French 

Pyrenees through considering both hydrological and vegetative factors, incorporating the latter 

by adjusting cohesion values based on modeled changes in landuse. They found that slope 

stability was impacted by landuse types, with areas with decreased slope stability being areas 

with increased human activity and thus reduced vegetation, and soil water content, which 

increased in some areas leading to decreased slope stability. The incorporation of climate change 

is challenging due to spatial and temporal uncertainties, such as when and how vegetation and 

precipitation will change, but is vital to consider in landslide studies to evaluate site-specific 

impacts. Due to the large uncertainties in model projections, a probability model can better 

address and represent changes to the environment.  

Assessing the impacts of climate change on vegetation must consider a range of variables 

including changes to temperature, precipitation, and general vegetation dynamics (Cannone et 

al., 2007). The literature generally shows that vegetation is highly susceptible to climate change, 

though whether the population of a plant species increases or decreases is dependent on 

numerous other factors (Brice et al., 2020; Buma and Wessman, 2013; Wang et al., 2018). 

Stoddard et al. (2015) evaluated the impacts of climate change on forest management practices 

for a mixed-conifer forest in the San Juan Mountains in southwestern Colorado. They performed 

field analyses before treatment and five years after treatment. The field data were used as growth 

rates for a forest vegetation dynamics model used to evaluate the impacts of climate change on 

tree survivability. Their model predicted a significant reduction in tree populations under future 

climate scenarios, a conclusion that has been identified previously in the western US (Tarancón 

et al., 2014; Charnie et al., 2016). Vegetation cohesion is dependent on species type (Norris et 
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al., 2008), so a reduction in tree abundance or a shift in the distribution of plant species may 

cause changes in landslide susceptibility. 

This study aims to probabilistically model landslide susceptibility to evaluate the impacts 

of climate change on vegetation distribution and vegetation cover. A probabilistic model is 

particularly appropriate for climate change analyses as spatial and temporal uncertainties can be 

directly incorporated into the model. We model landslide probability through combining a soil 

moisture downscaling model and a probabilistic landslide initiation model, aiming to have 

consistent variables and assumptions between the two models, and applying the model to the 

Colorado Front Range. We evaluate the Colorado Front Range as an extreme precipitation event 

in 2013 induced 1300 mapped landslides that due to the spatial extent provides an opportunity to 

evaluate regional extent precipitation-induced landslide susceptibility as a base scenario and use 

those analyses to assess changes under climate scenarios. We model the impacts of climate 

change on predicted landslide location based on changes to vegetation to answer the question of 

what the landslide risk would be for a storm event of similar magnitude to the base scenario 

under climate scenarios. The incorporation of the impact of climate change on landslide location 

aims to better understand potential changes to landslide susceptibility and incorporate some of 

the uncertainty of climate modeling.   

2.2 MODEL DESIGN 

2.2.1 SOIL MOISTURE MODEL  

A key variable for precipitation-induced landslides is soil moisture. Accurately 

representing soil moisture for a storm event is difficult as it requires consideration of both 

antecedent conditions and the timing of rainfall and infiltration to determine when, if ever, a 

critical loss of slope stability occurs due to saturation (Wicki et al., 2020). Increased soil 
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moisture increases pore water pressure and decreases matric suction, a combination which can 

lead to slope failure (Wicki et al., 2020). The failure mode caused by increased soil moisture is 

impacted by soil texture: finer soils are more likely to fail due to the loss of suction while coarser 

soils are more likely to fail due to positive pore water pressures (Collins and Znidarcic, 2004).  

Providing accurate soil moisture values for landslide model applied to large spatial 

extents requires the incorporation of the impact of heterogeneity of topography and vegetation on 

soil moisture. Soil moisture data resolution is often coarse, limiting its accuracy (Wicki et al., 

2020; Coleman and Niemann, 2013; Vereecken et al., 2008). The Equilibrium Moisture from 

Topography, Vegetation, and Soil (EMT+VS) is a soil moisture downscaling model (Ranney et 

al., 2015). The model is based on the research of Coleman and Niemann (2013) who studied the 

relationship between hydrologic processes (evapotranspiration, lateral flow, and deep drainage) 

and the spatial structure of soil moisture patterns. The EMT+VS model requires topographic, 

vegetative, soil, and climate variables to determine soil moisture downscaling (Ranney et al., 

2015). Additional analyses have considered how best to downscale multiple coarse grid cells 

(Hoehn et al., 2017) and have incorporated the dependence of soil moisture on orographic 

precipitation and potential evapotranspiration (Cowley et al., 2017). The model can represent soil 

moisture in wet and dry states, can represent temporally unstable patterns, and explicitly 

incorporates topographic dependence of soil moisture (Coleman and Niemann, 2013). The model 

has been applied to a variety of areas and produced realistic results, including to the Colorado 

Front Range (Ranney et al., 2015; Timilsina et al., 2021).  The use of the EMT+VS model allows 

for fine resolution soil moisture instead of coarse resolution and an increased understanding 

about which variables impact soil moisture downscaling.   
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Four hydrologic processes are modelled in EMT+VS to downscale soil moisture: 

infiltration, deep drainage, lateral flows, and evapotranspiration (ET). As an abbreviated model 

description is provided in Timilsina et al. (2021) and a full model description can be found in 

Cowley et al. (2017), here we summarize only the main model equations. 

The first component is infiltration. Infiltration is calculated by considering orographic 

dependence of precipitation and interception by vegetation cover: 

 𝐹 = �̅�
[1+𝜏(𝑍#−�̅�#)]{1+𝜉[𝑆# cos(𝑅#−𝜐)−𝑆#cos(𝑅#−𝜐)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]}

1+𝜏𝜉[𝑍#𝑆# cos(𝑅#−𝜐)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ −�̅�#𝑆#cos(𝑅#−𝜐)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅]
(1 − 𝜆𝑉)    (2.1) 

where 𝐹 [mm/d] in the infiltration rate, �̅� [mm/d] is the spatially averaged precipitation, 𝜏 [1/m] 

specifies the elevation dependence of precipitation, 𝜉 [-] determines orientation dependence of 

precipitation, 𝑍# [m], 𝑆#, and 𝑅# are average elevation, slope, and aspect around the grid cell at 

the spatial scale of the orographic effects, 𝜐 [-] specifies the direction from which the orientation 

dependence is calculated, 𝜆 [-] specifies the efficiency of vegetation intercepting precipitation, 

and 𝑉 [-] is the fractional vegetation cover. This expression neglects surface runoff because 

Pauly et al. (2020) showed that incorporating surface runoff does not improve the accuracy of the 

downscaled soil moisture due to associated data limitations.  

The second component considers deep drainage by applying Darcy’s law under gravity 

drainage and calculating unsaturated hydraulic conductivity based on Campbell (1974):  

 𝐺 = 𝐾𝑠,𝑣 (
𝜃

𝜃𝑠
)
𝛾𝑣

         (2.2) 

where 𝐺 [mm/d] is deep drainage, 𝐾𝑠,𝑣 [mm/d] is the vertical saturated hydraulic conductivity, 

and 𝛾𝑣 [-] is the vertical pore disconnectedness index.  

The third component, lateral flow, applies Darcy’s law assuming that the lateral hydraulic 

gradient is a function of topographic slope.  The hydraulic conductivity is again calculated based 
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on Campbell (1974) and soil depth is assumed to be related to topographic curvature, 

specifically: 

 𝐿 = 𝛿0 (
𝜅𝑚𝑖𝑛−𝜅

𝜅𝑚𝑖𝑛
) 𝑐𝜄𝐾𝑠,𝑣 (

𝜃

𝜃𝑠
)
𝛾ℎ
𝑆𝜖   (2.3) 

where 𝐿 [mm/d] is the lateral flow, 𝛿0[m] is the soil depth where topographic curvature is zero, 

𝜅𝑚𝑖𝑛 [-] is the minimum curvature where the soil is present, 𝜅 [-] is the curvature, 𝑐 [m] is the 

dimension of the DEM grid cells, 𝜄[-] is the hydraulic conductivity anisotropy, 𝛾ℎ [-] is the 

horizontal pore disconnectedness index, and 𝜖 is the function relating topographic slope with the 

horizontal hydraulic gradient.  

The final soil moisture component is ET. Based on the work of Priestly and Taylor 

(1972), the equation incorporates ET based on the fractional vegetation cover 𝑉, shading effects, 

and water uptake from soil layers below the current soil layer: 

 𝐸 = �̅�𝑝[1 + 𝜔(�̅� − 𝑍)][𝜂𝑉 + (1 − 𝑉)𝜇] [
𝐼𝑝

1+𝛼
(
𝜃

𝜃𝑠
)
βr
+

𝛼

1+𝛼
(
𝜃

𝜃𝑠
)
𝛽𝑎
]    (2.4) 

where 𝐸 [mm/d] is the ET, �̅�𝑝 [mm/d] is the spatially average potential ET, 𝜔 [1/m] incorporates 

the elevation dependence into the potential ET, 𝜂 [-] is the transpiration from the modeled soil, 𝜇 

[-] is the impact of shading within the cell, 𝛼 [-] is the Priestley Taylor coefficient minus 1, 𝐼𝑝 [-] 

is the potential solar radiation index (Dingman, 2002), 𝛽𝑟 [-] specifies limitations on the 

radiation component of ET due to moisture, and 𝛽𝑎 [-] specifies limitations on the aerodynamic 

component of ET due to moisture.  

The final downscaled soil moisture is calculated as a weighted average: 

 𝜃 =
𝜔𝐺𝜃𝐺+𝜔𝐿𝜃𝐿+𝜔𝑅𝜃𝑅+𝜔𝐴𝜃𝐴

𝜔𝐺+𝜔𝐿+𝜔𝑅+𝜔𝐴
    (2.5) 

where 𝜃𝐺 , 𝜃𝐿 , 𝜃𝑅 , 𝜃𝐴 are soil moisture estimates calculated assuming deep drainage, lateral flow, 

radiative ET, and aerodynamic ET dominate the water balance and 𝜔𝐺 , 𝜔𝐿 , 𝜔𝑅 , 𝜔𝐴 are the 
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weights associated with each of the soil moisture estimates. The expressions for the analytical 

soil moisture estimates and weights can be found in Cowley et al. (2017). We apply a box 

filtering method based on a shifting window approach to avoid unrealistic transitions between 

the coarse-level soil moisture data; the method and justification for its use is explained in Hoehn 

et al. (2017). The method is suggested by Hoehn et al. as the most applicable in broader 

applications as it requires no additional variables. 

2.2.2 INFINTE SLOPE STABILITY MODEL 

2.2.2.1 Landslide initiation model 

Landslide modeling approaches vary significantly, though broadly they are sorted into 

empirically based (Metternicht et al., 2005; Lee et al., 2007; Wu and Sidle, 1995) and process-

based analyses (Raia et al., 2014; Strauch et al., 2018; Vandromme et al., 2020). Empirical 

landslide models establish behaviors using landslide inventories while process-based models 

physically represent characteristics that lead to slope failures (Bernardie et al., 2021). As such, 

process-based models can be applied more broadly both spatially, for example in areas that do 

not have landslide inventories, and temporally, which allows the consideration of future climate 

scenarios (Bernardie et al., 2021). The infinite slope model, which compares the resisting forces 

to the stabilizing forces on a hillslope (Raia et al., 2014), is one physically-based approach for 

representing landslide susceptibility.  The ease of application makes it a widely applied 

physically-based approach for landslide modeling across a range of spatial scales (Baum et al., 

2010; Borga et al., 2002; Collins and Znidarcic, 2004; Mergili et al., 2014; Montgomery and 

Dietrich, 1994; Raia et al., 2014; Strauch et al., 2018; Wu and Sidle, 1995).  

As establishing landslide risk requires considerations of the spatial and temporal aspects 

affecting landslide susceptibility, an important consideration with is how to quantify 
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uncertainties. Uncertainties can arise from spatial heterogeneity, such as differences in 

vegetation and soil characteristics, and measurement limitations and errors (Strauch et al., 2018). 

One way to incorporate these uncertainties is to probabilistically model landslide initiation. 

Strauch et al. (2018) developed a probabilistic Monte Carlo model for landslide initiation using 

the infinite slope equation. Their model, developed in the Python-based Landlab package 

(Hobley et al., 2017; Barnhart et al., 2020), is aimed at applications applied to regional extents. 

The consideration of probability allows their model to incorporate spatial uncertainty within the 

variables. A probabilistic model can also consider landslide risk more broadly as it can 

incorporate temporal uncertainty. Borga et al. (2002) discusses how landslide probability models 

often have higher rates of predicted failures across a landscape than the number of observed 

landslides from a particular landslide initiation event. These predicted landslides could represent 

landslide hazard potential through time, thus incorporating an aspect of temporal uncertainty 

(Borga et al., 2002).  

We apply the probabilistic Monte Carlo landslide model developed by Strauch et al. 

(2018), which is available in Landlab, a Python-based package. The model solves the infinite 

slope factor of safety (FS) equation based on the equation presented by Pack et al. (1998). The 

model uses a topographic grid and gridded input data to model slope stability, where a FS value 

less than 1 is unstable, FS greater than 1 is stable, and FS equal to one is quasi-stable. The FS 

equation compares stabilizing forces, which include internal friction and cohesion, to 

destabilizing forces, which include gravity and pore water pressure.  

The FS equation is modified to explicitly incorporate volumetric soil moisture and 

suction stress, based on the work of Timilsina et al. (2021). The final equation applied in the 

Landlab model is: 
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𝐹𝑆 =
𝐶𝑣+𝐶𝑠

ℎ𝛾𝑠 sin 𝑆
+ tan𝜙 cot 𝑆 − tan𝜙 cot 𝑆

𝜌𝑤

𝜌𝑠
(
𝜃−𝜃𝑟

𝜃𝑠−𝜃𝑟
) (ψs (

𝜃𝑠

𝜃
)
𝑏
) (

1

ℎ cos𝑆
)    (2.6) 

where 𝐹𝑆 [-] is the factor of safety, 𝐶𝑣 is vegetative cohesion [Pa], 𝐶𝑠  is soil cohesion [Pa], h is 

the vertical soil depth [m], γ is the specific weight of soil [kN/m2], S is the slope [m/m], 𝜙 is the 

internal friction angle [∘], 𝜌𝑤 is the density of water [kg/m2], 𝜌𝑠 is the density of soil [kg/m2], 𝜃𝑠 

is the saturated water content [-], 𝜃 is the volumetric water content or soil moisture [m3/m3],𝜃𝑟 is 

the residual soil moisture [m3/m3], 𝜓𝑠 is the air entry matric potential [m of water], and 𝑏 is the 

pore size distribution [-].  

2.2.2.2 Monte Carlo Simulations 

FS has limitations particularly for risk analyses due to not incorporating uncertainties. A 

key source of uncertainty in landslide models is spatial variations in the datasets for properties 

that can impact slope stability. The goal of the probability analysis is to translate FS values into 

probabilities of failure (P(F)) to consider those uncertainties and allow for increased 

understanding about the relative P(F) between unstable sites.  

To determine P(F), the model is run for a specified number of simulations. Uncertain 

variables have a specified distribution and for each model simulation, a randomly selected value 

is used based on the distribution. Upon completion, the number of times FS was recorded as 

unstable is divided by the total number of simulations to determine the P(F) for each cell in the 

domain.  

The variables that are randomly sampled in the Monte Carlo simulation in the probability 

model are chosen due to mean spatial variations not capturing uncertainty in the data. The 

original model by Strauch et al. (2018) varied 𝐶𝑣, 𝜙, ℎ, and soil transmissivity. Due to the 

approaches we apply to represent FS and the uncertainties therein, we modify the model by 

removing the uncertainty related to soil transmissivity and ℎ, treat 𝜃 as uncertain, and make 
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different assumptions regarding the spatial variability of 𝐶𝑣 and 𝜙. Our FS equation does not 

include soil transmissivity, so we instead represent uncertainty in 𝜃.  

Cohesion considers both 𝐶𝑣 and 𝐶𝑠. We assume 𝐶𝑠=0, an assumption applied previously 

(Strauch et al., 2018), and we evaluate this by considering soil textures as soil cohesion is only 

present in areas with clay. We apply two approaches to modeling 𝐶𝑣 based on the landuse type. 

The cohesion for grid cells with landuse classified as evergreens or shrubs is varied in the Monte 

Carlo simulation, assuming a positively skewed, triangular distribution for each vegetation type 

(Strauch et al., 2018) which requires a minimum, maximum, and mean value. Per the probability 

model development and literature review by Strauch et al. (2018), the use of a positively skewed 

distribution is consistent with previous landslide probability applications (e.g., Hammond et al., 

1992) . The final vegetative cohesion value for each cell is calculated:  

 𝐶𝑣 = (𝐶)(𝑉) (2.7) 

where C is the cohesion selected from the distribution and V is the fractional vegetative cover 

(Timilsina et al., 2021).  

 For areas with all other landuse classifications, 𝐶 is not varied in the Monte Carlo 

simulation.  𝐶 for these other landuses is calculated by a linear relationship between 𝐶 and 𝑉 

(Timilsina et al., 2021). 

In considering the 𝜙, we make the same assumption as in the original landslide model 

and assume a positively-skewed, triangular distribution (Strauch et al., 2018). Triangular 

distributions have been applied previously in Monte Carlo analyses (Hammond et al., 1992) and 

the positive-skew as applied by Strauch et al. (2018) is based on a literature review. We assume a 

spatially constant value for the mean value. This is different from the original work by Strauch et 

al. (2018), who related 𝜙 to the soil texture resulting in a spatial variation. The classification of 
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soil characteristics is difficult as outlined in previous studies. For example, Pauly et al. (2020) 

showed limited improvements when considering the EMT+VS model in applying spatially 

varied versus spatially averaged soil characteristics. The uncertainty is meant to incorporate the 

variability within the soil characteristics.  

Due to the uncertainty in 𝜃 downscaling, we vary 𝜃 based on the uncertainty in the 

downscaling method. To determine values for 𝜃, we analyze uncertainties incorporated into the 

EMT+VS downscaling which were in the form of a normal distribution, which we expand on in 

the methods (2.4.2.3).  

Randomly selecting a value for each uncertain variable assumes independence, an 

assumption applied in the original probability model by Strauch et al. (2018). The downscaled 𝜃 

does not consider landuse type, thus can be considered independent of the 𝐶𝑣, and can be 

considered independent of 𝜙 as soil texture is not incorporated into EMT+VS. The independence 

between 𝜙 and 𝐶𝑣 is based on assuming independence between vegetation type and soil 

characteristics.  

2.3 CASE STUDY 

2.3.1 2013 EVENT  

On September 9-13, 2013, a storm stalled over the Front Range of Colorado, leading to 

precipitation exceeding 10 inches in some areas (Lukas et al., 2013). Woolridge et al. (2020) 

identifies the storm as a midlatitude cyclone which is a low-pressure storm that occurs over a 

large spatial scale. The storm was an anomaly for the area as it had a longer duration, lower 

rainfall intensity, and larger spatial extent than many historic storms (Lukas et al., 2013). The 

storm resulted in more than 1100 mapped debris flows and more than 200 earth slides, debris 

slides, and rockfalls across 3400 km2 (Coe et al., 2014). The landslides mapped after the 2013 
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event are used to evaluate probability model performance and the storm conditions are used to 

better understand the potential changes to shallow landslide initiation under climate scenarios in 

the Colorado Front Range. Per the analyses of Coe et al. (2014), the landslides typically occurred 

at lower elevations, below 2600 m. The landslides were biased towards slopes greater than 25 

degrees and 78% of the debris flows occurred on south facing slopes (SFS). Previous studies 

(McGuire et al., 2016; Rengers et al., 2016) identified reduced vegetation on SFS in the Front 

Range and Woolridge et al. (2020) demonstrated that SFS were more prone to saturate during the 

event which contribute to the aspect-dependence of the landslides.  

2.3.2 APPLICATION REGION 

We apply the same study area as Timilsina et al. (2021), who evaluated a deterministic 

FS model, which allows us to apply many of the same assumptions and determine the difference 

between their deterministic and our probabilistic landslide model. The study area is located 

within the Colorado Front Range, which is in the Rocky Mountains in north-central Colorado 

(Figure 2.1). At 1333 km2, the study area contains 836 of the landslides mapped from the 2013 

storm event.  Within the study area, elevation ranges from 1555 m to 3481 m. The landuse is 

predominately evergreen trees (NLCD, 2016). The soil is largely coarse in texture, including 

sandy loams, loams, and sandy clay loams (Soil Survey Staff, 2020).  
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Figure 2.1 The study area is located in the Colorado Front Range  

The evaluation subarea is used for model sensitivity to consider the impacts of each 

variable to validate further model evaluations. The area is also used for more in-depth insights 

into visual behaviors for different modeling considerations. The subarea is contained within the 

full study area and is 109 km2, about 10% of the total study area, and contains 298 landslides. 

The soil and landuse characteristics in the evaluation subarea are representative of the full study 

area.  

Within the full study area, there are two types of landslides we consider: debris flows and 

debris slides. To avoid confusion regarding terminology, debris flows are defined as 
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precipitation-induced soil failures that lead to the fluidization of the surface (Varnes, 1978). 

Debris slides are slower and lack the fluidization present in debris flows. Coe et al. (2014) 

suggests that some debris flows initiated from debris slides. We consider the mechanism of 

initiation between debris flows and debris slides to be the same and the difference being in their 

movement after initiation and as such, we assume our landslide initiation model can predict both 

mass movement events. We henceforth refer to these as landslides.  

2.4 METHODS 

2.4.1 DATA ACQUISITION 

For spatially varied data, the probability model requires topographic information, 

vegetative characteristics, and soil texture data. The spatially varied EMT+VS model variable 

requirements include the soil moisture to be downscaled, topographic variables, and vegetative 

characteristics. We use ArcGIS 10.6 for topographic processing, MATLAB R2019a for the 

EMT+VS model, and Landlab version 1.9.0 in Python 3.7 for all other analyses. 

2.4.1.1 Topography 

Elevation data is a 1/3 arcsecond resolution digital elevation model (DEM) resampled in 

the study area to a 10 m resolution (USGS, 2015). The DEM is from post-event (2015) which 

could result in changes from landslides from pre-event topography. Using the TauDEM GIS 

toolbox (TauDEM Version 5), a pit finder tool is applied to the DEM and the d-infinity 

contributing area is calculated as is the slope. Aspect is calculated using ArcGIS tools. The 

spatially varied topographic variables as used in EMT+VS and Landlab is shown in Figure 2.2.  
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Figure 2.2 The (a) elevation, (b) slope, and (c) aspect for the EMT+VS and the probability 

models  

2.4.1.2 Soil Texture 

Soil data for the study area are from Gridded National Soil Survey Geographic Database 

for the state of Colorado (Soil Survey Staff, 2020). The percent sand, silt, and clay are applied to 
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the Module Soil Texture Classification in QGIS to determine the USDA soil texture 

classification (Massei, 2007).  

2.4.1.3 Fractional vegetation cover 

𝑉 is calculated using Landsat 5 data from USGS (2016). The data are from September 28, 

2011, which is last September date before the flood event without excess cloud cover, which 

obscures the land surface reducing the accuracy of EMT+VS. The Normalized Difference 

Vegetation Index (NDVI) is calculated from Landsat data using (Rouse et al., 1973):  

 𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐸𝐷

𝑁𝐼𝑅+𝑅𝐸𝐷
          (2.8)  

where NIR is the near-infrared (Band 4 in Landsat 5) and RED is the visible band (Band 3 in 

Landsat 5). The NDVI is used to calculate 𝑉: 

 𝑉 =
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼0

𝑁𝐷𝑉𝐼∞+𝑁𝐷𝑉𝐼0
          (2.9)  

where NDVI0 is the observed NDVI to pixels with no vegetation and NDVI∞ is the observed 

NDVI for fully vegetated pixels, with V ranging from 0-1. Based on the work of Timilsina et al. 

(2021), the minimum vegetation is 0.04 and the maximum vegetation is 0.7 (Figure 2.3).  

 

Figure 2.3 𝑽 as applied to the probability model  
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2.4.1.4 Soil moisture 

Large-resolution 𝜃 is downloaded from NLDAS Mosaic hourly data (Xia et al., 2012a; 

Xia et al., 2012b) for the Front Range at 00:00 MDT on September 12, 2013. This is one of the 

wettest periods during the storm (Timilsina et al., 2021) and a time when multiple landslides are 

known to have occurred (Coe et al., 2014). The Mosaic model is one of four 𝜃 models in 

NLDAS and has been shown to have better accuracy in Colorado than the other three (Xia et al., 

2015). The Mosaic model has hourly soil data for various soil depths, we apply 0-40 cm as this is 

closest to observed soil depth values in the Front Range (McGuire et al., 2016; Timilsina et al., 

2021).  Per comparisons conducted by Timilsina et al. (2021), the NLDAS model is biased 

during the storm event and as such, before processing in the EMT+VS model, 0.08 m3/m3 is 

subtracted from the values in the study area. The average 𝜃 value within our full study area is 

0.27 m3/m3.  

2.4.1.5 Landuse 

Landuse is obtained from the National Land Cover Database (NLCD) (NLCD, 2016). 

Initial analyses showed that most of the study area is evergreens and shrubs (Figure 2.4). 

Because of this, the evergreen and shrub classifications are maintained while all other landuse 

types are combined for the calculations. 
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Figure 2.4 The landuse types within the study area. NCLD 2016 imagery courtesy of the U. 

S. Geological Survey  

2.4.2 PARAMETER ESTIMATION 

The values for the probability model are found in Table 2.1 and the uncertainty ranges for 

𝐶𝑣, 𝜙, and 𝜃 can be found in Table 2.2. The EMT+VS model variables can be found in Timilsina 

et al. (2021) where we applied the values from their combined scenario. We do not further 

discuss EMT+VS here.  

2.4.2.1 Soil characteristics 

Soil texture is used to determine 𝜓𝑠 and 𝑏 using the values in Cosby et al. (1984). 𝜓𝑠 is 

spatially varied based on USDA soil texture classification, with a range of 0.04 to 0.76 m of 
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water (Figure 2.5 𝝍𝒔 as applied to the probability modelFigure 2.5).𝑏 is a spatially 

averaged value based on soil texture, which results in a value of 5.14 for the full study area. 

 

Figure 2.5 𝝍𝒔 as applied to the probability model 

2.4.2.2 Porosity 

𝜃𝑠 is held constant in the EMT+VS model with a recommended value of 0.409 (Grieco et 

al., 2018; Timilsina et al., 2021). For consistency between the EMT+VS model and the landslide 

model, we assume the same 𝜃𝑠 in the probability model. 

2.4.2.3 Internal friction angle 

 is assigned a spatially constant mean value of 30° based on Timilsina et al. (2021). The 

variability for the Monte Carlo simulation is from Strauch et al. (2018), where the study area is 

comprised largely of sandy loams, which is a similar soil texture to the Front Range. We apply 

their ranges for uncertainty, where calculating the minimum and maximum values uses: 

 𝜙𝑚𝑖𝑛 = 𝜙𝑚𝑒𝑎𝑛 − 0.18 ∗ 𝜙𝑚𝑒𝑎𝑛         (2.10)

 𝜙𝑚𝑎𝑥 = 𝜙𝑚𝑒𝑎𝑛 + 0.32 ∗ 𝜙𝑚𝑒𝑎𝑛                   (2.11) 
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2.4.2.4 Soil depth 

𝑉 is used to calculate ℎ in the probability model. McGuire et al. (2016) determined that 

south facing slopes (SFS) in the Colorado Front Range have a mean ℎ of 0.56 m while north 

facing slopes (NFS) have a ℎ of 0.64 m. Following Timilsina et al. (2021), we represent ℎ as a 

linear function of 𝑉 where ℎ = 0.56 + (𝑉)(0.08).  

2.4.2.5 Soil moisture 

Soil moisture for the probability model requires specifying 𝜃𝑟. 𝜃𝑟 is the soil water content 

under which hydraulic conductivity is assumed to be zero (Pauly et al., 2020). Pauly et al. (2020) 

showed that incorporating 𝜃𝑟 into the 𝜃 downscaling in the EMT+VS model provides no 

improvements to the model. To maintain consistency between the EMT+VS model and the 

probability model, the same assumption is applied and the 𝜃𝑟 is assumed to be 0, akin to work by 

Timilsina et al. (2021).  

The EMT+VS model has been calibrated to the Cache la Poudre watershed (Ranney et al. 

2015), which is located further north in the Colorado Front Range than the full study area. We 

apply the values from Timilsina et al. (2021), who applied the values from the Poudre watershed, 

estimated some variables based on data, and applied values from Grieco et al. (2018) when the 

variables were not well represented by the Poudre dataset.  

The probability model incorporates the stochastic variability in 𝜃 using a normal 

distribution, as this is the distribution used to represent 𝜃 variability evaluated by Deshon (2018), 

which requires specifying a mean and a standard deviation. We apply the so-called direct 

approach developed by Deshon (2018) which considered stochastic variations in 𝜃. Their 

approach incorporates stochastic variations multiplicatively: 

 𝜃𝑓𝑖𝑛𝑎𝑙 = 𝜃(1 + 𝑎∗ + 𝑏∗)             (2.9)  
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where 𝜃𝑓𝑖𝑛𝑎𝑙 is the soil moisture [m3/m3] applied directly to the probability model, 𝜃 is the 

downscaled soil moisture from the EMT+VS model, 𝑎∗ is a spatially correlated random variable, 

and 𝑏∗ is a spatially uncorrelated random variable.  

Both 𝑎∗ and 𝑏∗ have means of zero.  Deshon (2018) calibrated the standard deviations of 

𝑎∗ and 𝑏∗ for the Cache la Poudre catchment and obtained 𝜎𝑎 = 0.14 and 𝜎𝑏 = 0.12. Deshon 

(2018) also determined that in the Cache la Poudre catchment, 41% of the variability is a time 

stable pattern that is consistent with porosity variations. We assume the remainder (59%) of the 

stochastic variation is due to 𝜃 variability. Our final 𝜃 calculation becomes:   

𝜃𝑓𝑖𝑛𝑎𝑙 = 𝜃[1 + (1 − 0.41)(𝑎∗ + 𝑏∗)]       (2.10) 

If this variability results in 𝜃 > 𝜃𝑠, 𝜃𝑠 is used instead. We neglect spatial correlation 

because it is not relevant to the objectives of this study and greatly simplifies the generation of 

the random variations. We also neglect any large scale stochastic variations in 𝜃, which would 

not have been observed by Deshon (2018) within the small Cache la Poudre catchment. 

2.4.2.6 Cohesion 

Total cohesion is the combination of 𝐶𝑣 and 𝐶𝑠. 𝐶𝑠 is assumed to be 0 after determining 

that soils with high clay contents only made up a small portion of the full study area, a modeling 

approach applied in other probability model applications (Strauch et al. 2018).  

𝐶𝑣 is varied based on both landuse and 𝑉. For landuse classifications with ‘other’, the 

linear relationship applied between 𝐶𝑣 and V assumes 𝐶𝑣 = (𝑉)(6200) (Timilsina et al., 2021). 

This is a small percentage of the study area and contains a range of landuse types that impact 

properties such as vegetation, infiltration, and compaction. Is an assumption applied the study 

area Timilsina et al. (2021), though they predominately justified its application for shrubs and 

evergreens, while we only apply it to other landuses. 
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The areas with a landuse of evergreen and shrubs have 𝐶 varied in the Monte Carlo 

simulations where the minimum, mean, and maximum cohesion values for fully vegetated grid 

cells are found in Table 2.2. The values are the same as applied in Strauch et al. (2018). These 

values are consistent with literature values for shrubs and evergreen tree cover (Bernardie et al., 

2021; Norris et al., 2008).  

Table 2.1 Values for the landslide probability mode 

Variable Symbol Units Value(s) 

Pore size distribution index b - 5.14 

Saturated water content 𝜃𝑠 m3/m3 0.409 

Residual soil moisture 𝜃𝑟 m3/m3 0 

Soil cohesion Cs Pa 0 

Soil density γs kg/m3 2000 

Air entry matric potential 𝜓𝑠 m H2O 0.04 to 0.76 

Soil thickness h m 0.56 to 0.64 

Specific weight of water γw kg/m3 1000 

 

Table 2.2  The values for the uncertain variables 

Variable Symbol Units Value(s) 

Cohesion  

Evergreen 

Forest 
C Pa 3000 10000 20000 

Shrubs/Scrubs C Pa 1200 4000 10000 

Other C Pa 0  6200 

Soil internal friction angle 𝜙 ° 24.6 30 39.6 

Soil moisture 𝜃 m3/m3 0.217 to 0.409 

Note:  Soil moisture is the range for the downscaled soil moisture  

2.4.3 CLIMATE CHANGE ESTIMATION 

We incorporate climate change by changing vegetation in the infinite slope stability 

model and determining the impacts on landslide susceptibility. We apply the impacts of climate 

change on vegetation as evaluated by Stoddard et al. (2015). Stoddard et al. used the Central 

Rockies Variant of Climate-Forest Vegetation Simulator (FVS) model, which models the growth 

and mortality rates of trees as well as competition within a stand under climate change scenarios 
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(Crookston et al., 2010; Crookston 2014). The model incorporates climate change by considering 

changes in site quality, changes in growth, and changes in adaptiveness of trees to climate 

change (Crookston et al., 2010). The model does not consider the direct impact of increased CO2 

on tree growth (Crookston et al., 2010).  

In a field experiment, Stoddard et al. (2015) considered the impacts of various forest 

management practices (a control, thinning and burn, and a burn) for a mixed-conifer forest in the 

San Juan Mountains, southwestern Colorado.  The management practices were evaluated five 

years post-treatment to establish growth rates, in which the tree basal area for the control 

scenario was 26.8 (m2/ha). The growth rates from the field data were applied in FVS. FVS was 

used to model vegetation dynamics from 2013-2063 for climate scenarios including a RCP 4.5 

and a RCP 8.5 scenario. The climate scenarios are based on the Intergovernmental Panel on 

Climate Change (IPCC) representative climate pathways (RCPs), which consider the impacts of 

climate change based on greenhouse gas emissions and landuse trajectories and incorporates 

some socio-economic considerations including expected technological improvements to mitigate 

climate change impacts and anticipated population growth (van Vuuren et al., 2011). RCP 4.5 

assumes a maximum radiative forcing of 4.5 W/m2, or about 650 ppm CO2 equivalent, by 2100, 

while RCP 8.5 assumes a maximum radiative forcing of 8.5 W/m2, or about 1370 ppm CO2 

equivalent, and assumes increased energy use, increased population, and minimal technological 

improvements (van Vuuren et al., 2011). In their evaluation of the FVS model for the RCP 4.5 

scenario, tree basal area decreased in their control scenario to 1.9 m2/ha in 2063, a 93.0% 

change, and in the RCP 8.5 scenario, tree basal area decreased to 1.3 m2/ha in 2063, a 95.3% 

change (Stoddard et al., 2015).  A follow-up field study in the area showed increases in shrubs 

(Korb et al., 2020).  
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This suggests that given the similar climate and forest composition between the study site 

and the Colorado Front Range, a potential effect of climate change is a reduction of the trees 

currently present and a potential increase in shrubs. Because the exact composition of the 

understory is unknown and tree species could migrate into the area not represented in the model, 

the change in vegetation due to climate change is modeled in our study by assuming that trees 

are replaced by shrubs. We implement this potential change by reducing the mean cohesion in 

areas with evergreen landuse classification. Due to the similarities between the reductions in 

vegetation for the RCP 4.5 versus the RCP 8.5 scenario, we apply the values from the RCP 8.5. 

The base scenario uses a mean cohesion of 𝐶 = 10000𝑃𝑎 for areas with evergreens, which 

becomes a reduction of 𝐶∆ = −5715𝑃𝑎.  

Vegetation type can impact vegetation cover and as such, vegetation cover could be 

impacted by landuse changes. In present-day land use, evergreens have greater 𝑉 than shrubs in 

our study area (Table 2.3), so a transition from evergreen trees to shrubs in future climates may 

be accompanied by a reduction in vegetation cover. 

Table 2.3 V based on landuse and aspect 

Variable Aspect Shrubs Evergreens 

Mean  
NFS 0.51 0.78 

SFS 0.50 0.70 

IQR 
NFS 0.14 (0.44 - 0.58) 0.17 (0.71 - 0.88) 

SFS 0.13 (0.44 - 0.57) 0.16 (0.62 - 0.78) 

 

Based on these values, we apply a weighting based on the difference between the mean V 

for shrubs and evergreens. We identify the difference between the mean V in shrublands and the 

mean V  in evergreens on NFS and SFS. For example, based on the values in Table 2.3, the 

difference between the mean evergreens and mean shrubs on NFS is 0.78 − 0.51 = 0.27. This is 

multiplied by the reduction in tree cover (95.3%) to identify the maximum reduction in 
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vegetation cover while results in 𝑉∆𝑁𝐹𝑆 = 0.27 ∗ (0.953) = 0.26. 𝑉∆𝑁𝐹𝑆 is the reduction to 

vegetation cover for areas on NFS with evergreens. For SFS, the maximum reduction to 

vegetation cover is 𝑉∆𝑆𝐹𝑆 = 0.18.  

The adjusted vegetation cover is used to re-calculate 𝜃 using EMT+VS. EMT+VS is 

modified to use the vegetation from the base scenario to calculate 𝛿0 and the probability model 

are modified to use the vegetation from the base scenario to calculate ℎ. This assumes that even 

if vegetation changes in a shorter period of time, ℎ will take longer to adapt to changes in 

vegetation.  

Due to the uncertainty in timing, vegetation composition during transitioning, and the 

potential for other species to migrate into the area that are not represented in the model, we 

evaluate the impacts of combinations of reduced cohesion and reduced vegetation cover on 

landslide initiation. We apply a full reduction, which assumes 95.3% of evergreens transition to 

shrubs, and a half reduction. The half reduction in cohesion values corresponds to around the 

year 2035 for the RCP 8.5 scenario, the RCP 4.5 scenario reaches this same reduction in 2038, 

while the full reduction corresponds to the year 2063. These reductions are applied by evaluating 

9 scenarios considering different combinations of vegetation cover and cohesion reductions 

(Table 2.4). The values provided in the table include the title for each scenario, the mean value 

for cohesion, and the reduction for vegetation cover, which is aspect-dependent, for each 

scenario.  
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Table 2.4 The title for 9 scenarios and the corresponding reduction in mean C and V as 

applied to areas with evergreen cover 

  Cohesion adjustment  

  None 

(0.0) 

Half reduction 

(0.46) 

Full reduction 

(0.95) 

Vegetation 

cover 

adjustment 

None 

(0.0) 

C(-0.0) _V(-0) 

𝐶∆: No reduction 

𝑉∆𝑆𝐹𝑆:  

No reduction 

𝑉∆𝑁𝐹𝑆:  

No reduction 

C(-0.46) _V(-0.0) 

𝐶∆: -2858 Pa  

𝑉∆𝑆𝐹𝑆:  

No reduction 

𝑉∆𝑁𝐹𝑆:  

No reduction 

C(-0.95) _V(-0.0) 

𝐶∆: -5715 Pa  

𝑉∆𝑆𝐹𝑆:  

No reduction 

𝑉∆𝑁𝐹𝑆:  

No reduction 

Half reduction 

(0.46) 

C(-0.0) _V(-0.46) 

𝐶∆: No reduction 

𝑉∆𝑆𝐹𝑆: -0.09 

𝑉∆𝑁𝐹𝑆: -0.13 

C(-0.46) _V(-0.46) 

𝐶∆: -2858 Pa 

𝑉∆𝑆𝐹𝑆: -0.09 

𝑉∆𝑁𝐹𝑆: -0.13 

C(-0.95) _V(-0.46) 

𝐶∆: -5715 Pa 

𝑉∆𝑆𝐹𝑆: -0.09 

𝑉∆𝑁𝐹𝑆: -0.13 

Full reduction 

(0.95) 

C(-0.0) _V(-0.95) 

𝐶∆: No reduction 

𝑉∆𝑆𝐹𝑆: -0.18 

𝑉∆𝑁𝐹𝑆: -0.26 

C(-0.46) _V(-0.95) 

𝐶∆: -2858 Pa 

𝑉∆𝑆𝐹𝑆: -0.18 

𝑉∆𝑁𝐹𝑆: -0.26 

C(-0.95) _V(-0.95) 

𝐶∆: -5715 Pa 

𝑉∆𝑆𝐹𝑆: -0.18 

𝑉∆𝑁𝐹𝑆: -0.26 

 

In considering the limitations of our approach to climate change, Stoddard et al. (2015) 

only modeled vegetation for their study site which is a field study location is a small area at a set 

elevation, so the elevation-dependence shift in trees cannot be further quantified from their 

research. This means that the elevation-dependence and aspect-dependence of vegetation is not 

incorporated into their modelled reduction in vegetation, and thus is not quantified in our 

application of changes to vegetation. There might be other large-scale variations on the impacts 

of climate change on vegetation not captured by Stoddard et al. (2015) in their study area. We do 

not consider other impacts of climate change, such as fires, changing precipitation patterns both 

spatially and temporally, and impacts of pests or diseases on vegetation. The goal of the 

application is to consider regional impacts of changes to vegetation and the relative impacts and 

uncertainties therein.  
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2.4.4 ANALYSES  

For the probability analysis, each scenario is iterated 3000 times, consistent with previous 

studies (Strauch et al., 2018). Abbaszadeh et al. (2011) demonstrated that greater than 1200 

simulations had minimal model improvements for MC simulations of slope stability. In assessing 

the performance of the probability model, true positives (TP) are mapped landslide locations the 

model predicts as being unstable, false negatives (FN) are mapped landslide locations the model 

predicted as being stable, false positives (FP) are non-mapped landslide areas the model predicts 

as unstable, while true negatives (TN) are non-mapped landslide areas the model predicts as 

stable.  

Due to a lack of information about landslide size in our applied inventory, we identify the 

eight surrounding cells for point where a landslide occurs. We identify the highest P(F) in the 30 

m by 30 m area and assume that the highest P(F) is where the landslide occurs. The nodes 

applied in the buffer are not considered in the FP and TN fractions. This allows for considering 

some spatial variability regarding the exact starting location of the landslide.  

2.4.4.1 Sensitivity 

We perform a sensitivity analysis on the probability model to determine the relative 

impact of each variable on predicted stability. The sensitivity is applied to the evaluation subarea 

due to being able to evaluate more quickly and still have representative values. A base scenario 

is run assuming mean values for the uncertain variables, and returning the FS. Each variable is 

adjusted by 5, 10, and 15% of the full range of the variables within the study area, considering 

both an increase and a decrease. The FS is identified for the observed landslides within the 

evaluation subarea. Only the observed landslides are used as these values have lower FS values 

and thus the adjustment on the variables consider the impacts on the probability model nearer to 
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the stable/unstable transition. The nodes within each landslide buffer are evaluated and the node 

with the lowest FS is identified for the base scenario. These nodes are then used for the 

sensitivities. The mean FS value for all the landslides under the base scenario is compared to the 

mean FS value calculated with the perturbed variable values.  By only considering observed 

landslides with the evaluation subarea, large-scale impacts of adjusting model variables might 

not be represented.  

2.4.4.2 Probability Model Evaluation 

To analyze a probability model, there are two key components to consider: the TP/FP and 

the probabilities for those nodes. In considering the TP/FP nodes, one decision is what 

constitutes a stable versus an unstable node. One approach that allows for considering a range of 

the probability is calculating the area under the curve (AUC) for Receiver Operating 

Characteristics curves (ROC-AUC) (Fawcett, 2005) and Precision Recall (PR-AUC) curves. 

ROC curves are a non-threshold based analysis, meaning a range of probabilities can be 

considered and evaluated. In the case of landslide risk, identifying unstable areas as stable would 

be non-conservative and lead to potential loss of infrastructure and loss of life while on the other 

extreme, identifying areas that are stable as unstable would potentially lead to increased costs for 

preventative measures (Beguería, 2006). ROC curves can be used to determine a probability 

threshold to apply in risk analyses and can establish whether a model distinguishes stable from 

unstable in the landscape (Beguería, 2006). ROC curves compare the true positive fraction (TPF) 

to the false positive fraction (FPF) (Beguería, 2006; Vakhshoori and Zare, 2018): 

 𝑇𝑃𝐹 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
        (2.12) 

 𝐹𝑃𝐹 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
        (2.13) 
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To develop an ROC curve, TPF is plotted on the vertical axis and FPF is plotted on the 

horizontal axis. A series of probabilities are chosen, 0, 0.1, etc., as the ‘threshold’ that determines 

whether an area is stable or unstable and the corresponding TPF and FPF are determined, 

resulting in a line that extends from the lower left (0,0) to the upper right (1,1). A line of 

randomly selected values will be a straight line from the bottom left to the upper right. The AUC 

ranges from 0.5 to 1, where a line closer to the upper left corner, and thus a higher AUC value, is 

a better performing model that can distinguish between stable and unstable areas (Beguería, 

2006). 

A PR curve compares recall, same as the TPF, to precision (Davis and Goadrich, 2006):  

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (2.14) 

The same approach is taken as an ROC curve by identifying a series of probabilities and the 

corresponding precision (vertical axis) compared to recall (horizontal axis). A better performing 

model will be toward the upper right corner. A PR curve differs from an ROC curve in that it 

does not consider the TN fraction. This allows behaviors in highly skewed datasets to be more 

distinguishable (Davis and Goadrich, 2006).  

Considering the number of nodes in the TP/FN/FP/TN fractions applied to the ROC and 

PR curves is important. The imbalance ratio is calculated for all ROC-AUC and PR-AUC 

analyses (Zhu et al., 2020): 

 𝐼𝑚𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑟𝑎𝑡𝑖𝑜 = 
𝑁𝑚𝑎𝑗

𝑁𝑚𝑖𝑛
      (2.15) 

where 𝑁𝑚𝑎𝑗𝑜𝑟is the number of values in the majority class and 𝑁𝑚𝑖𝑛𝑜𝑟 is the number of values in 

the minority class. For the ROC analysis, the 𝑁𝑚𝑎𝑗𝑜𝑟 is the FP plus the TN while for the PR 

analysis, 𝑁𝑚𝑎𝑗𝑜𝑟 is the FP. In both analyses, the 𝑁𝑚𝑖𝑛𝑜𝑟 is the TP plus the FN. The imbalanced 

ratio is used to consider both model performance and whether the model is being well 
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represented by the analyses. In general, a large imbalance ratio can negatively impact model 

performance by having decreased ability to correctly classify variables (Zhu et al., 2020). Our 

analysis uses the imbalanced ratio to evaluate differences in the ROC-AUC and PR-AUC to 

determine whether the model distinguishes between stable and unstable locations and which 

selection of nodes should be applied to future analyses.   

We compare areas predicted to fail to those predicted to be stable to evaluate whether 

there are significant differences between stable and unstable locations in the spatially varied 

variables. We apply the two-sided non-parametric Mann-Whitney statistical test, which considers 

the null hypothesis P(x > y) ≠0.5, where x and y are groups that in our application are the FP 

and TN values (Helsel and Hirsch, 2002, Fagerland and Sandvik, 2009). The test analyzes 

inequality to determine whether one group is biased toward having higher values than the other 

group (Helsel and Hirsch, 2002).  

2.5 RESULTS 

2.5.1 MODEL SENSITIVITIES  

We perform a sensitivity analysis of the model by evaluating the ratio of the FS of 

observed landslide nodes using the perturbed values to the FS of landslides nodes using the base 

scenario (Figure 2.6). The variables shown are calculated or estimated in our analyses. The 

landslides are located in the evaluation subarea, though percent changes are based on the variable 

ranges from the full study area. 
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Figure 2.6 The model sensitivity compares the percent change in each variable to the 

average of the adjusted FS values divided by the base scenario FS values for all 

landslides in the evaluation subarea 

 Within the ranges we consider, many variables shown in the sensitivity analysis 

demonstrate relatively linear sensitivity. 𝜃 and 𝜓𝑠 are the exception and show some slight non-

linearity. 𝑉 and 𝐶𝑣 have the largest impact on the results, and 𝜙 is also impactful. This implies 

that probabilistic modeling accounting for uncertainties in 𝐶𝑣 and 𝜙 is critical for assessing the 

probability of landslide initiation. It also supports considering the impacts of changes to 𝐶𝑣 and 𝑉 

under climate change scenarios. While within the ranges we consider variables demonstrate 

relative linear responses, outside of the chosen percent adjustments the variables could have non-

linear responses which would yield different results. 

2.5.2 BASE SCENARIO EVALUATION 

The 2013 storm event is used to evaluate model performance. The downscaled 𝜃 provides 

increased accuracy and incorporates aspect and elevation dependence (Figure 2.7). 
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Figure 2.7 The non-downscaled 𝜽 (a) compared to the downscaled 𝜽 (b) for September 12, 

2013, at 00:00 MDT. The evaluation subarea is shown for better visualization of 

variations within the downscaled .  

To evaluate model performance, we compare the probabilistic model results to a 

deterministic FS approach which uses mean values for 𝐶𝑣, 𝜃, and 𝜙. We evaluate a range of FS 

values to determine the percent of both observed landslides and FP values that are predicted as 

unstable by that threshold (Figure 2.8). We evaluate thresholds for P(F) in a similar manner for 

comparison.   
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Figure 2.8 The percent of observed landslides predicted by different FS (a) and P(F) (b) 

thresholds and the FP values predicted by different FS (c) and P(F) (d) thresholds  

Figure 2.8a shows that when FS = 1 is the instability threshold, 42% of the observed 

landslides are predicted. In comparing this to probability thresholds, P(F)  > 0 leads 79.6% of the 

observed landslides being predicted (aboveFigure 2.8b). Using FS = 1 results in less than 1% of 

the full study area having FP values (Figure 2.8c) while using P(F) > 0 results in 5.8% of the full 

study area having FP values (Figure 2.8d).  

Additionally, we compare the deterministic approach to P(F) through developing an ROC 

curve (Figure 2.9). The FS ROC curve is determined in the same way as the P(F) curve by 

choosing different thresholds and determining the TPF and FPF, which considers which nodes 

are equal to or less than the FS threshold. We randomly select 100000 nodes for the FPF fraction 
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for FS and the P(F). The ROC curve is similar between the two, with the AUC being slightly 

higher for the FS at 0.942 as compared to the P(F) value 0.890.  

 

Figure 2.9 The ROC curve comparing FS and P(F)  

We further evaluate P(F) through determining the ROC-AUC and the PR-AUC (Table 

2.5). In addition to considering all the nodes in the study area, we consider ‘valid’ nodes which 

are nodes with a slope greater than 5°. We randomly select nodes (1000, 10000, and 100000) 

greater than 5° to consider the impacts on the ROC-AUC and the PR-AUC with different 

imbalanced ratios.  All ROC-AUC values are greater than 0.5, indicating the model performs 

better than random. In considering the imbalanced ratios, there is little difference between the 

ROC-AUC associated with different imbalanced ratios. The impacts are more obvious for the 

PR-AUC which shows that the lower the imbalanced ratio, the higher the AUC. The random 

selection of 10000 nodes leads to an imbalanced ratio closest to 1. The analysis highlights that 

quantifying probability results is challenging as the imbalanced ratio impacts how well the model 
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performs within ROC and PR analyses. Determining both the initial imbalanced ratio to 

understand how different the ratios are between TPF and FPF values and selecting a scenario to 

consider the imbalanced scenario closest to 1 are performed here to evaluate the differences and 

be able to move forward with analyses. 

Table 2.5 Results for different evaluation approaches 

Count 
Imbalanced Ratio, 

ROC 

Imbalanced Ratio, 

PR 
ROC-AUC PR-AUC 

1000 1.20 0.08 0.891 0.904 

10000 11.96 0.82 0.892 0.682 

100000 119.62 8.48 0.890 0.214 

Valid Nodes 11940.35 919.45 0.894 0.023 

Full Area 15012.78 919.45 0.890 0.023 

 

To further evaluate the probabilistic model, we consider the P(F) associated with the 

unstable areas (Figure 2.10). In considering the full range of probabilities, the values are skewed 

toward low values with the majority of failures having a P(F) < 0.2. There is also a higher 

concentration of values at probabilities near 1. 
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Figure 2.10 A histogram showing the P(F) for the full study area  

To identify differences and similarities between distributions, we consider observed 

landslides, P(F) > 0.8, 0.8 > P(F) > 0, and P(F) = 0. A histogram shows the distribution for 

elevation, slope, 𝑉, 𝜃, and aspect (Figure 2.11). The 0.8 > P(F) > 0 and P(F) = 0 fractions are 

from a random selection of 10,000 nodes with slopes greater than 5° and the P(F) > 0.8 fraction 

contains all nodes with that probability of failure (~24,000). 
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Figure 2.11 Histograms (a-e) and cumulative distribution functions comparing the observed 

landslides with the FP and TN fractions node types across the spatially varied 

variables 

Based on the histogram, there are three key observations. The first observation is that the 

0.8 > P(F) > 0 fraction has similar distributions to the observed landslides, suggesting that the 

model is accurately representing the conditions leading to failure. The second observation is that 

the 0.8 > P(F) > 0 fraction is unique from the P(F) = 0 fraction by having a higher slope and a 

lower 𝑉. The third observation is that the P(F) > 0.8 fraction is unique from the other three 

fractions as there are lower 𝑉 and higher slope.  

To consider the differences between 0.8 > P(F) > 0 and P(F) = 0, we apply a Mann-

Whitney test to compare the distributions to see whether there are significant differences (Table 

2.6). Higher probabilities, P(F) > 0.8, are not considered in the Mann-Whitney test as the 

histogram analysis suggests more extreme differences than between lower probabilities and P(F) 

= 0. We apply the same 10000 nodes shown in the histograms for the statistical test.  The Mann-
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Whitney test indicates statistical significance between the 0.8 > P(F) > 0 and P(F) = 0 fractions 

for both slope and 𝑉.  

Table 2.6 The Mann-Whitney test comparing 0.8 > P(F) > 0 and P(F) = 0 

  Elevation Slope Vegetation 
Soil 

moisture 

Aspect 

Statistic 2535622 6007425 1746586 3023307 3510283 

P value 0.00 0.00 0.00 0.35 0.00 

Significance  < 5 < 5 < 5 - < 5 

 Note: The n values for the two variables are: 0.8 > P(F) > 0, n = 664 and  

          P(F) = 0, n = 9308 

We determine the percent of each type of landuse on North Facing Slopes (NFS) versus 

South Facing Slopes (SFS) for the full study area, observed failures, and predicted failures 

(Figure 2.12).  Within the full study area, there are differences between SFS and NFS. SFS have 

more shrubs while NFS have more evergreens. In predicted failures, there is both an aspect-

dependence and more predicted failures in areas with shrubs.  In considering observed 

landslides, there is more prevalence on SFS and in areas with shrubs.  

 

Figure 2.12 The landuse types within the general landscape, where the sum of the SFS and 

NFS for each subset is equal to 1  
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2.5.3 CLIMATE CHANGE MODELING 

Using the sensitivity results and the current understanding of landslide behaviors within 

the study area to guide the analyses, we consider the impacts of climate change, and the 

uncertainty therein, on landslide risk. The original, half, and full reduction adjustment applied to 

V is shown and the corresponding Cv values for the scenarios C(-0.0)_V(-0.0), C(-0.46)_V(-

0.46), and C(-0.95)_V(-0.95) (Figure 2.13). 

 

Figure 2.13 The base scenario V (a), a half reduction (b), and a full reduction (c) and Cv 

values for C(-0.0)_V(-0.0) (d), C(-0.46)_V(-0.46) (e), and C(-0.95)_V(-0.95) (f)  
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The percent increase in areas with P(F) > 0 between the base scenario and the climate 

scenarios are identified (Table 2.7).  All climate scenarios lead to an increase in areas with P(F) 

> 0. Reducing cohesion leads to more unstable areas than reducing vegetation cover.  

Table 2.7  Percent change between the scenario and the base scenario for the area 

with P(F) > 0 

  Cohesion adjustment 

  No Reduction Half Reduction Full Reduction 

Vegetation 

cover 

adjustment 

No Reduction Base scenario 33% 84% 

Half Reduction 17% 50% 102% 

Full Reduction 38% 72% 119% 

 

To evaluate which areas of the landscape that transition from stable in the base scenario 

to unstable in the climate change scenarios, we select 2000 random nodes with a P(F) > 0 in the 

climate scenarios and P(F) = 0 in the base scenario and compare the elevation, slope, 𝑉, 𝜃, and 

aspect (Figure 2.14). As the climate scenarios lead to reductions in slope stability, all the areas 

with P(F) > 0 in the base scenario are still unstable in the climate scenarios. We show the climate 

scenarios with a full reduction in V, C, or both. The new unstable points have lower slopes than 

the base scenario. The aspect-dependence of the base scenario being biased toward SFS is no 

longer visibly present and there is more uniformity across aspects.  
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Figure 2.14 Histograms (a-e) and cumulative distribution functions comparing node types 

between the base scenario and some of the climate scenarios for nodes with          

P(F) > 0 

To quantify the change to aspect-dependence, we determine the percent of new unstable 

areas in the climate change scenarios that are on SFS (Table 2.8). The climate change analyses 

correspond to a shift in the aspect-dependence of areas susceptible to landslides. In the base 

scenario, a minority of failures (33.5%) occur on NFS. In all climate scenarios, there is a shift to 

increased landslide susceptibility on NFS where greater than 60% of failures occur on NFS. 

 

Table 2.8 Percent of areas with a P(F)>0 on NFS  

  
Cohesion adjustment  

   No Reduction Half Reduction Full Reduction  

Vegetation 

cover 

adjustment 

No Reduction 
33.5%  

(n = 768628) 

60.0%  

(n = 253368) 

61.8%  

(n = 657398) 

Half Reduction 
64.1%  

(n = 132915) 

62.5%  

(n = 398520) 

62.7%  

(n = 786261) 

Full Reduction 
65.4%  

(n = 304602) 

64.1%  

(n = 570586) 

63.4%  

(n = 928671) 

Note: n is the total number of nodes with a P(F) > 0 in the climate scenario     

and P(F) = 0 in the base scenario   
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 We map the climate change scenarios by computing the climate scenario minus the base 

scenario (Figure 2.15). The shift in location of the climate scenarios is most obvious in Figure 

2.15d, which considers a full reduction in both cohesion and vegetation. The least impacted 

scenario is Figure 2.15c, which assumed no reduction in cohesion and a full reduction in 

vegetation. 

 

Figure 2.15 The P(F) for the base (a) and the difference between the P(F) for the climate 

scenario and the base scenario for C(-0.45)_V(-0.0) (b), C(-0.0)_V(-0.95) (c), and 

C(-0.95)_V(-0.95) (d).  The evaluation subarea is shown for increased insight into 

behaviors.  

2.6 DISCUSSION 

We compare a probabilistic landslide model to a deterministic landslide model. Our 

results show that for our application, assuming that FS ≤ 1 indicates instability is less accurate at 

predicting observed landslides than the probability model. Because a number of observed 

landslides are around the FS = 1 threshold, slight uncertainties in the input variables can yield 

large differences in the fraction of observed landslides that are correctly predicted. This suggests 
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that a probabilistic approach, which can incorporate variable uncertainties, is an improvement 

over the deterministic approach in terms of being able to better represent observed landslides. 

In considering model performance and the predicted probabilities of failure under the 

base scenario, the probabilities associated with the P(F) > 0 fraction are typically low but with a 

spike at high probabilities which are associated with lower vegetation and higher slopes. These 

areas have distinct characteristics from the observed landslides which suggests that other factors 

might be impacting the slope stability. The division in probabilities in our base scenario exhibits 

similarities to the probability model application by Strauch et al. (2018) who attributed the 

difference to an ecosystem transition. The prominence of very low probabilities is worth 

analyzing in future model evaluations to determine whether a more broad distribution of 

probabilities is expected, as the probabilities themselves are not calibrated. Differences in our 

model between predicted and actual probabilities of failure might stem from variables being too 

high leading to arbitrarily low probabilities. This is supported by the deterministic FS values for 

the median values having poor model performance, whereas previous deterministic FS analyses 

such as the model developed by Timilsina et al. (2021) had higher model performance and 

accurately predicted 72% of observed landslides in the same study area. Identifying whether P(F) 

values are genuine, and accurately capturing the return interval in terms of the relative impact of 

landslides, is challenging due to a lack of information in most landslide inventories about 

occurrence intervals (van Western et al., 2006). We consider the probabilities in our model 

relative, where areas with higher probabilities are considered more unstable but we do not 

consider them to represent a return period of the landslides due to lacking landslide data for more 

than a single landslide initiation event.  
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In further considering the base scenario, we evaluate the ROC-AUC and the PR-AUC. 

Our model has an ROC-AUC value of 0.9 for the full study area. While similar ROC values are 

found in Gudiyangada Nachappa et al. (2019), literature values are typically lower which 

highlights an important limitation of ROC analyses. ROC analyses require consideration of both 

the imbalanced ratio and the ratio of FP to TN. Our model has a high imbalanced ratio and a high 

ratio between FP and TN values, the combined effect leading to high AUC values in our model 

which makes discrimination between model scenarios challenging. The tendency for ROC curves 

to provide over-optimistic results has been identified previously in other fields (Fu et al., 2019). 

To avoid some of the shortcomings of the ROC curve, we evaluate the PR-AUC which is used 

less often in landslide literature (Bernardie et al., 2021). The differences in PR-AUC are more 

extreme between different imbalanced ratios, suggesting that under some conditions, PR curves 

can be used to understand variations between model scenarios, for example quantifying the 

differences between calibration model runs. A recent study by Yordanov and Brovelli (2020) 

compared PR and ROC curves for landslide prediction and identified that if balanced data is used 

they perform comparably well for model evaluations but imbalanced datasets led to improved 

performance based on the PR curves. This suggests that identifying the imbalanced ratio is 

important to determining the correct landslide probability model evaluation technique. The 

importance of accurately evaluating landslide models and additional model evaluation 

approaches has been presented elsewhere (Frattini et al., 2010; Guzzetti et al., 2006; Vakhshoori 

and Zare, 2018) and while ROC and PR curves provide insight into landslide models, combining 

them with other evaluation methods might be more appropriate depending on the goal of the 

analysis. We consider them appropriate in our application as we use them to discuss differences 

between a deterministic and probabilistic modeling approach, to show that our model can 
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distinguish between stable/unstable locations, and as a comparative consideration to assess how 

to select FP/TN nodes for further evaluation.  

In considering the observed landslides from the 2013 event, previous studies have shown 

that landslides in the Front Range have a strong aspect dependence (Coe et al., 2014). Recent 

studies have identified reduced vegetation on SFS in the Front Range (Rengers et al., 2016) and 

marginally lower soil depths on SFS than NFS (McGuire et al., 2016). Timilsina et al. (2021) 

found increased soil moisture on SFS, which is captured in the EMT+VS model. Within our 

study area, 82% of the observed landslides occur on SFS. Figure 2.12NFS have more trees (Coe 

et al., 2014) which results in higher cohesion and increased vegetation cover. This suggests that 

under current conditions, NFS are more stable but reductions in trees due to climate change 

could impact this stability.  

Under climate change scenarios, we identified a shift in the areas susceptible to landslides 

in the Colorado Front Range. All our climate scenarios predict increased landslide susceptibility 

on NFS. The decreasing prominence of evergreens on NFS is one reason for this, as more areas 

on NFS are impacted by the adjustments than areas on SFS. The shift to increased instability 

with a decrease in vegetation has been modeled previously. Bernardie et al. (2021) modeled 

landuse changes and predicted increased slope stability model where forests increased and 

decreased slope stability in areas where the forest vegetation decreases. There is also increased 

landslide susceptibility at lower slopes within the climate data. The increase in areas with P(F) > 

0 at lower slopes is due to the decrease in 𝐶𝑣 and/or vegetation cover, resulting in reduced 

stability.  

 We consider the impacts of climate change through analyzing reductions to trees, which 

is a simplified approach to regional-scale impacts of climate change. We incorporate variation in 
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the values we apply to consider some of the uncertainties about which type of vegetation will be 

present, the vegetation cover associated with the vegetation type, and the general vegetation 

dynamics that can impact slope stability. Further, we do not consider aspect, elevation, or spatial 

heterogeneity that impact changes to vegetation type in incorporating climate change. In our 

climate scenarios, we are not predicting the exact composition of vegetation and are not 

evaluating the results as an absolute. Rather, we evaluate the relative impact of the scenarios to 

study the effect of vegetation changes to landslide susceptibility in the Colorado Front Range.   

2.7 CONCLUSION 

 We combine a mechanistic soil model with a probabilistic landslide model to evaluate 

landslide probability during a storm event in the Colorado Front Range. This provides a baseline 

for evaluating the impacts of climate change on landslide susceptibility assuming a similarly 

sized storm event. The main findings of our work are:  

• Comparing a deterministic model using mean values to the probabilistic model 

demonstrates that the probabilistic model is better at predicting observed landslides. More 

area is predicted as being susceptible to landslides in the probability model as compared 

to the deterministic model.  

• Under current conditions, the majority of observed landslides are predicted as having 

P(F) > 0. For FP values, values 0.8 > P(F) > 0 exhibit similar vegetative and slope 

characteristics to the observed landslides, suggesting these unstable areas are correctly 

being captured by the model. A fraction of landslides also occurs at P(F) > 0.8 which 

have higher slope and lower vegetation than areas with lower probabilities of failure.  

• Within our study area, a reduction in tree cover due to climate leads to increased overall 

landslide susceptibility. For areas susceptible under the climate scenarios but stable under 
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the base scenarios, there is a shift from predominantly SFS to more uniform risk across 

all aspects. 

We consider our results applicable to considering how to incorporate probabilistic 

landslide modeling and uncertain climate change projections. Our research can be applied to help 

improve landslide risk and regional changes to landslide susceptibility in the future. By 

understanding that current practices, such as planting trees that are native and ideal for the 

environment in current times, might lead to more failures long-term due to the species having 

reduced survivability in the future, we can better understand future landslides risks. These 

considerations allow us to consider the best ways to model and reduce mass-sliding on a regional 

scale in the future. 

There are a variety of avenues for future work to better quantify landslide risk using this 

approach. Further evaluating deterministic approaches as compared to probabilistic approaches 

to be able to show which models are better is important for moving forward with landslide 

mapping. Quantifying the temporal aspect of the landslide probability model would provide 

insight into appropriate values for probabilities of failure and provide increased understanding 

about representing landslide risk through time. Determining ways to incorporate the multi-

variable impacts of climate change and incorporate the uncertainty therein can improve landslide 

risk projections for future climate scenarios. Finally, combining the model with a landslide 

runout model would allow for a more complete understanding of landslide risk.   
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 CHAPTER 3: A LARGE-EXTENT TOPOGRAPHICALLY-DRIVEN LANDSLIDE 

RUNOUT MODEL FOR THE COLORADO FRONT RANGE 
 

 

 

3.1 INTRODUCTION 

 Landslides can cause wide-spread damage to infrastructure, the environment, and lead to 

loss of life. Between 2004 and 2010, more than 2000 landslides across the world resulted in more 

than 32,000 deaths (Petley, 2012). Precipitation-induced landslides are likely to increase in 

frequency due to a trend of increasing extreme precipitation due to climate change (Wuebbles et 

al., 2017). With the far-reaching factors of landuse changes and climate change impacting 

projected landslide location (Alvioli et al., 2018; Bernardie et al., 2021; Kim et al., 2015), 

determining the areas most susceptible both to landslide initiation and landslide runout is vital to 

building resilient infrastructure and protecting people. 

There are three components of representing landslides: identifying the areas of initiation, 

determining the landslide direction and travel path once initiated, and representing the landslide 

end point. Landslide runout, which considers both the direction and endpoint of the landslide, is 

impacted by the physical attributes of both the landslide and the topography. The distance 

traveled by a landslides can be influenced by the landslide failure type, such as a slide or a flow, 

and the type of landslide material, such as earth, debris, or rock (Varnes, 1978). The direction of 

the runout can be impacted by topographic controls, such as encountering bends leading to 

reduced runout distances (Corominas 1996).  

Applications of landslide runout models is challenging particularly at large spatial scales. 

For one, large spatial scales limit the ability to gather detailed information for landslide mapping 

(Carrara et al., 2008). The type of landslide, which may not be known from landslide initiation 
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models, can be difficult to represent and capture particularly for large-spatial scale mapping. 

Debris flows can be particularly challenging to model due to being temporally and spatially 

varying (Iverson, 1997) due to solid-fluid interactions that result in debris flows acting as a non-

Newtonian fluid (De Blasio, 2011). Another consideration, particularly for large spatial scales, 

that impacts model performance is data resolution. Huggel et al. (2003) applied a 25 m DEM in 

the Swiss Alps and concluded that the resolution provided adequate results for risk mapping at 

large spatial extents. Fischer et al. (2012) stated that a 25 m DEM led to appropriate landslide 

runout distance predictions, with a downside being over-predictions of landslide spreading, and a 

10 m DEM provided increased model accuracy.  The complexity of modeling landslide runout 

through limited data availability, quantifying how to represent different types of landslides, and 

limitations on data resolution are key elements to consider for large-scale analyses for hazard 

mapping and identifying subregions that warrant additional, in-depth analyses.  

Broadly, runout analyses are categorized into physically based models and empirical 

models (Peruzzetto et al., 2020). Physically based landslide runout models can be applied more 

broadly on spatial and temporal scales as they are based on representing the physical 

characteristics that cause landslides to move. Empirical models are often based on developing 

relationships from landslide inventories, so they have limited applicability to other areas and are 

more challenging to use for predictions when conditions change, such as considering the impacts 

of climate change (Bernardie et al., 2021). 

Various landslide and topographic characteristics have been evaluated to estimate 

landslide runout. Runout distance has been related to landslide volume (Iverson, 1998), 

kinematic energy (Lari et al., 2014), and the center of mass of the landslide (Feranie et al., 2016; 

Legros, 2002). One widely-applied variable to evaluate runout distance is the angle of reach, 
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defined by Corominas (1996) as the angle between the initiation point of the landslide and the 

distal point in the landslide deposit, calculated as the inverse tangent of the height divided by the 

horizontal distance traveled (Lockyear, 2018). The angle of reach is smaller for landslides that 

are larger in volume as they typically have longer runout (Corominas, 1996). This relationship 

has been evaluated in numerous modeling applications as a baseline, initial analysis, or provided 

as a geometric relationship for landslides inventories (Dai and Lee, 2002; Hunter and Fell, 2003; 

Leng et al., 2018; Lockyear, 2018). Kappes et al. (2011) applied the angle of reach as a worst 

case scenario for landslide runout mapping. The angle of reach has been applied elsewhere an 

approach for initial hazard mapping (Bathurst et al., 1997; Corominas, 2003; Dahl et al., 2010; 

Kappes et al., 2011). The simplicity of identifying where landslides will stop using the angle of 

reach makes it convenient for broad spatial scale applications.   

Recent developments in landslide runout models have focused on combing large-scale 

mapping with accurate landslide runout modeling. AschFlow (Quan Luna et al., 2016) is a 2D 

model that provides results for landslide runout, spreading, and deposition. AschFlow considers 

volume which can be difficult to validate if volume is not part of a landslide inventory.  Flow-R 

(Horton et al., 2013) is an another recently developed model that requires only elevation data and 

landslide initiation points to determine landslide runout. The Flow-R model, which requires 

some variable and algorithm selection before running, has been applied to a variety of study 

areas and landslide types. Both models aim to be computationally simplistic enough to evaluate 

landslides at a larger spatial scale through representing the physical attributes of landslide runout.   

 While the goal of some models, like AschFlow and Flow-R, is to physically represent the 

landslide characteristics that lead to termination, other empirical models are aimed at identify 

topographic controls that lead to termination. Benda and Cundy (1990) modeled debris flow 
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termination in the Pacific Northwest based on the runout reaching a critical slope of 3.5° or 

having a change in direction of greater than 70° on a reach. Fannin and Wise (2000) determine 

erosion/deposition along the landslide path based on slope. Approaches like these topographic 

evaluations have more limited applicability due to not always having explicit analyses about the 

landslide runout paths and typically requiring site-specific calibration, they can be useful in 

large-scale applications, applied with ease, and require minimal data as input. While previous 

models have considered topographic controls, they either did it at larger spatial scales or adjusted 

landslide runout based on previously encountered topographic biases, such as bends.   

This study aims to develop a large spatial scale landslide runout model using only 

topography as input allowing for ease of application without computationally intensive demands 

or large amounts of data. The aim is to evaluate whether a rules-based topographic landslide 

runout model can perform well enough to provide a middle-ground between a simple angle of 

reach analysis and more complex mechanistic models. We evaluate our model with a landslide 

inventory from a precipitation-induced event in the Colorado Front Range. The precipitation 

event, which lasted close to a week in September 2013, led to more than 1300 observed 

landslides across 3400 km2 where the combined impact of debris flows and flooding caused 

hundreds of millions of dollars in damage to roads and infrastructure, damaged thousands of 

houses, and killed multiple people (Coe et al., 2014). The study aims to develop an empirical, 

topographic landslide runout model and in doing so, evaluate whether a simple routing can route 

landslides to the same topographic control as the observed landslides, evaluate whether our 

topographically-controlled landslide runout model can predict landslide termination, and 

evaluate how the model performs when compared to an angle of reach approach.   
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3.2 MODEL DESIGN 

There are two key components to representing landslide runout: the path and the 

termination. The landslide runout model is developed using tools from the Python package 

Landlab, version 1.0.9. A pre-processing step uses a built-in tool for flow accumulation, which is 

based loosely on the work of Braun and Willett (2013). The tool determines which direction flow 

will travel for each cell in the DEM. We apply this step assuming a d8 routing with steepest line 

of descent, based on the work of Tarboton (1997), which finds the steepest slope between each 

node and the 8 surrounding nodes. We also apply a depression finder and router, based on the 

work of Tucker et al. (2001), to provide routing through depressions in the landscape. The output 

from this processing step is a flow direction grid.  

By assuming a steepest line of descent and applying routing through depressions, there 

are limitations that we are incorporating into our modeling approach. The steepest line of descent 

means that the landslide is continuously going to traverse downhill along the steepest gradient, 

independent of obstructions and other losses in momentum that might impact landslide direction. 

A depression router assumes that the landslide will continue to travel despite slight 

discontinuities in slope. In reality, a depression would cause a decrease in the momentum of the 

landslides and a potential loss in volume. Iverson and Denlinger (2001) discuss the complexity 

of representing erosion/deposition of debris flows, which can cause significant changes in 

volume, and conclude that accurate assessment of these patterns requires 3D modeling to capture 

the interactions between the debris flow and the boundary conditions. This is beyond the scope 

of this project and is thus neglected, an assumption also applied in previous landslide models 

(Horton et al., 2013).   
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The landslide runout model is a modified version of the built-in Landlab trickle down 

tool. The model requires the output from the flow accumulation processing step and a list of the 

landslide initiation points. For each initiation point, a path is determined based on the flow 

direction grid. At each incremental point, the cumulative travel distance, local slope, and local 

curvature is determined. 

 Our landslide model predicts termination based exclusively on topography. The model 

requires specifying a critical local slope in degrees, defined as a minimum slope the landslide 

must traverse, and slope persistence in meters, which is the distance under the critical angle the 

landslide must travel before stopping. Landslides will continue traveling until the energy lost 

surpasses the initial gravitational potential energy (Iverson, 1997). The combination of a critical 

slope and slope persistence is aimed at assessing this reduction in energy indirectly though 

considering whether the topographic control of a low slope for an extended period predicts where 

termination occurs.   

In addition to the critical slope and slope persistence stopping condition, we apply the 

angle of reach as a stopping condition. While simplistic, the ease of application for an angle of 

reach to represent potential landslide stopping locations makes it easy to apply and is thus a 

wide-spread initial approach to landslide runout mapping. The angle of reach is applied as a 

comparison to our model to assess which approach performs better. This involves identifying the 

distance traveled and noting when, if ever, the landslide reaches the specified angle. For each 

scenario, all modeled landslides use the same specified angle of reach.  

3.3 MODELING METHODS 

The landslide inventory used in our model calibration is from the 2013 storm event in the 

Colorado Front Range. Landslide initiation points and runout paths are provided by Coe et al. 
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(2014). The initial evaluation by Coe et al. (2014) provides insight into landslide behaviors 

within the Colorado Front Range. Of the more than 1100 debris flows analyzed, they 

predominately initiated on open slopes and swales. The landslides initiated as debris slides which 

then transformed into debris flows, leading to longer runout. The landslide direction largely 

impacted the travel distance: landslides that entered a channel traveled five times further than 

landslides that terminated before reaching a channel. (Coe et al., 2014) 

Two types of mass movements are debris flows and debris slides. We use debris flows, 

henceforth termed landslides, in our model and remove all debris slides and other mass 

movements from our evaluation. A debris slide can be initiated in the same way as a debris flow 

and as such, we define both terms based on Varnes (1978). Debris slides are comprised of a 

translational movement of soil. Debris flows are also made of soil though the water content is 

higher, leading to more fluid-like characteristics. This formation can lead to increased travel 

distances when compared to debris slides.  

3.3.1 STUDY AREA 

 The model calibration and evaluation areas are located in the Colorado Front Range 

(Figure 3.1). The areas are chosen due to the high concentration of landslides. The calibration 

area is 109 km2 and contains 258 mapped landslides from the landslide inventory from the 2013 

storm event (Coe et al., 2014). The elevation within the calibration area ranges from 1708 to 

2791 m, the landuse is comprised predominately of evergreen trees (NLCD, 2016) with some 

dispersed shrubs, and soils are predominately sandy loams (Soil Survey Staff, 2020).  The model 

evaluation area is 150 km2 with 303 landslides from the 2013 event. The evaluation area ranges 

in elevation from 1792 to 3215 m. and has similar soil and vegetative characteristics to the 

calibration area.  
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Figure 3.1 The calibration and evaluation areas are located in the Colorado Front Range 

3.3.2 MODEL CALIBRATION  

 An initial analysis we perform is evaluating the appropriate DEM grid size to use in our 

study area when applying the runout model by comparing 1 m LiDAR data (USGS, 2018) to 10 

m DEM data (USGS, 2015). The LiDAR data, which were collected after the 2013 storm event, 

are non-continuous in some areas, leading to the inability to map all landslides. The 10 m DEM, 

also collected post-event (2015), is 1/3 arcsecond resolution and is resampled in the study area to 

a 10 m resolution. The post-event elevation data are the only elevation data readily available. 
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The mapped landslide tracks are discretized such that the distance between any two points is a 

maximum of 1 m or 10 m to correspond to the elevation data cell size. The elevations, slopes, 

and curvature for the landslides are identified to determine differences between the 1 m and the 

10 m data. We qualitatively and quantitatively compare the results. Based on this analysis, the 

results of which we present later, we determine that the 10 m DEM provides necessary model 

precision and there is not significant loss in accuracy for landslide slope between the start and 

end of the landslide and as such, apply the 10 m DEM to all following analyses. We use 

MATLAB version R2019A for this initial data processing. 

The landslides are processed in Python 3.7 for subsequent modeling efforts. The 

landslides are mapped to each DEM grid by determining the grid cells that the landslides pass 

through. The distance along each landslide is re-calculated using the grid cell distances. The 

gridded landslides are henceforth termed “observed landslides”, while the non-gridded landslides 

are termed “original landslides”. The observed landslide distances are used for comparing to the 

modeled landslide distances. 

Model calibration requires setting the values for the critical slope and for slope 

persistence distance. For model calibration, two statistics are calculated to compare the modeled 

with the observed landslide runout distances. The Nash-Sutcliffe (NS) Value (Nash and Sutcliffe, 

1970; Golmohammadi et al., 2014) is:  

 𝑁𝑆 = 1 −
1

𝑛
∑ (𝑂𝑖−𝑀𝑖)

2𝑛
𝑖=1

1

𝑛
∑ (𝑂𝑖−�̅�)

2𝑛
𝑖=1

     (3.1) 

where 𝑂𝑖 is the observed distance, 𝑀𝑖 is the modeled distance, �̅� is the averaged observed 

distance, and n is the total number of modeled landslides. The maximum NS is a value of 1, 

which means the modeled values are the same as the observed values, while a value less than 

zero means the model performs worse than the average observed distance.  
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 The Ratio of Medians (RM) is calculated as: 

 𝑅𝑀 =
𝑀𝑚

𝑂𝑚
,                    (3.2) 

where 𝑀𝑚 is the median modelled distance and 𝑂𝑚is the median observed distance. Because 

RM only uses the median value and is not impacted by outliers, it is used to assess whether the 

model is over- or under-predicting observed landslide distances. 

3.4 RESULTS 

3.4.1 MODEL RESOLUTION 

1 m and 10 m DEM data are compared to assess whether the observed landslides are 

affected by the increased resolution and precision provided by the 1 m (Figure 3.2).  

 

Figure 3.2 Comparisons between the elevation above the endpoint between 10 m and 1 m 

elevation data for two example landslides and a histogram (c) showing the slope 

between the first and last points  

The slight discontinuities in the 1 m data lead to longer areas with low slope, as shown in 

the close-up in Figure 3.2a, and at times slight increases in elevation, as shown in the close-up in 
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Figure 3.2b. The general behavior for 1 m vs 10 m data considering overall slope, elevation, and 

distance along the landslide are similar, despite small-scale differences.  The histogram (Figure 

3.2c), which considers the slope between the first and last point of the landslide, has no major 

differences between the 10 m and the 1 m elevation data. The 10 m data have a marginally 

higher occurrences of lower slopes. Due to the runout model assumption a steepest line of 

descent, the increases in elevation present in the 1 m LiDAR data cannot be captured by our 

model.  Between this and the slope of the landslides being similar, we assume that 10 m data are 

appropriate for application of our model. The histogram considers all the mass movements in the 

landslide inventory, the majority of which (>1100) are debris flows. The 10 m data includes 

1350 landsides while the 1 m data, which do not cover the entire area containing mapped 

landslides, includes 1255 landslides.   

3.4.2 LANDSLIDE DIRECTION 

To validate our assumption about d8 routing, we evaluate the landslide path to determine 

whether our modeled landslide paths encounter the same topographic controls as the observed 

landslides. For the purpose of comparing the model and the observed landslides, the modeled 

stopping point is assumed to be the closest node to the observed end point. For the calibration 

area,  83% of the end points of the modeled landslides are within 1 node (14 m maximum) of the 

observed landslides. This suggests that a perfectly calibrated model could stop at the same 

location as the observed landslide based on our routing assumption.  We visually analyze this 

and compare the original, observed, and modeled landslides (Figure 3.3).  
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Figure 3.3 Examples of original, observed, and modeled landslides in the calibration area 

Figure 3.3 shows that d8 routing generally provides a reasonable initial evaluation of 

landslide direction. While there are some areas with differences between the modeled and 
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observed landslide paths, particularly closer to the landslide initiation points and in the flatter 

areas (Figure 3.3b), the model generally reflects the landslide direction.  

3.4.3 MODEL CALIBRATION  

Our model calibration is aimed at determining whether modeling a critical slope and 

slope persistence identifies a topographic control that leads to landslides stopping. Our initial 

analysis considers critical slope and persistence combinations and the corresponding NS and RM 

values within the calibration area (Figure 3.4).  
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Figure 3.4 Critical slope and the slope persistence combinations compared to the 

corresponding NS (a) and RM (b) in the calibration area 
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 The analysis shows that the highest performance for NS has two peak values. The first is 

at a low critical slope and a short slope persistence. The second is a marginally higher slope and 

longer slope persistence, this peak does not have a local maximum. More extreme values, both 

higher and lower critical slopes, lead to NS < 0 indicating poor model performance. RM is 

optimized with both lower critical slope and lower slope persistence or moderate critical slope 

and high slope persistence leading to values closest to 1. While there are numerous NS and RM 

values that are close to the optimized values, for calibration purposes we move forward with the 

highest NS value.  

We perform three comparisons between the calibrated model and characteristics that 

determine the validity of the calibration. The calibrated model is the critical slope/slope 

persistence combination that optimizes NS. This scenario is compared to (1) the optimized RM 

model, (2) a landslide convergence analysis, and (3) the evaluation area (Table 3.2).    
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Table 3.1 Geometric data corresponding to the model comparisons  

Variable  
Calibrated 

Scenario  

Comparison 

1: 

Calibration 

Variable 

Comparison 2:  

Landslide Convergence  

Comparison 

3: 

Evaluation 

Area 

RM Maximum Minimum Random 
Evaluation 

Area 

Critical Slope 

[°] 
3 12 3 3 3 3 

Slope 

persistence 

[m]  

20 90 20 20 20 20 

NS 0.69 -0.07 -0.43 0.49 0.44 0.58 

RM 1.72 1.00 2.49 2.02 2.04 1.54 

Mean distance, 

observed [m] 
1264 1251 483 538 547 558 

Mean distance, 

modeled [m] 
1259 606 695 618 672 555 

Median 

distance, 

observed [m] 

547 542 212 258 258 279 

Median 

distance, 

modeled [m] 

941 540 527 522 525 429 

IQR, observed 

[distance] 
1635 1625 402 567 428 594 

IQR, modeled 

[distance] 
1053 503 597 565 564 613 

IQR [diff. 

between 

observed and 

modeled 

distances] 

595 1089 480 312 337 92 

IQR [diff. 

between 

modeled and 

observed end 

points] 

707 655 475 325 353 143 

Unique end 

points  
80 112 80 119 

Total 

Landslides  
244 244 244 303 

Note: IQR = interquartile range 
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Comparison 1 contrasts the calibrated scenario, which optimizes NS, to the optimized 

scenario for RM. NS it optimized at a slope of 3 and a slope persistence of 20 m while RM is 

optimized at a slope of 12 and a slope persistence of 90. The NS is significantly lower (-0.07 

compared to 0.69) for the optimized RM. The RM is higher, indicating over-prediction of 

landslide runout distance, for the optimized NS scenario.  

 

Figure 3.5 The difference between landslide distances (a) and end point locations (b) in the 

calibration area between the optimization of the two calibration variables 

Figure 3.5 presents histograms comparing the difference between the modeled and 

observed landslide distances (Figure 3.5a) and the distance between the modeled and observed 

end points (Figure 3.5b). The difference in distances (Figure 3.5a) are shifted toward positive 

values for both NS and RM values. The RM optimization results in more equal over- and under-

prediction of landslide distance, resulting in a number of landslides having distances greater than 
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2000 m between the modeled and observed landslide values. This validates using NS as the main 

calibration variable as all the landslides are considered. 

Comparison 2 considers landslide convergence. Within the 290 observed landslides 

within the calibration area that are at least 10 m (two grid cells) long, there are 172 unique end 

points. All landslides, both modeled and observed, that converge are stopping due to the same 

topographic control. As our model evaluates topographic controls, using all the landslides in the 

calibration where multiple landslides converge might lead to skewed model results as the 

topographic controls are not unique. For end points where multiple landslides converge, we 

consider four scenarios: (1) using all landslides that the model predicts as stopping, which is the 

approach applied in the calibrated NS scenario and the RM scenario in Comparison 1; 

considering landslides that converge and at each unique end point, (2) choosing the landslide 

with the minimum absolute distance between the modeled and observed landslide distance, (3) 

choosing the landslide with the maximum absolute difference between the modeled and observed 

landslide distance, and (4) randomly selecting a landslide that ends at that location (Figure 3.6). 

These modeling analyses will henceforth be termed full, minimum, maximum, and random end 

point analyses.  
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Figure 3.6 A visual example for the four types of end points analyses in which the model 

predicts both slides terminating: the full analysis uses both landslides 1 and 2; the 

maximum end point analysis uses Landslide 1 as the difference between the observed and 

the modeled landslide distance is greater; the minimum end point condition uses 

Landslide 2 as the difference between the observed and the modeled landslide distance is 

smaller; and the random end point analysis randomly selects Landslide 1 or Landslide 2 

Comparison 2, which compares the calibrated scenario to the minimum, maximum, and 

random end point analysis assuming the same critical slope and slope persistence, has a range in 

predictive abilities. The maximum analysis has an NS value less than 0 and the largest RM value. 

The minimum analysis has NS of 0.49, which is closer to the calibrated scenario, and an RM 

value of 2.02. The random analysis has a lower NS than the calibrated scenario and a comparable 

RM value to the minimum analysis.  
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Figure 3.7 The difference between landslide distances (a) and end point locations (b) in the 

calibration area between end point analyses 

In considering the end point analysis histograms (Figure 3.7), there are 244 total 

landslides in the full dataset that are predicted as stopping and 80 landslides in the minimum, 

maximum, and random analyses. The maximum is shifted toward increased variability which 

means more spread. The minimum analysis minimizes the distance thus is selecting for the best-

fit landslide values. The random selection is variable between model runs. The difference 

between the landslide stopping analyses suggests landslide convergence is important to consider 

in topographic models but in our case, maintaining all landslides like in the calibrated scenario is 

the best way to ensure all landslide lengths and differences between predicted and modeled 

landslides are considered.  

Comparison 3 (Table 3.2, Figure 3.8) applies the calibrated model variables to the 

evaluation area to evaluate model performance. The evaluation area has a marginally lower NS 
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value of 0.58 and a lower RM value of 1.54 than the calibrated scenario. The landslides in the 

evaluation area are shorter with a mean of 555 m for modeled versus 558 m for observed 

landslides as compared to the mean of 1259 m for modeled and 1264 m for the observed 

landslides in the calibration area. The IQR is also significantly less for the difference between 

modeled and observed landslides in the evaluation area.  

 

Figure 3.8 The difference between landslide distances (a) and end point locations (b) in the 

calibration area compared to the evaluation area  

 The histograms for Comparison 3 (Figure 3.8) show that in the evaluation area, 

differences between modeled and observed landslide distances and end points are closer than the 

calibration scenario.  The spread in the values for the evaluation area is significantly smaller than 

in the calibration area.  

The results for the evaluation area are mapped (Figure 3.9).    
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Figure 3.9 A map from the evaluation area demonstrates the final model performance 

comparing the observed landslides to the modeled landslides 

 The model captures the general behaviour in landslide tracks. The zoomed-in area shows 

that the model tends to predict slightly longer runout paths and that modeled landslides tend to 

converge more often than the observed landslides.  

3.4.4 COMPARISON TO ANGLE OF REACH MODELING 

For an initial consideration, we determine the angle of reach for the observed landslides 

in the evaluation area (Figure 3.10). The observed landslides have an angle of reach ranging 

from 3.6° to 49.0° with a mean value of 25.1° and a median of 25.5°. 
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Figure 3.10 The angle of reach for the observed landslides in the evaluation area 

To assess whether our model performs better than an angle of reach approach, we apply 

the angle of reach as a stopping condition by specifying the angle and determining when, if ever, 

modeled landslides reach that angle. We apply an angel of reach ranging from 3-50°, increasing 

in increments of 1°, as a stopping condition applied to all the landslides in the evaluation area 

(Figure 3.11). The results have NS > 0 between 18° to 24°. RM is greater than 1 from 3° until 

23° and less than 1 at higher slopes.  The maximum NS is at 20° with NS = 0.14 and RM = 1.78. 

 

Figure 3.11 The corresponding NS and RM values for a constant angle of reach being applied 
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3.5 DISCUSSION  

Our analyses determine that topographic controls can predict landslide termination in the 

Colorado Front Range. We compare our model to an angle of reach. Angle of reach analyses are 

often applied through considering landslide volume which can lead to increased model 

performance (Corominas, 1996). Due to a lack of information about landslide volume, we only 

apply a single angle of reach. Another approach that has been taken to improve topographic 

models is to consider change in direction. Corominas (1996) evaluated the angle of reach for 

unobstructed, obstructed, and channelized landslides. Benda and Cundy (1990) applied a 

landslide stopping condition of whether a junction exceeded 70°. Our model considers only the 

topographic controls that lead to landslides stopping and does not consider additional upstream 

conditions, such as changes in direction. This simplifying assumption, along with the lack of 

information about landslide volume in our landslide inventory, limits the accuracy of the angle of 

reach in our study. The result is that our model performs better as it is can capture more of the 

variability in the observed landslides.  

Our model evaluates the topographic controls on landslides initiated from a single 

precipitation event in Colorado. The modeling goal is to evaluate whether our model provides 

increased accuracy for large-scale runout predictions. To make the model applicable on a broader 

scale, there are tradeoffs to consider between our simplistic application and being able to 

represent landslide runout risk more broadly including considering flow spreading, landslide 

volume, and landslide type. 

In considering simplifying model assumptions, our model does not consider landslide 

spreading. Huggel et al. (2003) considers glacial outbursts floods and found that the d8 routing 

approach correctly identified the flow path but is more impacted by errors in the DEM and 
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represents less realistic deposition patterns than alternative routing approaches. Horton et al. 

(2013) discusses that in terms of runout paths, the d8 approach provides unrealistically straight 

paths and leads to limited landslide spreading. To more realistically model landslide spreading 

while maintaining simple model assumptions, Scheidl and Rickenmann (2009) applied a d8 

landslide mapping approach combined with a Monte Carlo simulation to represent multiple flow 

paths. A similar modeling approach, or evaluating whether a simple buffer around the landslide 

path could realistically represent conditions, could be incorporated to more realistically capture 

landslide spreading.  

Another consideration is the tradeoff between using a single stopping condition and 

considering landslide volume. Relating landslide stopping location with landslide volume could 

improve the model by more accurately representing observed landslides. Landslide volume could 

be considered indirectly through considering landslide runout distance as higher angles of reach 

correspond to decreased volumes (Corominas, 1996). To maintain simplicity, having unique 

critical slope and slope persistence combinations dependent on landslide volume could be 

applied by having a range in the predicted landslide stopping location instead of a single point. 

Another tradeoff in our model is that we only consider debris flows though a number of 

debris slides are present. Debris slides tend to be shorter than debris flows in our study area so 

determining if the same critical slope/slope persistence combinations represent the debris slides 

would need to be evaluated. Further, the d8 routing would need to be checked to assess whether 

this assumption accurately captures debris slide routing. Identifying the topographic controls that 

lead to debris slides stopping could contribute to quantifying potential landslide runout distances 

based on landslide type. 
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3.6 CONCLUSION 

Our landslide model is an empirical, topographically based framework for landslide 

runout modeling in the Colorado Front Range. We apply d8 routing, which assumes a steepest 

line of descent, and a combination of a critical slope and slope persistence to capture landslide 

end points in the Colorado Front Range. We determine that simplistic d8 routing and steepest 

line of descent assumptions on a 10 m DEM  provide reasonable predictions for landslide runout 

paths and predicting landslide termination. Finally, we apply an angle of reach to determine 

landslide termination and determine that the angle of reach performs worse than the calibrated 

combination of critical slope and slope persistence. The model is simplistic and requires only 

elevation and landslide initiation points as input, allowing for ease of application.  

Future model improvements should evaluate model performance in different study areas  

to determine whether the combination of a critical slope and slope persistence can act as 

topographic control for determining where landslides will terminate. Another area for future 

work is combining the model with a landslide probability model. In integrating the two, a more 

complete understanding about landslide hazard mapping can be developed.  
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CONCLUSIONS AND FUTURE WORK 
 

 

 

The landslide probability model provides an initial evaluation of current and future 

landslide risk in the Colorado Front Range. The model predicts the landslides initiated by the 

2013 storm event and quantifies the potential impacts of climate change. There are areas for 

further development of the model and analyses. Evaluating whether the probabilities associated 

with the model are appropriate would allow for better understanding of the temporal aspect of 

landslide probability modeling. This could include evaluating a broader landslide inventory as all 

the observed landslides we consider were initiated by a single event.  The uncertainties with 

climate change, relating to both vegetation dynamics and hydrologic changes, should be further 

analyzed to determine how best to represent uncertainties over large spatial extents and the 

resulting impacts on landslide susceptibility.   

The landslide runout model showed that the topographic controls of a specified distance 

under a critical slope provides reasonable results for determining landslide end points within our 

study area.  Future model development can focus on applying the model to different areas to 

determine if the same assumptions yield realistic results. The analyses could also be improved by 

incorporating landslide volume to better quantify topographic controls. Additional research can 

also focus on whether there are easily applied variables that could represent landslide spreading. 

Incorporating landslide spreading would provide additional understanding about areas 

susceptible to landslides. Finally, considering whether debris slides have topographic controls 

would benefit model applicability. Because debris flows and debris slides are initiated by the 

same mechanisms, being able to predict the runout of both types is important for integration with 

a landslide initiation model.  
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The landslide probability and landslide runout models provide a basis for mapping 

landslide risk in the Colorado Front Range and an area for future work is combining the two 

models. Areas with a predicted probability of failure from the landslide probability model can be 

used as the initiation points for the landslide runout model. In the landslide runout model, once a 

stopping condition is met, a probability for that landslide location can be determined based on 

the initial landslide probability of failure and the percent of landslides in the study area the model 

accurately represents with those stopping conditions. This would allow for more complete 

understanding about current landslide risk and could be combined with climate modeling to 

provide more complete understanding about areas susceptible to landslides under climate change 

scenarios.  

 Our landslide modeling applications contribute to the general understanding about 

shallow, precipitation-induced landslides, the drivers for accurately capturing landslide 

probability of failure on a broad spatial extents, the impacts of climate change induced changes 

to landslide susceptibility in the Colorado Front Range, and the topographic characteristics that 

make landslides stop. This information can be used by researchers to perform to further analyses 

of landslide probability and runout, risk managers in considering which practices might impact 

slope stability, and infrastructure developers who might consider landslide risk in current and 

future projects. Particularly with climate change potentially increasing the areas susceptible to 

landslides in the Front Range, determining under what conditions landslides occur and where 

they will travel is important to guide decision making in the present and moving forward.  
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