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Abstract—This paper addresses an autonomous exploration
problem in which a mobile sensor, placed in a previously unseen
search area, utilizes an information-theoretic navigation cost func-
tion to dynamically select the next sensing action, i.e., location
from which to take a measurement, to efficiently detect and classify
objects of interest within the area. The information-theoretic cost
function proposed in this paper consist of two information gain
terms, one for detection and localization of objects and the other
for sequential classification of the detected objects. We present a
novel closed-form representation for the cost function, derived from
the definition of mutual information. We evaluate three different
policies for choosing the next sensing action: lawn mower, greedy,
and non-greedy. For these three policies, we compare the results
from our information-theoretic cost functions to the results of
other information-theoretic inspired cost functions. Our simulation
results show that search efficiency is greater using the proposed cost
functions compared to those of the other methods.

Index Terms—Autonomous navigation, information gain,
mutual information, occupancy grids, sequential classification,
sonar.

I. INTRODUCTION

IN THIS paper, we consider the problem of autonomous
exploration for the purpose of interactive sensing and in-

ference in previously unseen search areas. At each time step,
the autonomous platform performs a sensing action in the
form of selecting and moving to the next position to collect
a measurement that is used to update the detection, localization,
and classification estimates. In this exploration problem, often
referred to as the active perception problem [1], no pre-planned
platform path is assumed as there is no a priori information
about objects in the search area, and all initial sensing actions
are regarded as providing the same amount of information.
Additionally, the motion of the platform is restricted by some
dynamical model, hence precluding arbitrary sequential sensing
locations.

In active perception problems, the efficiency with which the
search area is surveyed is typically the most important criterion
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as it directly relates to operational costs per sensing action, a need
to minimize surveillance time during an information gathering
sortie, as well as other time- and cost-sensitive objectives. That
is, one is concerned with achieving high efficiency through
minimizing the number of sensing actions, while maximizing
the detection and classification performance.

To achieve such goals, information-theoretic measures have
typically been used [2]–[6] for choosing optimal sensing actions
in autonomous navigation and exploration problems. In the case
of parameter estimation using measurements that are corrupted
by Gaussian noise, maximizing the Shannon entropy of the
error distribution is equivalent to minimizing the determinant
of the parameter estimate covariances [2]. This provides a rule
for selecting the sensing action that maximizes the predicted
variance of the measurement produced after a sensing action is
performed.

In [3], a subclass of the active perception problem is ad-
dressed, where an autonomous underwater vehicle (AUV) is
used to inspect the hull of a large ship and estimate its surface
shape. Gaussian process function approximation is exploited to
approximate a mutual information-based cost function. In this
particular multi-hypothesis testing problem, a priori information
is available that allows the entire set of sensing actions, and their
outcomes, to be observed prior to visiting all sensing locations.

Information-theoretic cost functions, specifically utilizing in-
formation gain, have been previously developed [4]–[6], and
used successfully, in the context of navigation using information
from the occupancy grid estimation process [7], [8].

In [4], the positions of the AUV and potential targets are esti-
mated for a given sensing action using an extended Kalman filter
(EKF), and the mutual information is directly calculated follow-
ing an update to the occupancy grid. In addition to the occupancy
grid based information gain cost, the authors in [4] suggest
formulating an additional information-theoretic cost function
from the outputs of the simultaneous localization and mapping
(SLAM) problem using an EKF to estimate the positions of
the AUV and objects in the search area. Specifically, the cost
function they choose is related to the determinant of the AUV
and object position error covariance matrices, similar to [2].
A convex combination of the two normalized cost functions
is used in the sensing action selection, providing the ability
to trade-off performance in localization (through SLAM) and
detection (through occupancy grids) of objects.

In [5], the mutual information is directly calculated after each
sensing action and subsequent measurement is taken a priori,
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and used to train the Gaussian process regression for estimating
the mutual information for future sensing actions. Bayesian
optimization is then used in conjunction with the Gaussian
process upper confidence bound to estimate the information gain
for each point in an occupancy grid.

The formulation for explicitly calculating the predicted mu-
tual information in [6] is developed using an occupancy grid
framework under the assumption of statistical independence of
measurements. Measurements are also assumed to be condition-
ally independent of the occupancy state of obscured grid cells,
i.e., grid cells behind occupied cells in the perceptual range of
the sensor, given an occupied grid cell.

In this paper, we propose a new approach to the problem of ac-
tive perception using two information-theoretic cost functions.
The first cost function is associated with object detection and
localization, and measures the mutual information between the
occupancy state variable for a single grid cell and a binary mea-
surement random variable. Solving for its closed-form represen-
tation relies on the measurement model and posterior occupancy
distributions produced through the occupancy grid estimation
process presented in [9]. The second cost function associated
with the classification of detected objects measures the mutual
information between a class state variable for a single grid cell
and random variable that is the parameter to the class state
variable distribution. In this formulation, we choose to model
the class state variable as a Categorical random variable, and its
distribution parameter as a Dirichlet random variable [10]. The
motivation for choosing this modeling scheme stems from the
need to perform sequential updating of the class state variable
distribution, akin to occupancy grid estimation process. This se-
quential updating process has a closed form due to the conjugacy
between the Dirichlet and Categorical distributions, and allows
for fast tracking of the class state distribution as new measure-
ment are drawn. A one-step classification process is used in our
formulation, producing class labels used to sequentially update
the class state variable distribution. We call the entire process
of using a one-step classifier for producing class labels and the
Dirichlet-Categorical model for tracking the classification state
the DCM. Similar to [4], a convex combination weighting of
two normalized cost functions for sensing action selection is
also utilized here.

A series of experiments are conducted to illustrate the utility
of the proposed sequential state updating in conjunction with the
proposed cost functions. Three sensing action selection policies
are compared—lawn mower, greedy, and non-greedy. The lawn
mower policy does not use a cost function in the choice of the
next sensing action. For the two policies that use a cost function
for selecting the next sensing action, greedy and non-greedy,
two different methods for estimating the information gain are
used: (a) the convex combination of our two theoretical derived
proposed cost functions, and (b) a Gaussian process regres-
sion (GPR) for approximating the proposed cost function from
training data [3], [5]. The GPR provides a robust data driven
estimate of the proposed information gain based cost function.
The performance of all three policies is evaluated for their ability
to explore the interrogation area, and detect and classify targets,
while performing only a limited number of actions. The results

show that policies using our theoretical derived cost function
outperform all policies using the data driven approximation.

The main contributions of this paper are as follows. The
development of the DCM and one-step classifier provides a
novel application for sequential classification and tracking of
the classification state of each grid cell. The derivation of our
proposed cost functions and their convex combination pro-
vides the theoretical estimates of the information gained from
each sensing action, hence providing a framework for opti-
mal navigation informed by detection and classification state
estimates.

This paper is organized as follows. A review of the occupancy
grid estimation process is presented in Section III. The sequential
classification process, including a description of the one-step
classifier, is presented in Section IV. The derivations of the
information-theoretic cost functions for detection and classifica-
tion are presented in Section V. The different navigation policies
are described in Section VI. Simulation results on synthetic sonar
data, and a comparison with other methods for choosing sensing
actions [4], [5] are presented in Section VII. Finally, concluding
remarks are made in Section VIII.

II. SYSTEM OVERVIEW

The specific active perception problem considered here in-
volves undersea mine hunting in littoral zones using an AUV
equipped with a side-looking sonar system, though the proposed
formulations are not restricted only to this sensor configuration.
The AUV explores previously unseen areas and simultaneously
performs detection and classification of undersea objects. We
divide this active perception problem into four segments:

1) Generating a map of the scene through an occupancy
grid estimation process, which produces a set of marginal
posterior probabilities that any one point in an area is
occupied [9].

2) Classifying occupied regions through a sequential classifi-
cation process, which produces a set of marginal posterior
probabilities of class membership for each occupied re-
gion.

3) Computing the
i) mutual information between the occupancy state of a

grid cell and a random variable modeling a measure-
ment on that grid cell and

ii) mutual information between the class state of a grid
cell and a random variable modeling the class distri-
bution parameter.

4) Exploiting the information gain to select the sensing action
that produces the best opportunity to detect, localize, and
classify an object.

An illustration of the proposed active perception problem is
given in Fig. 1. The search area is discritized into grid cells
where the knowledge about object locations in the environment
is captured through an occupancy grid estimation process [9].
The knowledge about the class of each detected and localized
object is then provided in the form of a Dirichlet-Categorical
model (DCM) [10]. The occupancy grid estimation process and
the DCM produce a set of distributions over occupancy state
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Fig. 1. The proposed active perception problem: An AUV takes measurements
to perform occupancy grid estimation and sequential classification. The outputs
from each of these processes are then used in evaluating the navigation cost
function for sensing action and policy selection.

and class state of grid cells, respectively, from which the un-
certainty in the distributions can be measured through Shannon
entropy [11]. The state distribution of each grid cell is updated
using the measurement collected after each sensing action, and
the reduction in the uncertainty of each distribution after each
sensing action can be measured through information gain or
mutual information [11]. The information gain is expressed as
the difference between the entropy of a prior distribution for a
state variable and the entropy of the posterior distribution for
that state variable after a measurement has been observed. It is
natural to seek sensing actions that will produce a measurement
maximizing the reduction in uncertainty in both occupancy state
and class state for all grid cells, and thus we choose to utilize
information gain as our information-theoretic cost function for
choosing sensing actions. These components of the proposed
system are described in the next sections.

In the remainder of this paper, we shall use lowercase italic x
for scalars, lowercase bold italic symbols x, and uppercase bold
italic symbols X , for vectors and matrices, respectively.

III. OCCUPANCY GRID ESTIMATION

Occupancy grid estimation is a popular process for generating
an occupancy map of an area given a set of measurements taken
from that area [7]–[9]. The map is partitioned into a set of B
disjoint grid cells {gi}Bi=1, all with the same shape and size.
To each grid cell a binary occupancy state indicator variable
bi ∈ {0, 1} is attached with bi = 1 indicating that a grid cell gi is
occupied (e.g., by a scatterer of radiation), and bi = 0 indicating
that gi is empty. We call the set b = {bi}Bi=1 the set of cellular
occupancies, commonly referred to as a map. The map b can be
any one of 2B possible unique maps from the set of all possible
maps B.

Now, given the measurement matrix JS =
[j1, . . . , js, . . . , jS ], consisting of a collection of mea-
surement vectors js = [js,1, . . . , js,K ] ∈ JK = {0, 1}K for
s ∈ {1, . . . , S} with K elements that are the thresholded

Fig. 2. Modeling of interaction between occupancy states and a single mea-
surement js,k , conditioned on br = 1.

detection statistics taken at time s, the estimation problem
produces the set of marginal posterior probabilities of occupancy
grids (OGs) arranged as a vector

p = {pb|J (br = 1|JS)}Br=1. (1)

Using the following occupancy grid formulation presented
in [9], these marginal posterior probabilities at time step S can
be expressed as

pb|J (br = 1|JS) ∝
∑

b∈B(r,1)
pj|b(jS |b)pb|J (b|JS−1)

=
∑

b∈B(r,1)

∏
k

∏
i

[(
p00ki (1− bi) + p01kibi

)
(1− jS,k)

+ (1− (p00ki (1− bi + p01kibi)
)
jS,k

]
× pb|J (b|JS−1), (2)

where B(r, 1) is the set of all maps with the rth occupancy state
pinned to occupied. Given the map b, for any arbitrary time
s ∈ [1, S], the sensor model p(js|b) can be written as

pj|b(js|b) =
∏
k

pj|b(js,k|b). (3)

To express the terms under the product in (3) the BAC model was
adopted in [9]. Fig. 2 illustrates the interaction between all of the
grid cell occupancy states and a single measurement where each
js,k is a Boolean function of virtual occupancies b̃i (outputs of
the BACs); specifically js,k =

∑B
i=1 b̃i. Then, we can write,

pj|b(js,k = 0|b) =
∏
i

pb̃|b(b̃i = 0|bi)

=
∏
i

p00ki (1− bi) + p01kibi, (4)

The quantity p00ki is the probability that the occupancy state
of grid cell gi is transmitted through the BAC and correctly
received as measurement js,k = 0 when bi = 0 (probability
of true non-detection), and p01ki is the probability that the oc-
cupancy state of grid cell gi is transmitted through the BAC
and incorrectly received as measurement js,k = 0 when bi = 1
(probability of missed detection). As js,k is a binary random
variable, pj|b(js,k = 1|b) = 1− pj|b(js,k = 0|b). The last term
in (2) pb|J (b|JS−1) is the posterior probability of the map b at
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the previous time step S − 1 calculated as

pb|J (b|JS−1) ∝
∏
k

∏
i

[(
p00ki (1− bi) + p01kibi

)
(1− jS−1,k)

+
(
1− (p00ki (1− bi) + p01kibi)

)
jS−1,k

]
× pb|J (b|JS−2). (5)

One method for choosing the BAC transition probabilities
p00ki and p01ki is to allow p00ki = (1− pfa)/(1 + dist(bi, js,k))α

and p01ki = (1− pd)/(1 + dist(bi, js,k))α, where pd and pfa are
the probability of detection and false alarm, respectively, of the
physical sonar system, dist(bi, js,k) represents the Euclidean
distance between the location of grid cell gi and that at which
sample js,k was taken, and α ≥ 1 [9]. This particular model-
ing is used to emulate degraded detection performance due to
attenuation in the sonar return signal strength as a function of
distance.

This formulation of occupancy grid estimation is used over
other estimation techniques as it is able to account for the
correlation between occupancy states of neighboring grid cells,
and was developed with the measurement type (binary detection
statistics) that are used in the implementation of our system.

IV. SEQUENTIAL CLASSIFICATION USING

DIRICHLET-CATEGORICAL MODELS

In this section, we present a new sequential classification
method that allows tracking of the class state for each grid cell,
formulated with the need of an information-theoretic classifica-
tion cost function in mind. We desire a method that produces
a set of distributions as its output, and the sequential updating
of these distributions to be performed quickly, without the need
to iterate an algorithm to convergence. As such, we chose the
Dirichlet-Categorical model (DCM) [10], [12] for representing
the class state variable and its associated distribution random
variable.

The idea behind this sequential updating process is to take a
measurement from the sensor at time s and use it to update the
class membership probabilities for the grid cell. The measure-
ment is first converted into a crude estimate of the class label ls,
and that label is merged with all previous labels to update the
posterior predictive class distribution for the grid cell.

Let c be the class state variable for grid cell gi. At each time
step s, a one-step classifier is employed to assign a class label
ls ∈ [1, L] to the most recent measurement from grid cell gi.
The one-step classifier in this system can be any commonly
used classifier such as support vector machine (SVM), rele-
vance vector machine (RVM) [13] or a deep neural network
(DNN) [14]. The collection of sequential class labels ls for grid
cell gi up to the current sensing time S, are formed into a set
L = [l1, . . . , lS ]. Now, the goal here is to generate the posterior
predictive distribution of the class state variable c, pc|L(c|L),
given all the past and present labels in L.

To begin, we model c as a Categorical random variable taking
on L possible, non-orderable, values. A random variable c is
Categorically distributed if pc|λ(c = l|λ) = λl = P (c = l) for

l = 1, . . . , L, where λ = [λ1, . . . , λL] and
∑L

l=1 λl = 1, and

can be expressed as c|λ ∼ Cat(λ)[10]. The probability mass
function of the Categorical distribution can be written as

pc|λ(c|λ) =
L∏

l=1

λδcll , δcl =

{
1 c = l

0 otherwise
. (6)

The Categorical distribution parameterλ is modeled as a Dirich-
let distributed random variable with distribution parameter α,
λ ∼ Dir(α). The probability density function of λ is defined as

p(λ) =
1

B(α)

L∏
l=1

λαl−1
l , (7)

where B(α) =
∏L

l=1 Γ(αl)
Γ(α0)

is the multivariate beta function and

α0 =
∑L

l=1 αl [10]. The parameter vector α = [α1, . . . , αL] is
non-random, with αl > 0 ∀ l.

The Dirichlet distribution is the conjugate prior for the Cate-
gorical distribution, and thus the posterior distribution of λ|c is
Dir(α◦) where α◦ = [α◦

1, . . . , α
◦
L] and α◦

l = αl − 1 + δcl [10],
[12]. That is, we can write λ|c = λ◦ ∼ Dir(α◦). This shows
that after getting a new class label ls, the updated estimate
of the distribution parameter λ is now Dirichlet distributed
with parameter α◦. We call this updated distribution parameter
λ◦ ∼ Dir(α◦).

The DCM provides an efficient closed-form equation for
calculating the posterior predictive distribution [12] of the class
state variable c given the label data in L using

pc|L(c|L) =
∫
pc|λ(c|λ)pλ|L(λ|L)dλ

=

∫
λc

1

B(α)

L∏
l=1

λ
αl−1+

∑
l′∈L δcl′

l dλ

=
B(α′)
B(α)

∫
Dir(α′)dλ =

B(α′)
B(α)

,

where α′
l = αl − 1 +

∑
l′∈L δcl′ . Thus, the posterior predictive

distribution is also Categorically distributed as c|L ∼ Cat(λ′)
with pc|L(c|L) = B(α′)

B(α) = λ′c. Only one label ls is added at each
time s, thus using the recursive property of the Gamma function,
Γ(n+ 1) = nΓ(n), we see that

λ′c =
B(α′)
B(α)

=
Γ(α0)∏L
l=1 Γ(αl)

Γ(αc + 1)
∏L

l=1 	=c Γ(αl)

Γ(α0 + 1)

=
Γ(α0)∏L
l=1 Γ(αl)

α′
c

∏L
l=1 Γ(αl)

α′
0Γ(α0)

=
α′
c

α′
0

. (8)

Similar to occupancy grids, which capture the posterior
marginal probabilities of occupancy for all grid cells, the pos-
terior predictive class distribution generated by the sequential
classification process is captured in classification maps (CMs).
We represent a CM as a set of distributions denoted as

q = {pc|L(cr|L)}Br=1, (9)

where cr is the class state variable for the rth grid cell gr.
Fig. 3 depicts the idea behind the proposed class state tracking
process. The sequential class updating process takes each new
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Fig. 3. Block diagram of sequential classification state tracking. A measure-
ment is converted into a class label ls by means of a one-step classifier. The
class label is used in conjunction with the previous distribution parameters λ
and α to produce a new distribution parameter λ′ and α′.

class label ls as well as the previous distribution parameters
λ and α to produce the new distribution parameters λ′ and α′,
hence allowing us to successively update the parameter estimates
for every new measurement.

V. INFORMATION-THEORETIC COST FUNCTIONS

In this section, we develop a novel information-theoretic cost
function that is used in evaluating the utility of sensing actions
during navigation policy selection. This cost function, called the
total information gain at time s IGT (s), is a convex combination
of two individual information-theoretic cost functions, one for
detection IGD(s) and one for classification IGC(s). We first
present the detection cost function, derived with the sensor
model and outputs from the occupancy grid estimation process.
The classification cost function is then presented, derived with
the sequential classification process using the DCM.

Letting X and Y be two random variables, and H(·) the
Shannon entropy, then the information gain is defined as [11]

I(X;Y ) = H(X)−H(X|Y ), (10)

which can be thought of as the reduction in uncertainty of the
distribution on X that the knowledge of random variable Y
would bring. In the active perception problem, H(X) can be
thought of as the prior distribution on X , while H(X|Y ) can
be viewed of as the posterior distribution on X after observing
random variable Y .

In the context of our problem, both the detection and classifi-
cation cost functions are closed-forms of the information gain, or
mutual information, between a state variableX (occupancy state
or class state) and a random variable Y that capture information
about the latest measurements. As such, they are both predictors
of the information that is gained by taking a measurement from
a grid cell given the current state of the grid cell. The detection
and classification cost functions can be viewed as predicting
the theoretical mutual information between the current state and
the updated state after performing a sensing action, and aide in
the selection of the next sensing action that provides the most
information.

In the sequel, we will denote the set of grid cells observed at
time s by G.

A. Detection Cost Function

We define the detection information gain at time s, IGD(s), as
the sum of the mutual information between the occupancy state

and the measurement random variable for all observed grid cells
in G. This is stated mathematically as

IGD(s) �
∑
gi∈G

I(bi; js,k), (11)

where bi is the occupancy state variable for grid cell gi and js,k
is the random variable representing a measurement at time s and
range k. The information gain for grid cell gi is given by,

I(bi; js,k) = H(bi)−H(bi|js,k)
= −EB log pb(bi)− EJ log pb|j(bi|js,k)
= −

∑
b∈B

pb(bi) log pb(bi)

−
∑
b∈B

∑
j∈J

pj|b(js,k|bi)pb(bi) log
pj|b(js,k|bi)pb(bi)

pj(js,k)
.

(12)

where J = {0, 1} is the set of possible values that realizations
of js,k can take, and B = {0, 1} is the set of possible values that
realizations of bi can take.

Using the occupancy grid estimation model in (4), the inter-
action between the occupancy state variable bi and the measure-
ment random variable js,k can be represented by,

pj|b(js,k|bi) = [(1− pfa)(1− bi) + (1− pd)bi](1− js,k)

+ [pfa(1− bi) + pdbi]js,k, (13)

where pd and pfa are the probabilities of detection and false
alarm, respectively, for the physical detector that produces the
measurement vectors js.

We treat the output of the occupancy grid estimation
pb|J (bi|Js−1), i.e. the posterior estimate from the previous time
step, as the prior pb(bi) for time s [15]. To simplify notation,
we let pi = pb(bi = 1). Now, using this together with (13), and
invoking the total probability, the marginal probability mass
function for js,k is,

pj(js,k) =
∑
β∈B

pj|b(js,k|bi = β)p(bi = β)

= pj|b(js,k|bi = 1)pi + pj|b(js,k|bi = 0)(1− pi)

= [(1− pd)(1− js,k) + pdjs,k] pi

+ [(1− pfa)(1− js,k) + pfajs,k] (1− pi)

= [(1− pfa)(1− pi) + (1− pd)pi](1− js,k)

+ [pfa(1− pi) + pdpi]js,k, (14)

Using this result, the prior and conditional entropy in (12),
become

H(bi) = − [pi log pi + (1− pi) log(1− pi)] . (15)

and

H(bi|js,k)

= −
[
(1− pfa) (1− pi) log

(1− pfa) (1− pi)

(1− pd)pi + (1− pfa) (1− pi)
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+ pfa (1− pi) log
pfa (1− pi)

pdpi + pfa (1− pi)

+ (1− pd)pi log
(1− pd)pi

(1− pd)pi + (1− pfa) (1− pi)

+ pdpi log
pdpi

pdpi + pfa (1− pi)

]

= (1− pfa) (1− pi) log [1 + (1− pd)pi]

+ pfa (1− pi) log [1 + pdpi]

+ (1− pd)pi log [1 + (1− pfa) (1− pi)]

+ pdpi log [1 + pfa (1− pi)] , (16)

respectively.
Plugging (13), (14), (16), and (15) into (12) gives a closed-

form expression for the detection information gain as

I(bi; js,k) = pi [(1− pd) log [1 + (1− pfa) (1− pi)]

+ pd log [1 + pfa (1− pi)]− log pi]

+ (1− pi) [(1− pfa) log [1 + (1− pd)pi]

+ pfa log [1 + pdpi]− log [1− pi]] . (17)

B. Classification Cost Function

We define the classification information gain at time s IGC(s)
as the sum of the mutual information between the class state
variable, ci, and the Dirichlet distributed parameter vector, λ,
for all observed grids gi ∈ G. This is stated mathematically as

IGC(s) �
∑
gi∈G

I(λ; ci). (18)

The distribution parameter vector λ for the Categorical distri-
bution on ci in essence captures information about the latest
measurements.

For a mixed-pair of discrete scalar random variable X and
continuous random vector Y , assuming they satisfy the suf-
ficient conditions to be a good mixed-pair [16], their mutual
information is,

I(Y ;X) = h(Y )− h(Y |X)

= −
∫
py(y) log py(y)dy

+
∑
x∈X

∫
py,x(y, x) log py|x(y|x)dy, (19)

where h(·) is the differential entropy [11].
Applying (19) to (18), the mutual information I(λ; ci) can be

evaluated as

I(λ; ci) = h(λ)− h(λ|ci)

= h(λ) +

L∑
ci=1

∫
ΔL

pλ,ci(λ, ci) log pλ|ci(λ|ci)dλ.

(20)

The entropy of a Dirichlet distributed random vector is well-
known [17] and can be written as

h(λ) = logB(α) + (α0 − L)ψ(α0)−
L∑

l=1

(αl − 1)ψ(αl),

(21)

where ψ(x) = d
dx log Γ(x) = Γ′(x)

Γ(x) is the digamma function.
To evaluate the conditional entropy term h(λ|c) in (20), we

use the fact that the Dirichlet distribution is the conjugate prior
of the Categorical distribution. Thus, we can write

h(λ|c) = −
L∑

c=1

∫
ΔL

pλ,c(λ, c) log pλ|c(λ|c)dλ

= −
L∑

c=1

∫
ΔL

pc|λ(c|λ)pλ(λ) log pλ|c(λ|c)dλ

= −
L∑

c=1

B(α′)
B(α)

∫
ΔL

1

B(α′)

L∏
l=1

λα
′−1

l log
1

B(α′)

L∏
l=1

λα
′−1

l dλ

= −
L∑

c=1

α′
c

α′
0

Eλ′

[
log

1

B(α′)

L∏
l=1

λα
′−1

l

]
=

L∑
c=1

α′
c

α′
0

h(λ′)

=

L∑
c=1

α′
c

α′
0

[
logB(α′) + (α′

0 − L)ψ(α′
0)−

L∑
l=1

(α′
l−1)ψ(α′

l)

]

(22)

Combining (18), (21), and (22) provides the information gain
for classification as

IGC(s) =
∑
gi∈G

I(λ; ci)

=
∑
gi∈G

[
logB(α) + (α0 − L)ψ(α0)−

L∑
l=1

(αl − 1)ψ(αl)

−
L∑

ci=1

α′
c

α′
0

(
logB(α′) + (α′

0 − L)ψ(α′
0)

−
L∑

l=1

(α′
l − 1)ψ(α′

l)

)]
. (23)

C. Total Information Gain

As previously stated, the total information gain is defined
as the convex combination of the detection and classification
information metrics. To ensure that one information metric does
not dominate the other at all times s due to scaling, we normalize
them by their respective maximal values,

IGT (s) = wD
IGD(s)

IGDmax

+ wC
IGC(s)

IGCmax

, wD + wC = 1.

(24)

The values for IGDmax and IGCmax are calculated as the sum of
the maximum information gain available from a grid cell over
all grid cells gi ∈ G for the detection and classification states,
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respectively. The information gain for an individual grid cell
is maximized when the prior distribution is uniform and the
posterior distribution is a delta, implying that the maximum
value is equal to the entropy of a uniform random variable.
Hence, IGDmax = |G| log(2) and IGCmax = |G| log(L)where |G|
is the cardinality of the set G. The values for IGDmax and IGCmax

are considered constant across all times s, as the distribution
of the state variables could be uniform at any time s (whether
or not they have been fluctuating at all times < s) and then
completely determined at time s+ 1 thus achieving the maximal
information gain.

This convex weighting allows for different strategies to be
employed by the system. For example, at the beginning of a
sortie, there will likely be insufficient information to consider
classification for choosing sensing actions. In this case, we
can assign a higher weight (e.g., wD = 0.9) for the detection
while choosing a lower weight (e.g., wC = 1− wD = 0.1) for
the classification. In contrast, once most of the grid cells are
observed, there may be little to no information left in performing
target detection and localization, in which case we can choose
the sensing actions primarily based on the classification criterion
by choosing wC = 0.9 and wD = 1− wC = 0.1.

VI. TRAJECTORY PLANNING

In this section, we discuss three types of trajectory-planning
policies for performing interactive sensing and navigation. Re-
call that the action at each time step is the selection of the next
location for the sensor platform. For all policies, let a denote an
action, and As be the set of all feasible actions the sensor can
take under vehicle dynamical constraints at time step s. The three
policies choose sensing locations according to: a pre-determined
lawn mower path; and maximizing a cost function for choosing
a ∈ As in a greedy, and non-greedy manner.

In many traditional underwater target detection and classifica-
tion operations, a predetermined lawn mower path, as shown in
Fig. 4(c), is used. The sequence of prespecified actions a guar-
antees that each region in the search area is observed though at
the cost of potentially poor detection and classification accuracy
due to inadequate viewing angles.

The greedy policy for action selection chooses the action
as the one that maximizes the one-step reward, or one-step
navigation cost function, i.e.

a∗
s+1 = argmax

a∈As

Rs(bs, cs,a), (25)

where Rs(bs, cs,a) = IGT (s) is the immediate reward for
performing action a with the current state variable distributions
at time s, where bs and cs are the occupancy state and the class
state of the system at time s, respectively.

The non-greedy policy for action selection chooses the next
sensing action that maximizes the one-step reward, while also
considering the reward from future actions along a finite horizon
of T future actions. This policy, in essence, chooses the next
sensing action that it believes will generate the largest cumula-
tive reward given the current information available. This type
of problem is typically cast as a partially observable Markov
decision problem (POMDP), which admits a number of solution

Fig. 4. Occupancy grids (OG) on left and classification maps (CM) on right.
OG and CM shown for: the underlying truth, lawn mower, GPR-5, and OG-
DCM-5. Cylinders are colored yellow, cubes light blue, and spheres red. The
deep blue color indicates no target. Each figure shows the same 50× 50 meter
area.

methods [18]–[20]. In this paper, the rollout policy method [19]
is used to solve the problem given our choice of a heuristic
navigation cost function IGT (s).

Mathematically speaking, this policy can be described as
choosing the sensing action that maximizes the one-step reward
plus the expected reward-to-go associated with a prespecified
policy, typically a heuristic rule. The decision rule for action
selection used by the rollout policy is defined as

a∗
s+1 = argmax

a∈As

Rs(bs, cs,a) + Es+1, (26)

where Rs(bs, cs,a), bs, and cs are the same as the greedy
case, Es+1 = E[

∑T
i=s+1Ri(bi, ci,ai)|bs, cs] is the expected
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reward-to-go, Ri(bi, ci,ai) = IGT (i) is the reward for per-
forming action ai with the current state variable distributions
at time i ∈ [s+ 1, T ], where bi and ci are the occupancy state
and the class state of the system at time i, respectively, and T is
the length of the finite horizon.

VII. EXPERIMENTAL RESULTS

In this section, we present the simulation results from au-
tonomous navigation experiments utilizing the action selection
policies described in Section VI which use the total information
gain as the reward function. The experiments conducted in this
section expose each action selection policy’s ability to simul-
taneously perform detection, localization, and classification of
targets, while exploring new areas. For the remainder of this
section, we call our proposed method for calculating IGT (s)
the occupancy grid Dirichlet Categorical model (OG-DCM).

A. Benchmark Method

As shown in the previous sections, the theoretical representa-
tion for calculating the information gained from each measure-
ment utilizes the sequential detection and classification state
estimates. As such, there is no appropriate non-deterministic
benchmark method other than data driven function approxima-
tion methods. Although, many function approximation methods
such as neural networks and deep learning architectures exist,
the Gaussian progress regression (GPR) has been shown to
be successful in approximating the mutual information for the
active perception problems [3], [5]. Thus, here we benchmark
OG-DCM to that of a GPR for estimating the information gain
expected from both the detection and classification components,
IGD(s) and IGC(s), respectively. The ground truth outputs
used to train the GPR were the detection and classification
information gains, calculated as the difference between the
entropy of prior and posterior state distributions for detection
and classification, respectively [11]. The GPR estimates mean
and associated covariance of an input data vector using an
appropriate kernel function and pairs of training data and their
corresponding outputs. In our problem, the current position
and previous detection and classification mutual information
compose the input vector. The output, estimated by the GPR,
is a composite vector of the detection and classification mutual
information calculated for the current sensing action. We trained
the Gaussian process with a Matérn kernel function [5] and
utilized K-D trees [3] to find the nearest 100 neighbors for
forming the covariance matrix on a per-cell basis.

The total information gain is approximated by the Gaussian
process regression following the Gaussian process upper bound
confidence algorithm [5], [21], and is given by

IGGPR(s) = wD
μD(x) + βσD(x)

IGDmax

+ wC
μC(x) + βσC(x)

IGCmax

,

where β is the tradeoff parameter between exploration and ex-
ploitation, μ·(x) and σ·(x) are the predicted mean and variance
for the detection and classification components, respectively,
derived from the GPR.

B. Experimental Data & Description

In our active perception problem, a sonar platform is used
to mimic the behavior of an autonomous underwater vehicle
(AUV) that is searching littoral zones for mine-like under-
water targets. The system is equipped with multiple (11) hy-
drophones arranged in a uniform linear array (ULA), all pointing
slightly downwards from horizontal (positive depression angle).
The transmitted waveform was a linearly frequency modulated
(LFM) chirp with center frequency fc = 80 kHz, bandwidth
BW = 20kHz, and sampling frequency fs = 60kHz. The ULA
has a 7◦ beamwidth with an interrogation range up to tens of
meters. The sensor is attached to a platform, which is 10 meters
above the seafloor.

The experiments use simulated side-looking sonar (SLS) that
directs acoustic radiation to the starboard side of the AUV.
The sonar data is generated by a cutting-edge, physics-based
sonar simulator namely the Personal Computer Shallow Water
Acoustic Toolset (PC SWAT) [22]. PC SWAT models scattering
from the target by a combination of the Kirchhoff approximation
and the geometric theory of diffraction. Propagation of sound
into a marine sediment with ripples is described by an application
of Snell’s law and second order perturbation theory in terms
of Bragg scattering [22]. PC SWAT has been used to produce
simulations providing exemplar template measurements that
closely match real data generated by sonar systems [23].

The stave data generated by PC SWAT was fed through
an adaptive coherence estimator (ACE) detector [24]–[26] to
produce a single beamformed measurement (detection statis-
tics) vector. This beamformed vector is thresholded at a pre-
determined value to provide the measurement vector js. The
threshold is chosen to yield a desired pfa and hence pd.

A total of 500 pings (actions) with 1 m ping separation were
simulated for each experiment. Nine targets, in three clusters
of three different targets (i.e. L = 3), are proud on the seafloor
within the 50× 50 meter search field. Medium sandy bottom
was used in all the experiments to simulate bottom clutter. Each
cluster contains a 2 m long cylindrical target with a radius of
0.25 meters, a 1 m3 cubic target, and a partially hollow sphere
with 1 m radius. The spatial orientation of the three clusters can
be seen in the classification map (CM) of Fig. 4(b), where the
cylinders are color-coded yellow, the cubes light blue, and the
spheres red. The deep blue color indicates no target.

C. Evaluation Metrics

To evaluate the performance of each policy, three different
metrics are used, as detailed below. For all metrics, with the ex-
ception of the percentage of grid cells observed, we evaluate the
performance for detection (occupancy grids) and classification
(classification maps) separately to better illustrate the strengths
and weaknesses of each. In the following, t represents the true
set of distributions, either true occupancy b or true classification
c, and e represents the estimated set of distributions, either
occupancy grid p or classification map q. Only like pairs are
compared, i.e., b and p or c and q. The true distributions are
formed from delta functions (e.g., pb|J (br|JS) = [1, 0] if a cell
is occupied, and pc|L(cr|L) = [0, 0, 1, 0] if a cell is of class 3).
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1) Similarity between the true distribution t to that of the
estimated distribution e:

ρ =
〈t, e〉F

||t||2F ||e||2F
,

where || · ||F is the Frobenius norm, and 〈·, ·〉F is the
Frobenius inner product. For calculating this metric, we
form t and e into matrices by making each row the vec-
torized form of the distribution for each grid cell. Clearly,
0 ≤ ρ ≤ 1, and ρ = 1 when t = e

2) Sum of the Jensen-Shannon distance (SJSD) DJS(ti||ei)
[27] over all i = 1, . . . , B grid cells:

SJSD =
∑
r

DJS(ti||ei)

=
∑
i

1

2
DKL(ti||mi) +

1

2
DKL(ei||mi)

= − 1

2

∑
i

[∑
x∈X

ti(x) log

(
mi(x)

ti(x)

)

+ ei(x) log

(
mi(x)

ei(x)

)]
,

wheremi(x) =
1
2 (ti(x) + ei(x)), ti(x) and ei(x) are the

distributions for grid cell gi evaluated at point x, and
DKL(·, ·) is the Kullback-Leibler (KL) divergence [27].
The Jensen-Shannon distance is used in favor of the KL
divergence as it is symmetric, positive, and always finite.
The maximum value of SJSD is log(2)×B, with smaller
values indicating that t and e are similar and t = e when
SJSD is 0.

3) Percentage of the grid cells in the map that are observed
during the experiment. This measure provides the effi-
ciency with which the AUV is able to explore new areas
while estimating the occupancy grid.

The true distributions are illustrated in Fig. 4(a) and 4(b). In
Fig. 4(a), occupied grid cells are black while empty grid cells
are white. In Fig. 4(b), each grid cell is color-coded according to
the non-zero component of its distribution (i.e., cylindrical class
grid cells are yellow, etc.).

D. Results and Discussion

In the experiments conducted here, OG-DCM utilized the
modified version of the matched subspace classifier (MSC) [28]
as the one-step classifier in Fig. 3. The modified MSC (MMSC)
was used owing to the proven success in classifying underwa-
ter objects [29]. Additionally, the MMSC has many desirable
properties including the ability to use any learned subspace
dictionaries, and incremental updating of the dictionary matrices
when operating in new measurements [30].

At each time step, a sensing action in the form of select-
ing and moving to the next position to collect a measurement
is taken. The measurement is collected and used to update
the occupancy grid and classification map. The next location
from which to take a measurement was chosen according to

TABLE I
SJSD AND ρ FOR DETECTION (DET.) AND CLASSIFICATION (CLASS.), AND %

OF GRID CELLS SEEN FOR DIFFERENT NAVIGATION POLICIES AFTER 500
SENSING ACTIONS. BOLD VALUES INDICATE BEST PERFORMANCE PER METRIC

(25) and (26) for the greedy and non-greedy policies, respec-
tively. Each reward, R(bs, cs,a) = IGT (s) for OG-DCM and
R(bs, cs,a) = IGGPR(s) for GPR, was calculated by first
generating the ping from the new location with PC SWAT, then
performing the occupancy grid estimation and classification map
estimation, and finally calculating the reward for that action. The
non-greedy policy was evaluated to time step s+ T for different
finite horizon lengths of T = 0 (greedy), T = 5 and T = 10
for both GPR and OG-DCM methods. That is, each decision
involves considering T time steps into the future. We denote the
finite horizon policies as GPR-T and OG-DCM-T , i.e., GPR-0
and OG-DCM-0 are for T = 0, etc. Thus, including the lawn
mower policy, a total of 7 different experiments were conducted.
Each experiment uses a different action selection policy under
different configuration, i.e., different estimation methods for the
navigation cost function.

For each type of non-deterministic policy, i.e., greedy, and
non-greedy, 20 different trials were conducted where the starting
locations and headings of the AUV were randomly chosen in
each trial. The lawn mower policy was only executed once.
Table I gives the mean values of SJSD, ρ, and the percentage
of grid cells observed after 500 sensing actions. Bold values in
each column of the table represent the best performance for the
metric associated with that column.

As seen from these results the OG-DCM non-greedy policy
with a T = 10 step finite horizon outperformed all other non-
deterministic policies in all metrics. The lawn mower policy
outperformed OG-DCM-10 in the number of observed grid cells
and the SJSD for detection. These two metrics can be thought
of as measuring the same information, as an increase in the
number of grid cells seen implies a relatively good estimate of
occupancy for any reliable detector. Note that the lawn mower
policy is designed to observe as many grid cells as possible,
which is why it achieves an almost perfect score in the percent-
seen metric, while matching the best non-deterministic policy in
detection performance ρ. The accuracy of the occupancy grid, as
measured by ρ for detection, is much higher for the percentage
of grid cells observed when comparing the OG-DCM to the lawn
mower policy, indicating that it extracts more information per
grid cell it observes. In other words, because there is a tradeoff
between ρ and the percentage of cells seen, showing that OG-
DCM-10 outperforms the lawnmower scheme entails comparing
both. The tradeoff clearly favors OG-DCM-10.

The policies that used OG-DCM generally outperformed
those using GPR. In fact, there are only a few cases where even
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Fig. 5. Performance plots for each of the navigation policies used in experi-
ments.

the greedy policy using OG-DCM performed worse than the
best non-greedy policy using GPR. This shows that the proposed
OG-DCM method provides better estimation of the information
gain for future sensing actions than that of GPR.

The OGs and CMs illustrated in Figs. 4(c)–4(h) show one
realization of the results for the lawn mower, and non-greedy
policy experiments. Realizations for finite horizons of T = 0
and T = 10 have been omitted due to space limitation. The
policies that use GPR wound up falling into local minima, i.e.,
over-observing a particular region without extracting any new
detection or classification information, and thus reduced the
overall efficiency of the system. Again, as can be observed the
OG-DCM method generally provided much better classification
results when compared with the GPR results.

Finally, to compare the temporal evolution of these metrics
during the navigation the mean value of each metric is plotted
in Figs. 5(b)–5(a) against the action number for each case. A
major take away, illustrated in Fig. 5(c), 5(d), and 5(e), is that
OG-DCM-10 not only outperforms the other policies, but does
so in a relatively small number of sensing actions. From these
results, one can conclude that as more sensing actions are taken,
and more grid cells are observed, the OG-DCM-10 outperforms
all other policies in all metrics.

VIII. CONCLUSION

An autonomous navigation system using a novel information-
theoretic cost function is proposed based on the outputs of two
state tracking algorithms, namely the ones for object detection
and classification. This navigation cost function provides a way
to compare multiple locations from which a sensor can take
measurements and declare which of those locations provide
maximal information gain for updating state variable estimates.
The performance of three navigation policies, using the proposed
cost function, were evaluated and compared to the ground truth.
The experimental results show that the use of the proposed
information-theoretic cost function along with the non-greedy
policy produces the most accurate occupancy grid estimates and
target classification while observing more of the map in the same
duration of time.
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