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Abstract— Occupancy grids encode for hot spots on a map that
is represented by a two dimensional grid of disjoint cells. The
problem is to recursively update the probability that each cell in
the grid is occupied, based on a sequence of sensor measurements
from a moving platform. In this paper, we provide a new
Bayesian framework for generating these probabilities that does
not assume statistical independence between the occupancy state
of grid cells. This approach is made analytically tractable through
the use of binary asymmetric channel models that capture the
errors associated with observing the occupancy state of a grid
cell. Binary-valued measurement vectors are the thresholded
output of a sensor in a radar, sonar, or other sensory system.
We compare the performance of the proposed framework to
that of the classical formulation for occupancy grids. The results
show that the proposed framework identifies occupancy grids
with lower false alarm and miss detection rates, and requires
fewer observations of the surrounding area, to generate an
accurate estimate of occupancy probabilities when compared to
conventional formulations.

Index Terms— Occupancy grids, Bayesian estimation, sonar,
robotic mapping.

I. INTRODUCTION

THE process of generating a map of occupied cells from
a set of sequential observations has many applications,

e.g., in target localization and path planning. Both of these
applications can be considered part of the active perception
problem, in which a sequence of actions is chosen that
maximizes the amount of information attained through those
actions [1]. An example of an active perception problem
is considered in this paper, involving an ego-vehicle in the
form of an autonomous underwater vehicle (AUV) which
navigates through previously unexplored areas, taking a series
of sequential measurements, while simultaneously performing
inference for the purpose of efficiently detecting and locating
underwater targets.

One of the commonly used approaches for this active
perception problem is occupancy grid estimation. This process,
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which involves estimating the occupancy map given a set of
observations, was originally introduced by Elfes and Moravec
in the mid 1980s [2]. Several subsequent papers explored alter-
native methods for performing sensor fusion for distributing
sensor measurements over the occupancy grids [3], and for
combining multiple occupancy grids [4], [5] from multiple
independent sensors into a single grid. These methods make
the assumption that the occupancy states of the grid cells are
statistically independent by modeling the problem as a Markov
Random Field [2], [4], [5]. This allows for the factorization
of the joint occupancy distribution on the occupancy map into
the product of occupancy distributions of individual grid cells.

Thrun [6] provided a new occupancy grid formulation,
using forward sensor models, that accounts for statistical
dependence between the occupancy state of grid cells. The
method assumes that the sensor provides range measurements
from within an observation cone, and that the single range
measurement comes from only a single source within the
cone. This measurement is assumed to be produced by either
a true positive (detection of object), a false positive (false
alarm), a true negative (no object in range), or a false
negative (missed detection). Each of these possible events
is modeled with a distribution from the exponential family,
and the process of identifying the occupancy grid becomes
a most-likely-model selection process through the use of an
expectation-maximization (EM) algorithm [6].

The recent work in [7], [8] used real antenna radiation
patterns to better inform occupancy grid estimation and hence
provide more realistic maps. In [9], [10], the authors model the
dependence between grid cells using Gaussian processes. The
use of Bayesian Occupancy Filters (BOF) [11] for generating
occupancy grids, assuming statistical independence between
the grid cells, has been studied in [12]–[14].

The methods for occupancy grid estimation typically make
the assumption that a sensor produces a range measurement,
i.e., reporting the range of the closest detected object in
the sensors’ field of view (FoV). However, in our active
perception problem, a sensory system on a moving platform
takes observations at all possible ranges within its beam length,
producing a vector-valued measurement. Classical occupancy
grid estimation does not deal with this situation. Additionally,
the classical methods treat the occupancy state of each grid
cell as being statistically independent. In a typical occupancy
grid type problem, the area of a grid cell is much smaller
than the area which an object occupies, leading to objects
within the interrogation field typically occupying multiple grid
cells. Consequently, the occupancy state of a grid cell is
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inherently correlated with its neighboring cells, and thus the
occupancy state of the grid cells should be jointly consid-
ered when performing occupancy grid estimation. These two
departures from the classical methods motivated us to develop
a new occupancy grid estimation method to circumvent these
problems.

To this end, we present a framework for solving the
joint and marginal distributions of grid cell occupancy states,
while accounting for the statistical dependence between the
occupancy states of grid cells, given vector-valued sensor
measurements. We then present a method for solving this
problem with a sensor model that exploits a network of binary
asymmetric channels (BACs). This BAC network sensor model
can be used to represent any real sensor, with examples given
for an ideal ranging sensor, a sonar system, and a distributed
network of pressure sensors.

The main contributions of this paper are as follows. Using
BACs, we build a sensor model for the interaction between
the occupancy state of each grid cell and each sensor mea-
surement. This sensor model provides a tractable method
for considering the statistical dependence between grid cell
occupancy states. The use of BACs provides a method of
modeling any physical sensor by considering its statistical
performance (probability of false alarm and probability of
detection), and does not rely on a presumed distribution for
sensor measurements. We also show that the original formula-
tion of Elfes [2], [4], which assumed statistical independence
between each grid cell occupancy state, can be considered a
special case of the methods proposed here.

The remainder of this paper is organized as follows.
In Section II, we first define the occupancy grid estima-
tion process and establish notation. Section III develops the
Bayesian update equation for computing the posterior prob-
ability that a particular grid cell is occupied. Three different
methods are proposed, a general formulation and two special
cases. Experimental results for each case are presented in
Section IV for: a toy problem for the purpose of comparing
the three proposed methods and two using simulated sonar
data. Concluding remarks are given in Section V.

II. TERMINOLOGIES & NOTATIONS

Lowercase italic x is used for scalars, vectors and matri-
ces are represented by lowercase bold italic symbols x and
uppercase bold italic symbols X , respectively.

The environment under consideration is assumed to be
partitioned into grid cells (or simply cells) ci at coordinates
(xi , yi , zi ), i = 1, 2, . . . , B . To each grid cell, an indicator
variable bi ∈ {0, 1} is attached with bi = 1 indicating that
grid cell ci is occupied by a scatterer of radiation, and bi = 0
indicating that grid cell ci is empty. An occupied grid cell
may be called a hot spot. These indicators may be organized
in any convenient manner. Here, we arrange them into a vector
b = [b1, b2, . . . , bB] ∈ {0, 1}B . It is common to call the set of
indicators, organized in any manner, a map. A map captures
the occupancy state of the grid cells.

The problem is then to estimate, for each β ∈ {0, 1}B ,
the conditional probability that b = β, given a sequence

of measurement vectors J S = �
j1, j2, . . . , j s , . . . , j S

�
.

The subscript S indicates the current sensing time, while
1 ≤ s ≤ S indicates a time index at which measurements are
taken. Each j s ∈ {0, 1}K is a binary vector (e.g., thresholded
detection statistics) and β ∈ {0, 1}B is a specific map within
the set of all possible maps with B elements. We denote
this probability as pb|J (b|J S) and return our estimates as the
marginal posterior probabilities pb|J (br = 1|J S), where br is
the r th indicator random variable in b. Importantly, it is the
set of marginal posterior probabilities {pb|J (br = 1|J S)}B

r=1
that is returned by our algorithm. This set of probabilities
can be organized in any order, and we choose to arrange
them into a vector p = [pb|J (b1 = 1|J S), pb|J (b2 =
1|J S), . . . , pb|J (bB = 1|J S)] ∈ [0, 1]B . These marginal
posterior probabilities can be produced for any 1-, 2-, or 3-
dimensional grid depending on the problem.

There are some inconsistencies in the related literature as to
the precise definition of an occupancy grid or occupancy grid
map [4]–[6], [12]–[16], and whether it is a map, as defined pre-
viously, or the set of marginal posterior probabilities. For this
reason, we will refer to b as cellular occupancies, and the set
of corresponding posterior probabilities as cellular posterior
probabilities. It is common to illustrate, or plot, both cellular
occupancies and cellular posterior probabilities to provide a
visual representation for comparison. Here, we reserve the
occupancy grid name for both cellular occupancies and cellular
posterior probabilities when they are illustrated, or plotted,
in some way.

The following is a summary of the notation used in the
development of our occupancy grid estimation framework.

• B : The number of grid cells in a map.
• b : A random vector taking values in {0, 1}B representing

cellular occupancies.
• b̃ ∈ {0, 1}B : The virtual cellular occupancies after the

occupancy state of each grid cell has been passed through
a binary asymmetric channel (BAC).

• p = [pb|J (b1 = 1|J S), . . . , pb|J (bB = 1|J S)] ∈ [0, 1]B

: The vector of cellular posterior probabilities.
• B : Set of all possible cellular occupancies b. |B| = 2B .
• B(r, β) = {b|br = β} : Set of all cellular occupancies

with br = β, β ∈ {0, 1}.
• S : Current/latest time index.
• s : Time index with 1 ≤ s ≤ S.
• j s ∈ {0, 1}K : Binary-valued measurement vector of

dimension K taken from the output of a sensory system
at time s.

• J S = �
j1, . . . , j S

�
: Collection of binary-valued mea-

surement vectors up to time S.
At each time s a measurement vector j s , comprising

binary values (e.g., thresholded detection statistics) js,k, k =
1, . . . , K , is taken, where K is the maximum number of
samples recorded by the sensor. The index k encodes for
some position (xk, yk, zk) within the environment. During the
collection of each measurement, the sensor is effectively in
a fixed position in its trajectory path, and the sensor has a
FoV of the grid cells. The sequence of these measurement
vectors forms the matrix J S = �

j1, . . . , j s, . . . , j S
�

with
columns that are all the past and present binary measurement
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vectors. Note that here we consider a sensor in its most
general form to be a probabilistic map that takes as input
the object we are measuring (in our case, the cellular occu-
pancies) and gives as output a random variable (the mea-
surement j s ). Each sensor is characterized by the conditional
distribution of the output given the input. Real-world sensory
systems can be described with this definition as presented in
Section IV-D.

The goal is to develop a sequential Bayesian framework
for updating the posterior probability of the occupancy of
each grid cell ci with associated indicator random variable bi ,
given the sequence of measurements in J S . That is, we wish
to update the cellular posterior probabilities after each time
step.

III. OCCUPANCY GRID ESTIMATION-FORMULATION

To produce the estimate of the vector of cellular posterior
probabilities p, most of the existing methods [2], [4], [5], [7],
[12] factor the joint distribution of the cellular occupancies
as pb(b) = �

i pb(bi ). Similarly, when conditioned on the
collection of measurement vectors in J S , the joint distribution
is assumed to be factored as pb|J (b|J S) = �

i pb|J (bi |J S)
which implies that the elements in the cellular occupancies
are conditionally independent. As pointed out before, these
simplifying assumptions limit the applicability of such meth-
ods in many practical situations. The general formulation (GF)
presented in this section is intended to lift these restrictive
assumptions.

Throughout the development of this formulation, we assume
that the sensor position at each time is reasonably accu-
rate, i.e., the odometry errors are small enough to ignore.
This is a valid assumption for sensory system deployed on
many autonomous platforms, where a low velocity and small
measurement error from the odometry sensors satisfies the
ego-motion estimation for the vehicle.

A. Model for Grid Cell and Measurement Interactions

The sensor model presented in this section provides a way
to probabilistically solve the data association problem of deter-
mining which grid cells are occupied given the measurements.
A network of binary asymmetric channels (BACs) [17] are
used to model the relationship between grid cell occupancy
states and measurements. The BAC outputs, the so-called
virtual occupancies, are latent variables, and are merely used
to model the measurements.

The occupancy state bi of each grid cell influences each js,k
in measurement vector j s . This relationship can be represented
by a directed acyclic graph (DAG) of Figure 1(a), where the
information flow is from bi to js,k. The influence that the
occupancy state of each grid cell has on each measurement can
be modeled by transition probabilities of a BAC. These tran-
sition probabilities can be functions of the distance between
the grid cell and location of the measurement, or any other
physical quantity depending on the employed sensory system,
and are discussed further in Section III-C. Recalling that js,k,
k = 1, . . . , K are binary-valued decisions from the detector at
time s, one can view a BAC as the device that models bit flips

Fig. 1. Interaction and measurement model.

associated with missed detection and false alarm for each grid
cell.

The binary occupancy information transmitted from each
bi through a BAC and received at each js,k node are logical
OR’d together to produce the measurement js,k for all k,
with different BAC transition probabilities for each (i, k) pair.
That is, letting the virtual occupancy b̃i be the output of the
BAC for each grid cell ci , then js,k = �B

i=1 b̃i where the
sum is Boolean. The justification for the choice of the OR
gate model is the following. An occupied grid cell reflects
a transmitted signal back to a detector, and if any of the
signals received at the sensor has enough power to trigger the
detector then it will be declared as a detection. This behavior
is analogous to many signals being transmitted over electrical
wires and connected to the circuitry that composes an OR
gate. Figure 1(b) illustrates the graphical representation of this
model in which the indicator br = 1 is assigned whereas the
remaining bi �= br may be either a 1 or 0 before transmission
through the BACs.

B. Sequential Bayes’ Updating

In this section, BAC models are used to provide a sensor
model for tractably estimating the joint probability of the grid
cell occupancy states without making any of the restrictive
independence assumptions stated earlier.

Given the collection of S sequential observations J S , we
would like to estimate the occupancy of each grid cell. Using
Bayes’ rule, the update rule for the marginal probability of
grid cell cr being occupied (or empty), i.e. br = β ∈ {0, 1},
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given the entire set of measurements J S , is given as

pb|J (br = 1|J S)

= pb,J (br = 1, J S)

pJ (J S)
= pb,J (br = 1, j S, J S−1)

pJ ( j S, J S−1)

=
��

b∈B(r,1) pb,J (b, j S, J S−1)
�

pJ ( j S, J S−1)

=
��

b∈B(r,1) p j |b( j S |b, J S−1)pb|J (b|J S−1)
�

p j |J ( j S |J S−1)

= η
�

b∈B(r,1)

p j |b( j S |b)pb|J (b|J S−1), (1)

where η is a normalization term such that pb|J (br = 1|J S)+
pb|J (br = 0|J S) = 1. The second to last line comes from
the conditional independence of measurements. The second
term on the right hand side of the last line, pb|J (b|J S−1),
is the posterior probability from the previous time step S − 1.
Likewise, the posterior probability pb|J (b|J S) can be written
using the same sensor model used in (1):

pb|J (b|J S) = pb,J ( j S, b, J S−1)

pJ ( j S, J S−1)

= μp j |b( j S |b)pb|J (b|J S−1), (2)

where μ is a normalization term such that
�

β∈B
pb|J (b =

β|J S) = 1. For any value of S, plugging (2) into (1) and
expanding (2) shows the explicit dependence on all historical
measurement information for the occupancy state update.

Given the map or occupancy state b, the measurements
{ js,k}K

k=1 in j s are indeed conditionally independent. Thus,
we can write

p j |b( j s |b) =
	

k

p j |b( js,k|b). (3)

Note that this is different than the commonly used assumption
that the elements in the cellular occupancies are conditionally
independent, i.e., pb|J (b|J S) = �

i pb|J (bi |J S).
To better describe the term p j |b( js,k|b) in (3), and specif-

ically p j |b( js,k = 0|b), let b̃ = {b̃i}B
i=1 be the collection of

BAC outputs (cf. Section III-A) which are the latent variables
that capture the influence of grid cell ci on each measurement
js,k. More specifically, each js,k is a Boolean function of
virtual occupancies, i.e., js,k = �B

i=1 b̃i . Thus, we can write

p j |b( js,k = 0|b) = pb̃|b(b̃i = 0 ∀i |b) : OR gate assumption

=
	

i

pb̃|b(b̃i = 0|bi)

=
	

i

p00
ki (1 − bi )+ p01

ki bi , (4)

where pb̃|b(b̃i = 0|bi ) is implicitly parameterized by k, i.e., the
index of the measurement. For each pair (k, i) of measurement
index k and grid cell ci , we define pki

d and pki
fa to be the

probability of detection and false alarm, respectively. Then,
we have

p00
ki = pb̃|b(b̃i = 0|bi = 0) = 1 − pki

fa ,

p01
ki = pb̃|b(b̃i = 0|bi = 1) = 1 − pki

d ,

where p00
ki models the probability that bi = 0 is transmitted

through the BAC and received correctly as b̃i = 0; while
p01

ki models the probability that bi = 0 is transmitted through
the BAC and received incorrectly as b̃i = 1. The other
probabilities p11

ki = pki
d and p10

ki = pki
fa are similarly defined.

Plugging all these into (1) and (2) gives the following
closed-form expressions that can be used for computing the
Bayesian updates:
pb|J (br = 1|J S)

= η
�

b∈B(r,1)

p j |b( j S|b)pb|J (b|J S−1)

∝
�

b∈B(r,1)

	
k

	
i

�

p00

ki (1 − bi )+ p01
ki bi

�
(1 − jS,k)

+ 

1 − (p00

ki (1 − bi )+ p01
ki bi )

�
jS,k

�
pb|J (b|J S−1), (5)

and,

pb|J (b|J S)

= μ
	

k

	
i

�

p00

ki (1 − bi)+ p01
ki bi

�
(1 − jS,k)

+ 

1 − (p00

ki (1 − bi )+ p01
ki bi)

�
jS,k

�
pb|J (b|J S−1). (6)

This is what we refer to as the general formulation (GF)
of the occupancy grid problem. The formulation in [4], which
assumes independence between occupancy states of grid cells,
can be viewed as a special case of this formulation. To see
this let us consider the case when the set B(r, 1) contains
only a single element, indicating that only one grid cell is
being processed at a time. The sum over B(r, 1) and the
product over i in (5) vanish. The product over k would also be
restricted to the indices k ∈ κ = {κ, κ + 1, . . . , κ + K �}, with
κ ≥ 0 and κ + K � ≤ K , that coincide with the neighborhood
around grid cell cr . Thus, (5) in this case reduces to

pb|J (br = 1|J S) = η
	
k∈κ

�
p01

ki (1 − jS,k)+ 

1 − p01

ki

�
jS,k



× pb|J (br = 1|J S−1), (7)

which is equivalent to the formulation in [4] derived using our
BAC model.

C. Choices of Transition Probabilities

The choice of appropriate transition probabilities for
each BAC can be made using two different categories of
approaches. The first category involves using heuristic factors
where the designer imparts a belief into the choice of the
transition probabilities. Such factors exploit distance-based
or any other plausible measure. For example, a similar idea
was adopted in the formulations presented in [7], [8] where
real-world receiver antenna gain patterns were used as a way
to choose the values of p10

ki and p11
ki for different grid cells.

The second category of methods uses statistical estimation
methods to learn the transition probabilities given a collection
of training data. The success of these methods depends on the
environments in which the senors are operating and amount
of data used to estimate the transition probabilities. For exam-
ple, if the environments are consistent from experiment to
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Fig. 2. Occupancy probability profile for an ideal sensor.

experiment, and we have sufficient data, then convergence of
the transition probability estimates can be expected. However,
if the sensor takes measurements in a different environment
for each experiment, then the training data may not contain
sufficient information for proper estimation of the transition
probabilities.

We must point out that the occupancy probability profile
(OPP) [4] for almost any sensor model may be represented
at any time S using the proposed BAC model through
proper selection of the transition probabilities. As an example,
we show how to model the OPP for the ideal sensor, which
returns a scalar value representing the closest distance at which
a reflection from an object was seen. The ideal sensor OPP
[4], illustrated in Figure 2, can be modeled using the BAC
model through appropriate choice of transition probabilities.
This OPP modeling is performed with the use of (7). Let
η� = ηpb|J (br = 1|J S−1). Then, (7) becomes pb|J (br =
1|J S) = η� �

k∈κ (p01
ki (1 − jS,k)+ (1 − p01

ki ) jS,k).
Let the index k of jS,k be related to the range from the

sensor, placing jS,k ∈ j S in ascending order by range from
the sensor (i.e., jS,k further away from the sensor have a
larger k). Also, let p01

ki be a function of jS,k and k. Denote
by r a scalar range measurement from the ideal sensor, and
associate r = r0 with the smallest index k such that jS,k = 1.
Figure 2 illustrates these details along with the OPP for the
ideal sensor. The scalar range measurement can be converted
to its associated vector of length K by assigning 0s at all
indices of the vector, then placing a 1 at the index k encoding
for the distance closest to r = r0.

Indicator di = −1 implies that grid cell ci with occupancy
state variable bi is closer than r0 − ε units from the sensor,
di = 0 indicate that it is r0 ± ε units from the sensor, and
di = 1 otherwise. The ranges associated with di are annotated
on Figure 2. The following set of rules can be applied to
choose p01

ki such that pb|J (bi = 1|J S) matches the OPP for
the ideal sensor, where |κ | is the cardinality of the set κ , and
I(k) = �

k∈κ 1 − jS,k is the indicator function that counts the
number of jS,k ∈ j S that are 0:

p01
ki =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 di = −1

1 − jS,k

η�

1
I(k)

di = 0

0.5

η�

1
|κ |

di = 1

∀k ∈ κ.

D. Special Cases for Cone-Like Sensor Models

Here, we present two special cases for sensors that can be
modeled with a cone-like radiation pattern (e.g., radar, sonar,

Fig. 3. Sonar system and environmental setup for occupancy grid estimation
at time s. Uniform Linear Array (ULA) with four hydrophone elements is
shown with two targets sitting on the seafloor. The sensor horizontal θ and
vertical ψ beamwidth, and sensor depression angle φ are shown. Colored grid
cells represent the occupancy grid annotated on the seafloor, with the intensity
of the color representing the probability of occupancy. Darker colors represent
higher probabilities. Red dashed lines indicate js,k = 0 and green indicate
js,k = 1.

lidar, etc.). These special cases are introduced to overcome the
computational issues, specifically the exponential scaling that
occurs due to the cardinality of set B(r, 1) as the number of
grid cells increases. Each special case improves computational
feasibility by reducing the cardinality of B(r, 1) such that
|B(r, 1)| 	 2B−1, provided that there is a reduction in the
amount of statistical dependence that is modeled between grid
cells.

We show the environmental setup and application of special
cases in the context of a sonar system illustrated in Figure 3 as
we present experiments using such a system in Section IV-D.
Similar special cases can be constructed for other types of
sensors, such as a distributed network of stationary sensors.
The following physical descriptors are displayed in the figure:
position of the sensor and targets at time s, horizontal and ver-
tical beamwidths θ and ψ , respectively, and sensor depression
angle φ. Practically speaking, this information is required only
for determining how to update each grid cell with each new
measurement. The binary values js,k are also shown, with red
dashed lines indicating js,k = 0 and green indicating js,k = 1.

Each of the js,k is generated from one of four situations:
a true positive (detection of object), a false positive (false
alarm), a true negative (no object in range), or a false negative
(missed detection). Figure 3 shows these different situations in
the context of a sonar system. The red- and green-dashed arcs
depict the locations at which the detector has produced a zero
( js,k = 0) or a one ( js,k = 1), respectively. Thus, the presence
of a green-dashed arc in an area that does not overlap with the
cylindrical object in the sensor cone indicates a false alarm and
the presence of a red-dashed arc in a region that does overlap
with the target indicates a missed detection. An example of
a false alarm can be seen in the leftmost green-dashed arc
closest to the sensor in Figure 3, while an example of a missed
detection can be seen in the red-dashed arc intersecting the
rightmost target in Figure 3.

The first special case, which is referred to as Cone Only
(CO), assumes only cone-wise interaction between the grid
cells within the same observation cone at a particular time
s and the measurement vector j s . The second case, which
is called Range Gate Only (RGO), makes the assumption
that there is only local interaction between grid cells and
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Fig. 4. Physical interpretation of CO and RGO cell-measurement interactions.
The set bI is depicted in blue, while the set bO is depicted in grey for both
cases.

measurements, restricted to within a particular range gate.
Note that we refer to a range gate as that comprising multiple
range intervals where each range interval is a constant distance
from the sensor. A graphical interpretation of these special
cases is illustrated in Figure 4, which helps to provide some
physical intuition of each special case.

Case 1 (Cone Only): Here, we assume that the interaction
between the measurement vector j s and the grid cells that lie
outside the observation cone at time s is negligible, and hence
both the probability of detection p11

ki and false alarm p10
ki are

0 for grid cells ci outside of the observation cone.
To formally describe this, let us partition the grid indices

{1, 2, . . . , B} into two parts, I and O, such that I �O =
{1, 2, . . . , B} and I �O = ∅. The set I captures the indices
of grid cells that fall within the sensor cone, while the set O
captures the indices of the grid cells that fall outside of the
sensor cone.

The indicator variables composing a particular vector b of
cellular occupancies can then be partitioned into two disjoint
sets, the set bI = {bi |i ∈ I} for grid cells inside the sensor
cone and the set bO = {bo|o ∈ O} for grid cells outside such
that b = bI

�
bO. Evaluating (4) for this case gives

p j |b( js,k = 0|b) =
	

o

pb̃|b(b̃o = 0|bo)
	

i

pb̃|b(b̃i = 0|bi )

= (1)
	

i

pb̃|b(b̃i = 0|bi )

= p j |b( js,k = 0|bI), (8)

because the conditional probability of receiving a 0 through
the BAC for each b̃o is 1. By making this assumption,
the cardinality of B(r, 1) is reduced to |B(r, 1)| = 2B−1−|I| 	
2B−1. Although this provides faster computational time while
maintaining the statistical dependence between all grid cells
within the sensor cone, it has the side effect of ignoring
information imparted by neighboring occupied cells if, for
example, an obstacle occupies the inside and outside of the
sensor cone.

Case 2 (Range Gate Only): This special case accounts
for only the interaction between measurements and grid cells
within a specific range gate in the observation cone. A visu-
alization of a range gate can be seen in the blue band of grid

cells in the observation cone in Figure 4(b). Similar to CO,
this case also ignores information imparted by neighboring
grid cells if an obstacle occupies the inside and outside of a
particular range gate. A potential way to help mitigate this is
to allow for overlapping range gates.

In a similar manner as was done for CO, let b = bI
�

bO,
but for this special case bI is the set of grid cells within a
range gate of an observation cone as in shown in Figure 4(b).
Although (8) can still be used for this case, a restriction is
put on j s such that the delay at which the kth measurement
is taken must coincide with the selected ranges, i.e., only
the js,k falling within the range gate are considered. In this
way, we calculate the posterior distributions of grid cell
occupancies in each range gate separately. This further reduces
the cardinality of B(r, 1) when compared to the first special
case.

Remarks: The implementation of the proposed methods is
expected to use the most general form that is tractable for the
problem. For a small number of total grid cells, GF can be
applied without much overhead. As the total number of grid
cells increases, the cardinality of B(r, 1) increases and thus
so does the computation time for the marginalization in (1).
For implementation purposes, the choice between GF, CO, and
RGO should be driven by the desire to keep the cardinality of
B(r, 1) at a reasonable level that allows for a tractable amount
of computation time for the system.

Consider segmenting the observation cone into many
smaller disjoint cones and then using RGO to update the
cellular posterior probabilities. It is not hard to imagine that in
the limit of splitting the observation cone into smaller cones
and applying RGO to small range gates, the updating of grid
cells would happen independently from one another. In other
words, there would only be a single grid cell being updated
at any particular time.

These simplifications produce the same Bayesian update
rule, presented in (7), that one would obtain by assuming
independence between the occupancy state of grid cells,
and independence between measurement errors. In this case,
the computational complexity would no longer scale expo-
nentially in B , at the expense of possible degradation in the
performance.

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results for GF
defined in (5), as well as those for CO and RGO special
cases. Two types of experiments were conducted with an
increasing number of grid cells per experiment. The first type
of experiment is considered as a toy experiment, where a
small number of grid cells compose the entire map. This type
of experiment is necessary for comparison between GF, CO,
and RGO, as there is a limit to the number of grid cells GF
can be tractably applied to because of the exponential scaling
of the cardinality of B(r, 1). The second type of experiment
uses simulated sonar data, and emulates the detection and
localization component of our active perception problem.

In all experiments, we assume there is an array of sensors
taking observations of the map containing no moving targets.
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Using the first set of experiments we show that GF provides
the best overall performance, and that each special case
provides performance that is related to the number of grid
cells that are updated concurrently. The sensor array produces
measurements that are thresholded detection statistics in the
form of binary-valued vectors. The detector’s threshold was
chosen to produce a desired false alarm probability pfa and
hence a probability of detection pd.

In all experiments, the BAC transition probabilities p00
ki and

p01
ki were modeled as p00

ki = (1 − pd)/(1 + dist(bi , js,k))α

and p01
ki = (1 − pfa)/(1 + dist(bi , js,k))α , where dist(bi , js,k)

represents the Euclidean distance between the location of
grid cell ci and that at which sample js,k was taken, and
α ≥ 1. This particular modeling is used to emulate degraded
detection performance due to attenuation in the signal strength
as a function of distance due to losses from the transmission
medium, i.e., salty water for the sonar experiments.

A. Metrics Used for Performance Comparison

To evaluate the performance of various methods, two dif-
ferent metrics are used. For both metrics, we consider the true
cellular occupancy and the cellular posterior probabilities to
be occupancy grids to facilitate direct comparison. To make
the following notation a bit more compact, we write pi as
the probability mass function for the i th element from the
cellular posterior probability occupancy grid p, βi is the i th
element from the ground truth occupancy grid β, and pβi is
the probability mass function of βi .

1) Similarity between the cellular posterior probability occu-
pancy grid p to that of the true occupancy grid β: ρ =
�β, p�/||β||2|| p||2, where �·, ·� is an inner product. Clearly,
0 ≤ ρ ≤ 1, and ρ = 1 when each cellular posterior
probability in p is driven to either 0 or 1 and p = β.

2) Sum of the Jensen-Shannon distance (SJSD) DJS(pβi ||pi)
[18] over all i grid cells in an occupancy grid:

SJSD = 1

2

�
i

DJS(pβi ||pi)

=
�

i

DKL(pβi ||Mi )+ DKL(pi ||Mi )

= −
�

i

1

2

� �
x∈X

pβi (x) log
� Mi (x)

pβi (x)



+
�
x∈X

pi(x) log
� Mi (x)

pi(x)

�
,

where Mi (x) = 1
2 × 


pi(x) + pβi (x)
�
, and DKL(·, ·)

is the Kullback-Leibler (KL) divergence [18]. The
Jensen-Shannon distance is used in favor of the KL diver-
gence as it is symmetric, positive, and always finite. The
maximum value of SJSD is log(2)×B , with smaller values
indicating that β and p are similar and SJSD =0 when
β = p.

B. Comparison With Other Methods

We must note that a direct comparison to the traditional
occupancy grid frameworks of [4], [5] is not appropriate.

This is due to the fact that those methods assume that the
sensor produces a single range measurement (identifies the first
peak in the return above a predetermined threshold) for each
observation and fit a heuristic model for sharing these range
measurements over the observed grid cells at each time step.
Additionally, a direct comparison with Thrun’s method [6] that
does not make the statistical independence of grid cell assump-
tion is not possible, as the method also relies on single range
measurements in its formulation. Therefore, we benchmark
the performance of the proposed methods against two similar
methods, both of which follow the traditional occupancy grid
mapping algorithm. That is, they use a Bayesian update [19]
for each grid cell assuming independence between the grid
cells, and independence between measurements. The first
method uses our sensor model and will henceforth be referred
to as the independence method (IM). The second method uses
the conventional occupancy grid sensor model [5], [6] and
is adapted to allow for binary-valued vector measurements.
We call the second method the conventional method (CM)
throughout the remained of the paper.

The method for performing the Bayesian update on a 2-
dimensional map, using IM, for experiments that use a cone
shaped observation model is summarized as follows:

1) Find the global position of each grid cell observed within
the observation cone at time s.

2) Determine the centerline of the cone, and project the
position of each observed grid cell onto the centerline.

3) Associate each measurement js,k with its distance along
the centerline. Identify the set of all projected grid cells
where projections equal this centerline distance.

4) Update the probability of each grid cell cr , at location
(xr , yr ), being occupied given the set of measurements
on that grid cell, { js,k}κ+K �

k=κ , using (7).
Similarly, the Bayesian update on a 2-dimensional map

using CM follows steps 1)-3) from above, and uses the
sensor model proposed in [5], [6] to perform the update.
The built-in occupancy grid estimation tools available in the
navigation toolbox of Matlab R2019b were used to perform
the probabilistic integration for CM.

C. Experiments With Toy Problem

The first set of experiments involves a toy problem that
is sufficiently small such that all three proposed methods
can be applied and compared. The toy environment used a
2-dimensional map comprising 16 grid cells with an equal dis-
tance of 0.5 units between the centers of individual grid cells.
Each grid cell had a total of 9 different measurements sampled
uniformly throughout the area it covers. The measurement
vector j s comprises 144 measurements j s = [ js,1, . . . , js,144],
9 samples for each of the 16 cells, taken at equal distance
covering the same overall area as the grid cells.

This experiment can be thought of as modeling multiple
application scenarios. One scenario entails using a traditional
ego-vehicle that is observing an area and estimating the
locations of occupied grid cells using transmit-receive sens-
ing. Alternatively, we can consider a scenario that involves
using a distributed network of stationary sensors to capture
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Fig. 5. Checkerboard Example - True occupancy grid and cellular posterior
probabilities occupancy grids generated with all three proposed methods and
the independent method.

simultaneous measurements. An example is the detection of
objects in a room through a distributed network of pressure
sensors embedded within the floor. The latter scenario clearly
shows the flexibility of our formulation for a non-traditional
use of occupancy grid estimation.

The data used for the toy problem was synthesized by first
choosing a β (see Figure 5(a)) and finding the ideal j ideal
measurement vector by letting jideal,k = 1 if it corresponds to
an occupied grid cell, and jideal,k = 0 otherwise. A series of
15 observations J15 = [ j1, . . . , j15] was then generated by
passing each element of j ideal through a BAC with pd = 0.80
and pfa = 0.08. These values were chosen experimentally
to match the performance from the detector used in the sonar
experiments. An example of a single measurement j s is shown
in Figure 5(b). Note that it is assumed that all grid cells are
observed at all times s. Each of the measurement vectors
j s was sampled randomly according to the probability law
associated with the true occupancy of that grid cell. If the grid
cell ground truth is occupied, then the samples associated with
that grid cell are chosen such that they are a 1 with probability
pd and a 0 with probability 1 − pd. Similarly, if the grid cell
ground truth is empty, then the samples associated with that
grid cell are chosen such that they are a 1 with probability pfa
and a 0 with probability 1 − pfa.

As mentioned earlier, the BAC transition probabilities p00
ki

and p01
ki were functions of the distance between the grid cell ci

and the measurement location of js,k with α = 5. This choice
of α provided the best overall results for this toy problem
given that there is not a physical interpretation of distance.

Next, we compare each method of computing cellular poste-
rior probabilities. Special case CO is implemented on a neigh-
borhood around grid cell locations instead of an observation
cone while RGO takes the same neighborhood used for CO
and splits it into two disjoint sections, updating each section
separately. Multiple experiments were conducted for each
possible configuration of occupied and unoccupied grid cells
(216 configurations), with the average performance for each
method (GF, CO, RGO, and IM) reported in Table I. Results
for CM are not presented, as they were essentially identical
to those of IM for this problem. The resulting occupancy

TABLE I

EXPERIMENT 1 - COMPARISON OF CELLULAR POSTERIOR PROBABILITIES
TO TRUE OCCUPANCY GRID FOR GF, CO, RGO, AND IM.

CHECKERBOARD (CB) AND AVERAGE (AVG.)
PERFORMANCE (MEAN±STD.)

estimates for this toy example are presented in Figures 5(c)-(f)
for the GF, CO, RGO, and IM methods, respectively. These
figures illustrate the cellular posterior probabilities p where the
probability of occupancy of a grid cell is represented by the
gray level of the cell with a higher probability being associated
with a darker cell.

As evident from the visual evaluation of the results in
Figure 5 as well as the performance results in Table I, GF out-
performed all other methods in all metrics while both CO
and RGO special cases outperformed the IM method. The
performance of the GF and CO are essentially identical. This is
likely due to the neighborhoods of measurements used in CO
being sufficiently large and including enough measurements
on surrounding grid cells to accurately estimate underlying
occupancy states. RGO gave up a little performance compared
to GF and CO, due to the statistical dependence that it trades
off in favor of reduction in computation complexity. It is
interesting to note that the cardinality of B(r, 1) was reduced
from 216 to 28 for the CO and 24 for the RGO.

D. Experiments With Simulated Sonar Data

In our active perception problem, a sonar system is used
to search littoral zones for underwater targets e.g., mines.
The experiments used a side-looking sonar (SLS) system that
directs acoustic radiation to the starboard side of the AUV.
This system is equipped with multiple hydrophones arranged
in a uniformly spaced linear array (ULA). The ULA has
a depression angle φ > 0, and horizontal θ and vertical
ψ beamwidths, with θ < ψ , to produce a cone or wedge
shaped beam as discussed in Section III-D. The sensor cone is
perpendicular to the sensor path. For a sonar system, the width
of the cone is directly related to the sonar beamwidth which
is a function of the number of hydrophone array elements,
aperture size, frequency, etc. The ULA has an interrogation
range up to tens of meters. The sensor array is attached
to an AUV, which is some distance above the field that
is under interrogation. Due to the AUV’s height, the beam
shape, and depression angle of the ULA, the sonar sensor
tends to “see” past an object in the incident direction. This
is unlike some other sensor configurations, such as cameras
and scanning lasers, that cannot “see” beyond an object in the
incident direction. This configuration allows for vector-valued
measurements from each of the hydrophones in the ULA.
The AUV is assumed to be equipped with an assortment of
redundant odometry sensors that provide information on AUV
motion such as: heavy, surge, sway, pitch, roll, yaw, heading,

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on July 28,2022 at 16:38:27 UTC from IEEE Xplore.  Restrictions apply. 



ROBBIANO et al.: BAYESIAN LEARNING OF OCCUPANCY GRIDS 1081

depth, altitude, velocity and acceleration. A low velocity and
small measurement error from the odometry sensors satisfies
the ego-motion estimation for the AUV.

The simulated sonar data used in this experiment were
generated by the Personal Computer Shallow Water Acoustic
Toolset (PC SWAT) simulation tool [20] developed at the
Naval Surface Warfare Center, Panama City (NSWC PCD).
PC SWAT is the cutting-edge, physics-based sonar simulator
that models high frequency broadband scattering from the
target by a combination of the Kirchhoff approximation and
the geometric theory of diffraction. Propagation of sound into
a marine sediment with ripples is described by an application
of Snell’s law and second order perturbation theory in terms
of Bragg scattering [20]. PC SWAT has been used to pro-
duce simulations providing exemplar template measurements
that match real data generated by real shallow water sonar
systems [21].

The sensor data generated by PC SWAT for the ULA
elements at ping s were fed through an adaptive coher-
ence estimator (ACE) detector [22]–[24] to produce a single
beamformed measurement vector. This beamformed vector is
thresholded at a predetermined value to produce a desired pfa
and pd. The thresholded detection statistics (see Figure 6(a))
are then used to produce single binary-valued measurement
vectors j s .

For the following experiments, the path of the AUV, and
placement of the targets are illustrated in Figure 6(b) and 8(b).
The targets are marked by a transparent green cylindrical
shape, showing the size and orientation of each target. In some
of the images, the black grid cells occlude the green rectangles
(e.g., in the ground truth images). The true occupancy grids
in Figure 6(b) and 8(b) were generated by setting βi = 1 for
any grid cell that contained any significant part of a target,
and a 0 otherwise. The path of the AUV follows the green-to-
black gradient line. The last position of the AUV is marked
in a black triangle, with the AUV traveling from the dark end
of the line to the triangle. After the sonar returns at each ping
were received, an update to the cellular posterior probabilities
takes place.

Two experiments are conducted here. The first experiment
uses a short range, narrow beamwidth and coarse spatial grid-
ding, which allows CO and RGO to be used while the second
experiment uses a longer range, wider beamwidth and a finer
spatial gridding, which allows only RGO to be used. Details
about each experiment will be presented in their respective
sections.

1) Experiment 1 - Short, Skinny Beam: In this experiment
the AUV is at 10 meters above the seafloor with two cylindrical
objects located 5 meters above the sandy seafloor (i.e. in the
water-column) in the sonar interrogation area. The targets
were both 2 meters long along the major axis with a radius
of 0.25 meters. The AUV uses a single sonar projector
and an 11-hydrophone ULA with 3◦ horizontal beamwidth.
Hydrophone elements were separated by a half-wavelength of
the carrier frequency, with the geometry required to achieve
the desired beamwidth being designed by PC SWAT. The
transmit waveform was a linearly frequency modulated (LFM)
chirp with center frequency fc = 80 kHz, bandwidth

Fig. 6. Experiment 1 - (a) The series of measurement vectors js ,
s = 1, . . . , 200. (b) The true occupancy grid. (c), (d), (e), (f) The occupancy
grids generated by CO, RGO, IM, and CM, all with 0.25 × 0.25 meter grid
cells. Green rectangles represent the true size, position, and rotation of the
targets. Grey-scale value of pixels represent the computed posterior occupancy
probability given the measurements.

BW = 20 kHz, and sampling frequency fs = 60 kHz. A total
of 200 pings were collected along the shown curved path,
spaced at 0.01 meters apart. The output for all 200 pings forms
J200 = [ j1, . . . , j200]. Only CO, RGO and IM were used for
this experiment owing to the very large size of B(r, 1) for this
problem.

The choice of transition probabilities plays a significant
role in the performance of each method. The BAC transition
probabilities p00

ki and p01
ki used for CO were chosen according

to the model given earlier with α = 2. However, for RGO
these probabilities were p00

ki = (1 − pd)/(1 + 0.96)2 and
p01

ki = (1 − pfa)/(1 + 0.96)2, i.e., did not change as a function
of distance. This constant scaling across all cells in a range
gate provided better estimates for RGO.

The occupancy grids generated by the CO, RGO, and IM
are illustrated in Figures 6(c), 6(d), and 6(e), respectively. Six
range gates were used for RGO. We can see that both CO
and RGO visually perform in a similar manner, surrounding
the true occupied grid cells with areas of high probability
of occupancy while providing an area of low probability of
occupancy between the two targets. IM and CM, on the other
hand, could not resolve the two closely spaced targets and
hence merged them together. When compared to CO, they had
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TABLE II

EXPERIMENT 1 - COMPARISON OF CELLULAR POSTERIOR PROBABILITIES
OCCUPANCY GRIDS TO TRUE OCCUPANCY FOR CO,

RGO, IM, AND CM

Fig. 7. Probability of error as a function of threshold γ for different methods.

more grid cells that are in an uncertain state with their posterior
occupancy probabilities remaining within a small range around
0.5, instead of being close to 0 or 1.

The performance for each of the methods was also evaluated
using the SJSD and ρ measures and the results are presented
in Table II. As can be seen from these results, RGO slightly
outperformed CO. This is, in part, attributed to a smaller
number of hot spots on the upper target in Figure 6(c), which
is likely due to the larger mismatch in the collection of
transition probabilities for CO resulting from poorly modeling
the statistical dependence between grid cell occupancy states.
Both IM and CM were outperformed by CO and RGO as they
produced more false alarms, even though they had a greater
number of hits on each target.

It is possible to generate an estimate of the underlying
occupancy by applying a threshold 0 ≤ γ ≤ 1 to the cellular
posterior probabilities in order to produce a binary detection
map that facilitates further analysis by human operator or
autonomous navigation systems. An appropriate value for the
threshold γ can be chosen, e.g., to minimize the probability
of error. Figure 7(a) shows the probability of error as a
function of the threshold γ for CO, RGO, IM, and CM.
The results presented in Table II are echoed in Figure 7(a),
as RGO provides a lower probability of error for all thresholds,
followed by CO, and finally IM and CM.

This result, along with the results from the previous toy
experiment, suggest that using RGO provides similar perfor-
mance to those of both GF and CO while outperforming the
IM method. Moreover, RGO involves fewer computations than
CO. Compared to IM, RGO incurs only a minor increase in
computation time while providing considerably better occu-
pancy grid estimation results. All methods outperform CM.

2) Experiment 2 - Long, Wider Beam: In many ways, this
experiment is similar to Experiment 1 in Section IV-D, with
some exceptions discussed here. The AUV is 10 meters above
the seafloor. Four cylindrical objects are partially buried and/or
proud on the sandy seafloor. The horizontal beamwidth is 10◦.

Fig. 8. Experiment 2 - (a) The series of measurement vectors js ,
s = 1, . . . , 200. (b) The true occupancy grid. (c), (d), (e) The occupancy
grids generated by RGO, IM, and CM, all with 0.2 × 0.2 meter grid
cells. Green rectangles represent the true size, position, and rotation of the
targets. Grey-scale value of pixels represent the computed posterior occupancy
probability given the measurements.

A total of 300 pings were collected along a curved path, spaced
at 0.1 meters apart between pings. The cardinality of B(r, 1) is
greater than 2100 for an observation cone. Thus, this precludes
the use of CO, as the computation time for a single ping
becomes unreasonable. Therefore, only RGO and IM were
used for this experiment.

The occupancy grids generated by the RGO, and IM are
illustrated in Figures 8(c) and 8(d), respectively. One hundred
and thirty two overlapping range gates were used for RGO.
The BAC transition probabilities used for RGO are the same
as those in Experiment 1.

From Figure 8(c), it is seen that RGO clearly identified
the four separate targets by correctly separating them while
generating hot spots over the majority of each target. It does
this without producing too many false alarms. The IM also
identifies the four targets, but produced many false alarms
that join the four targets together. It produced the correct
target shapes, but offset the hot spots slightly when com-
pared to the actual target locations. Unlike RGO and IM
methods, the results of CM method shown in Figure 8(e) are
unacceptable as it greatly overestimated the cellular posterior
probabilities surrounding the targets.
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TABLE III

EXPERIMENT 2 - COMPARISON OF CELLULAR POSTERIOR PROBABILITIES
OCCUPANCY GRIDS TO TRUE OCCUPANCY GRID

FOR RGO, IM, AND CM

The values for SJSD and ρ are recorded in Table III, where
RGO can be seen to outperform IM. The value for ρ is similar
between the two methods, which is to be expected as both of
the occupancy grids are similar to the truth.

As with Experiment 1, the probability of error as a function
of the threshold γ was computed and illustrated in Figure 8(c).
As can be seen, the probability of error for RGO is lower than
that of IM and CM for every choice of the threshold. This
indicates that the addition of some complexity to the joint
distribution model in the form of inter-cell statistical depen-
dence, albeit small in the case of RGO, gives considerable
improvements over IM.

V. CONCLUDING REMARKS

In this paper we have presented a new formulation for
occupancy grid estimation that accounts for the statistical
dependence between grid cell occupancy states and allows for
vector valued measurements. This contrasts with the classical
methods in [2], [4] that consider the occupancy states of grid
cells to be statistically independent, as well as the work in [6]
that considers statistical dependence but only allows for scalar
measurements through the use of correspondence variables.

We have shown that the independence method can be
viewed as a special case of our formulation. The experimental
results reveal that our formulations outperform the indepen-
dence method which in turn outperforms the conventional
method. The proposed method offers much better resolution
of small gaps between closely positioned objects, whereas
the independent method groups them together. Although it
is intractable to use the general formulation for real-world
applications, modeling some correlation effects between the
occupancy state of grid cells, as offered by CO and RGO
methods, indeed provides good approximation to the general
form while offering significantly reduced computational time.
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