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Adaptive Classification Using Incremental
Linearized Kernel Embedding
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Abstract—This paper considers the problem of adaptive classifi-
cation for performing pattern discrimination in varying conditions
when new data arrives. A new efficient method is presented to in-
crementally update features in a Nyström-approximated linearized
kernel embedding (LKE). Our method leverages a fast eigende-
composition algorithm for symmetric Arrowhead matrices. The
proposed method can also be applied to kernel principal component
analysis (KPCA) or similar problems. A mechanism is proposed
which allows the incremental linearized kernel embedding to be
used for updating of dictionaries in a sparse representation-based
classification algorithm. The method is based on transporting the
dictionaries into the embedding expanded with new data points and
avoids the need to learn new dictionary matrices every time new
data becomes available. The effectiveness of the developed methods
is illustrated on two handwritten digit image data sets namely
MNIST and USPS. Classification performance before and after
sequential embedding updates is evaluated and compared. Com-
parisons are also made between our incremental LKE algorithm
and the conventional approach to updating the empirical kernel
map in terms of their computational requirements and numerical
stability.

Index Terms—Kernel based lifelong learning, Kernel PCA,
dictionary learning, Eigenvalue decomposition, adaptive
classification, Kernel Dictionary Learning.

I. INTRODUCTION

THIS paper is concerned with adaptive classification us-
ing incremental parameter updating for potential life-

long learning in varying conditions. In particular, a sparse
representation-based classification (SRC) framework which
uses sparse coding and dictionary learning [1] in conjunction
with a matched subspace classifier [2] and the linearized kernel
embedding of [3] is considered here. The problem involves up-
dating a previously trained dictionary, for use in a discriminative
system, with information learned from new samples in a manner
that improves classification performance for those newly learned
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samples without sacrificing the performance of the system on the
previously learned samples.

A number of methods currently exist for dictionary updating
using information learned from new samples. The incremental
K-SVD (IK-SVD) method [4] performs an incremental update
to a previously learned dictionary. Dictionary atoms are updated
one at a time while allowing for the addition of new atoms
when needed. An entropy-based criterion is used to select the
initial values of the new atoms by first sparsely coding the
new data using the old dictionary matrix and then computing
the entropy of each sparse coefficient vector. The samples with
the largest entropy are used to initialize the new atoms. These
samples correspond to the least sparse samples that cannot
be accurately represented by the old dictionary matrix. The
method of incremental dictionary update (IDU) in [5], [6] is
based on an algorithm for joint incremental dictionary learn-
ing and sparse coding. A fast orthogonal matching pursuit
(OMP) algorithm [7], [8] is used for sparse coding while al-
lowing in-situ learning on unseen data to be carried out with
substantially reduced computational needs when compared to
IK-SVD [4].

Kernel machines are widely used for many complex pattern
recognition and machine learning applications. However, most
kernel machines require the formation of an exhaustive kernel
matrix utilizing all training data samples. In [3], a linearized
Kernel Dictionary Learning (LKDL) was proposed for reducing
the complexity of representations. The LKDL method finds new
lower-dimensional data representations based on the Nyström
method. In this way, LKDL allows for linear dictionary learning
methods to be applied to non-linearly mapped virtual features
without increasing the dimensionality of the data representa-
tion. That is, discriminative benefits of kernel machines can be
gained without the need for the full kernel matrix. The inherent
sampling in this method is highly beneficial to developing adap-
tive classification systems with long-term incremental learning.
Owing to all these benefits we adopted this method in this
paper.

In the realm of machine vision and pattern recognition, there
are countless problems which require a machine to continuously
adapt over its lifetime to accommodate distribution changes of
data samples coming from environments with varying condi-
tions. Lifelong learning approaches seek to provide mechanisms
for a machine to continually adapt to arriving data without
inducing catastrophic forgetting or interference on examples
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from previous environments. An example of such real scenarios
is in underwater target classification [9]–[13] where the system
faces the challenging task of identifying buried, or partially
buried targets from sonar returns at several observation points.
The targets can be found in a wide variety of environmental and
operational conditions, making the need for model adaptation a
concern of paramount importance.

To this end, this paper presents an enhancement to the the-
ory of LKDL for Lifelong Learning. First, we present the
background and geometric perspective of LKDL, and review
how the method for attaining LKDL virtual samples proposed
in [3] is an optimal transformation in the least-squares sense.
Second, we discuss two incremental procedures for updating
the linearized embedding when new important samples are made
available. The first is the method of Hallgren and Northrop [14]
which relies upon two rank-one eigenupdates. The second is
our novel method, inspired by the work in [14], which we
refer to as Symmetric Arrowhead Updating (SAU). This method
uses Arrowhead eigendecompositions [15] for faster updating
of the linearized kernel embedding. Complexity analysis of the
method and a comparison with that of the method in [14] is also
presented. The proposed method, like that of [14], can also be
applied to standard kernel PCA [16]. Additionally, we present
a method for transforming a dictionary learned on a previous
embedding to the updated embedding and a strategy for in-
crementally updating the transformed dictionary. Our proposed
method is tailored for use with dictionaries learned from LKDL
virtual samples, and differs from IK-SVD [4] and IDU [5] in
two ways: (a) the dimension of the dictionary atoms has the
opportunity to increase, rather than simply increasing the num-
ber of atoms in the dictionary, as is done in IK-SVD and IDU,
and (b) the proposed method provides a closed-form solution
for transforming the dictionary to the updated embedding, and
does not require any iterative optimization. An error analysis of
this method is also provided. The proposed methods were then
tested on two handwritten digit data sets, the MNIST and USPS
data sets.

The remainder of the paper is organized as follows. In Sec-
tion II, background on the Nyström method is presented along
with the method for finding virtual samples from the set of
important samples. The geometric interpretation of LKDL is
also reviewed here. In Section III, we first review the method
of Hallgren and Northrop for incrementally updating an em-
bedding, and then introduce our novel SAU algorithm for ac-
complishing the same more efficiently. Section III-C presents
a complexity analysis of our method along with a timing
comparison of different methods for sequential eigendecom-
position of a growing kernel matrix. Our proposed dictionary
updating method, for rapidly updating K-SVD dictionaries, is
proposed in Section IV. The error analysis of this update is
also included here. Section IV briefly explains the decision
procedure used in the modified Matched Subspace Classifier
(MSC). Section V presents results of a classification experiment
on the MNIST and USPS handwritten digit data sets. Lastly,
Section VI gives some concluding remarks on the proposed
methods.

II. LINEARIZED KERNEL EMBEDDING AND NYSTRÖM

APPROXIMATION – A REVIEW

In order to allow for linear (dictionary or other) learning on
kernelized representatives of data samples, a popular approach
is to factorize the kernel matrix into a set of vector samples
whose Gram matrix is approximately equal to the original
kernel matrix [3], [17]. This can be achieved using a low-rank
projection of the full mapped training data set via the Nyström
approximation [3], [17], [18] which is briefly reviewed next.

A. Nyström Method for Kernel Matrix Approximation

Let Z = [z1z2 · · · zN ] be a data matrix containing N data
(feature) vectors zi ∈ Rd and Φ = [φ(z1)φ(z2) · · ·φ(zN )] ∈
RD×N be the corresponding nonlinearly mapped data ma-
trix with columns φ(zi) ∈ RD where usually D � d. Then,
the associated kernel Gram matrix of the nonlinearly mapped
data is K = Φ�Φ where each element Ki,j = κ(zi, zj) =
φ(zi)

�φ(zj) and κ(zi, zj) is an appropriate kernel func-
tion [19].

We assume that c ≤ N columns of K are chosen according
to a sampling scheme, e.g., uniform sampling or column-norm
sampling [20]. The kernel matrix K can be partitioned as,

K =

[
W A�

A B

]
,

where W is the kernel matrix associated with the retained
important samples, B ∈ R(N−c)×(N−c) is the one associated
with unimportant samples, and A is a matrix of inner products
between the c chosen samples and N − c unimportant samples.
That is, if the data matrix associated with the retained samples
is denoted by ZR = [z1 · · · zc] ∈ Rd×c and its mapped version
in the feature space by ΦR = [φ(z1) · · · φ(zc)] ∈ RD×c, then
W = Φ�RΦR ∈ Rc×c.

Now, denoting C =

[
W

A

]
∈ RN×c and using the Nyström

method [3], [17], [18], the kernel matrix K can be approximated
as

K ≈ K̂ = CW−1C�

= Φ�ΦR(Φ
�
RΦR)

−1Φ�RΦ

= Φ�PΦR
Φ, (1)

where W is assumed to be full rank and PΦR
denotes the

orthogonal projection matrix onto the span of ΦR. Since PΦR

is idempotent, (1) implies that K̂ is the Gram matrix after
projecting all samples in Φ onto the subspace 〈ΦR〉.

B. Linearized Kernel Embedding

The method presented in [3] finds a linear realization of
the kernel matrix with features that capture the benefits of the
nonlinear mapping in an efficient way. More specifically, using
this method the kernel Gram matrix K can be approximately
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factored into K ≈ F�F leading to the virtual feature matrix F
that yields an approximation of the full kernel matrix.

To see this, let us apply the eigenvalue decomposition to the
symmetric full rank kernel matrix W such that W = VΣV�

with Σ being a diagonal matrix containing all the eigenvalues
and V is an orthogonal matrix containing the associated eigen-
vectors as its columns. Using this eigenvalue decomposition, (1)
can be expressed as,

K ≈ CW−1C� = F�F = CVΣ−1V�C�,

This yields the virtual data matrix F as,

F = Σ−1/2V�C�. (2)

Thus, for a particular data sample z and its mapped versionφ(z),
the corresponding virtual feature vector is,

f = Σ−1/2V�Φ�Rφ(z) (3)

= Σ−1/2V� [κ(z1, z) · · · κ(zc, z)]� . (4)

The dimension of the virtual samples in F can be reduced by
choosing the k largest eigenvalues, Σk = diag[σ1 σ2 · · · σk] of
W and the associated eigenvectors Vk = [v1 v2 · · · vk]. Then,
the reduced dimensional virtual data matrix [3] is given by

Fk = Σ
−1/2
k V�kC

�. (5)

Given the matrices Σ−1/2k and Vk, a particular data sample z
can be mapped to the corresponding virtual feature vector using,

f = Σ
−1/2
k V�k [κ(z1, z) · · · κ(zc, z)]� .

where z1 · · · zc are the c important samples, chosen via sam-
pling, and κ(x,y) is the chosen kernel function.

C. Geometric Perspective of Kernel Embedding

At first glance, one might assume that the approximation
K̂ = F�F gives a solution that is unrelated to the original
embedded signals and their geometry. As explained above, the
Nyström method can be derived by projecting the full data set
onto the subspace defined by the important samples [21]. In
this section, we illustrate how the coordinates F are in fact the
exact local coordinates (i.e., using c-dimensional coordinates
rather thanD) of all samples in the feature space when projected
onto the principal axes of the important samples, i.e., the c ≤ N
samples selected for approximating the kernel matrix, in the
feature space.

Proposition 2.1: Given a data sample z, the principal com-
ponent vector of the mapped data, φ(z), is its associated virtual
feature vector f , i.e., f = U�φ(z) where U� is the mapping
matrix.

Proof: The important samples in the kernel feature space,
ΦR, can be decomposed using the SVD as

ΦR = UΣ1/2V� ∈ RD×c (6)

where U ∈ RD×c is a semi-orthogonal matrix that contains the
orthonormal left singular vectors of ΦR, i.e., U�U = Ic×c,

Σ1/2 is a c× c matrix of singular values, and V is a c× c
orthonormal matrix containing the right singular vectors.

Now, using (6) it is evident that the matrix U diagonalizes
the rank-c correlation matrix, ΦRΦ

�
R. Hence, the matrix U�

maps the nonlinearly mapped data φ(z) to the corresponding
principal components. Furthermore, f = U�φ(z) can easily be
confirmed by replacing ΦR in (3) with its SVD. �

Remark 2.1: For any pair of data samples
zi, zj ∈ ZR, using (3) and (6), we get f�i fj=
φ(zi)

�ΦRVΣ−1/2Σ−1/2V�Φ�Rφ(zj)=φ(zi)
�UU�φ(zj).

However, we also know that PΦR
= UU�, i.e., the projection

matrix onto the subspace spanned by U, and also since φ(zi) is
in 〈ΦR〉 then PΦR

φ(zi) = φ(zi). Thus, f�i fj = φ(zi)
�φ(zj).

Furthermore, we have ||φ(zi)− φ(zj)||2 = ||fi − fj ||2
∀ i, j ∈ {1, . . ., c}, in other words, this embedding preserves dis-
tance and angle properties, and fi simply gives a c-dimensional
subspace coordinates representation for φ(zi) ∈ 〈ΦR〉. Simi-
larly, if k < c then fi’s represent the coordinates of the samples
projected onto the first k principal axes of the important sam-
ples in ΦR. This means that representations φ(zi) and fi are
isometric for important samples.

III. UPDATING EMBEDDING WITH NEW IMPORTANT SAMPLES

In this section, we consider a scenario where the system
trained with the original c samples needs to be updated when
a new important sample znew = zc+1 is added. That is, the
augmented data matrix of the chosen samples and its non-
linearly mapped version become Z̃R = [ZR, zc+1] ∈ Rd×(c+1)

and Φ̃R =
[
φ(z1) . . . φ(zc) φ(zc+1)

]
∈ RD×(c+1), respec-

tively. It should be noted that the procedures presented here are
not limited to an important samples (Nyström approximation)
approach, but can be used for standard kernel PCA as well.

Now, we desire to find a new set of virtual samples, F̃, that
satisfies

F̃ = Σ̃
−1/2

Ṽ�C̃�, (7)

where Σ̃ and Ṽ are traditionally computed by applying the
eigenvalue decomposition (EVD) to the corresponding kernel

matrix W̃ = Φ̃
�
RΦ̃R. More specifically,

W̃ = ṼΣ̃Ṽ� =

[
W ρ

ρ� κc+1,c+1

]
, (8)

where ρ = k(ZR, zc+1) = [κ1,c+1 κ2,c+1 . . . κc,c+1]
� with

κi,j = κ(zi, zj). However, here the goal is to accomplish this
without resorting to any computationally demanding EVD
algorithm.

Also, C̃ in (7) is given by C̃ = [W̃�, Ã�]� ∈ R(N+1)×(c+1),
where Ã = [A, ζ] ∈ R(N−c)×(c+1), with ζ = k(ZU , zc+1) =[
κ(zU,1, zc+1) . . . κ(zU,N−c, zc+1)

]�
and zU,i ∈ ZU = Z \

ZR, i.e., sample set containing N − c unimportant samples
discarded as a result of the sampling.

The first approach for the incremental embedding update
presented in this section uses the information about the current
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Algorithm 1: Incremental Eigendecomposition of Kernel
Matrix [14].

Require: The augmented data matrix Z̃R, matrices V and
Σ for kernel matrix W and the kernel function κ(·, ·).

Ensure: Eigenvalue and eigenvector matrices Σ̃ and Ṽ of
W̃

1: Σ0 ←
[
Σ 0

0� κc+1,c+1/4

]

2: V0 ←
[
V 0

0� 1

]

3: σ ← 4/κc+1,c+1

4: ν1 ← [κ1,c+1, κ2,c+1, . . . , κc+1,c+1/2]
5: ν2 ← [κ1,c+1, κ2,c+1, . . . , κc+1,c+1/4]
6: Σ1,V1 ← rankoneupdate(σ,ν1,Σ

0,V0)
7: Σ̃, Ṽ← rankoneupdate(−σ,ν2,Σ

1,V1)

W matrix, and its eigenpairs, to compute the new eigenpairs
of W̃. This is accomplished by utilizing the rank-one update
procedure in [14], [22].

Let us defineν1 = [ρ� 1
2κc+1,c+1]

�,ν2 = [ρ� 1
4κc+1,c+1]

�,
and σ = 4/κc+1,c+1. Then, it can be shown [14] that W̃ can be
expressed as

W̃ =

⎡
⎢⎣W 0

0� 1
4κc+1,c+1

⎤
⎥⎦+ σν1ν

�
1 − σν2ν

�
2 ,

= W0 + σν1ν
�
1 − σν2ν

�
2 (9)

corresponding to a diagonal expansion of W and two rank one
updates, where 0 is a column vector of zeros of appropriate
dimension. As can be seen from (9) the matrix W0 has an
additional eigenvalue 1

4κc+1,c+1 and corresponding eigenvector
v0
c+1 = [0, . . . , 1]� when compared to the eigendecomposition

of W. All other eigenvalues are the same as those of W
with corresponding eigenvectors v0

i = [v�i , 0]
�, i ∈ {1, . . ., c}.

Matrix W0 is symmetric positive semi-definite and it will re-
main symmetric positive semi-definite after the addition and
subtraction of two rank one Gram matrices σν1ν

�
1 and σν2ν

�
2 ,

respectively.
The steps in the algorithm for incrementally calculating W̃

from W are listed in the following table. Note that V1 and Σ1

in step 6 correspond to the intermediate eigendecomposition of
W1 := W0 + σν1ν

�
1 after the first rank one update whereas

the results of step 7 are the final desired Ṽ and Σ̃.
In the following two subsections we first review the method

for incrementally solving the rank-one update of a symmetric
matrix given a known perturbation required for the last two
steps in Algorithm 1. We then propose a new and more efficient
approach to the two rank-one updates method.

A. Rank One Perturbation Eigendecomposition Update

Given the eigendecomposition of the symmetric matrix
W0 = V0Σ0V0� whereV0 is an orthogonal matrix, we define

the perturbed matrix

B = V0Σ0V0� + σνν�

= V0(Σ0 + σττ�)V0�

where τ = V0�ν. Using the eigendecomposition of Σ0 +
σττ� = UΣ1U� [23], the eigendecomposition of B can be
found by B = V1Σ1V1� where V1 := V0U . Since both V0

and U are orthogonal matrices, V1 will also be an orthogonal
matrix. The eigenvalues of B can be computed by finding the
roots of the secular equation [24]. The eigenvectors of the
perturbed matrix B are given by [23]

v1
i =

V0D−1i τ

||D−1i τ || (10)

where Di := Σ0 − λ′iI where λ′i is the ith eigenvalue of B.
This method exhibits some numerical stability issues for invert-
ible, but poorly conditioned matrices. Alternatively, a stabilized
approach, e.g., the one in [22], can be utilized for applications
where many rank one iterations are necessary.

B. An Alternate Approach Using Arrowhead Updates

In this section we present a novel approach to solving the ex-
panding eigendecomposition problem using arrowhead matrix
eigendecompositions [15]. In this approach, the update from the
eigendecomposition of W to that of W̃ can be done by noting
that the addition made to W0 to form W̃ yields an addition to
the eigenvalue matrix of W0 resulting in an arrowhead matrix.
This arrowhead matrix’s eigendecomposition can be obtained
more efficiently compared to the method in the previous section
which uses two consecutive rank-one updates. The eigende-
composition of this arrowhead matrix is directly related to the
eigendecomposition of W̃ through W0’s eigenvectors matrix.

As before, we represent W = VΣV� and W̃ = W0 + Γ,
where W0 was defined before and

Γ =

[
0 ρ

ρ� 3
4κc+1,c+1

]

We also noted that W0 = V0Σ0V0� where

V0 =

[
V 0

0� 1

]

and

Σ0 =

[
Σ 0

0� 1
4κc+1,c+1

]

Now, it is easy to see that V0�ΓV0 has the following form

V0�ΓV0 =

[
0 V�ρ

ρ�V 3
4κc+1,c+1

]

Note that this is nearly an arrowhead matrix, all it is missing is
the diagonal. Therefore, using a similar approach to a typical
rank one perturbation problem, we can factor W̃ as

W̃ = W0 + Γ
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TABLE I
COMPLEXITY COMPARISON (LEADING TERMS)

Algorithm 2: SAU Eigendecomposition of Growing Kernel
Matrix.

Require: Matrices V, Σ, vector ρ, and scalar κc+1,c+1.
Ensure: Eigenvalue and eigenvector matrices Σ̃ and Ṽ of
W̃

1: Σ0 ←
[
Σ 0

0� κc+1,c+1/4

]

2: V0 ←
[
V 0

0� 1

]

3: π ← V�ρ

4: Γ←
[
0 π

π� 3
4κc+1,c+1

]

5: U , Σ̃← aheig(Σ0 + Γ) [15]
6: Ṽ← V0U

= V0Σ0V0� + Γ

= V0(Σ0 +V0�ΓV0)V0� (11)

The factor in parentheses in (11) is an arrowhead matrix. Thus,
using the method in [15], we can solve the eigendecomposition
Σ0 +V0�ΓV0 = UΣ̃U�. Then, this eigendecomposition can
be used to yield W̃ = V0(UΣ̃U�)V0� which gives the eigen-
vector matrix Ṽ = V0U . The steps in this algorithm are outlined
below in Algorithm 2. It should be noted that this symmetric
arrowhead update (SAU) procedure can be used on any growing
real symmetric full rank matrix W and is not limited to Gram
matrices. Step 5 of this algorithm utilizes the arrowhead eigen-
value (aheig) decomposition (Algorithm 5) presented in [15].

C. Computational Complexity Analysis

A major motivation for the creation of the SAU updates
method is the desire to reduce the computational cost of repeated
model updates when varying data is arriving continuously. The
proposed SAU algorithm provides a competitive approach to
solving the incremental kernel PCA [19] and incremental em-
pirical kernel map problems. A comparison of the computational
cost of the SAU algorithm with that of [14] is presented in Table I
which breaks down the leading terms for time and memory
complexity for both methods.

As far as the SAU algorithm is concerned, step 5 relies on the
arrowhead eigendecomposition of [15] which has O(c2) time
complexity and O(c) memory complexity. Step 6 is computa-
tionally the most expensive step of our procedure which involves

Fig. 1. Runtime Comparison for R consecutive Eigendecompostion.

matrix multiplication of two c× c matrices hence requiring
approximately 2c3 operations. This cubic factor is difficult, if
not impossible, to reduce, since the update procedure will always
require rotating c eigenvectors. This brings our time complexity
to 2c3 +O(c2) and the memory complexity to 3c2 +O(c) due
to the allocations forV0,U , and Ṽ, respectively. In contrast, the
method in [14] requires4c3 +O(c2)flops and also admitsO(c2)
memory complexity. Therefore, our algorithm, like that of [14],
admits O(c3) time complexity and O(c2) memory complexity
but is approximately twice as efficient in the cubic factor. The
experimental results in the next section attest to this fact.

D. Computational Time and Consistency Comparison

Here, we compare the computational requirements to carry out
several consecutive eigendecompositions of a growing kernel
matrix W using the methods in Sections III A and B. More
specifically, an experiment was conducted to determine which
approach provides less computational time to perform a series
of eigendecomposition of an expanding matrix. In this set up, all
methods start with 1 sample and the corresponding Gram matrix
W matrix is created. This matrix is then expanded by a single
sample at a time, R times.

Fig. 1 displays the time to fully compute all R for R ∈
[300, 310, . . ., 490, 500] eigendecompositions via consecutive
EVD (red plot) [25], consecutive SVD (gray) [25], two Rank-
One Updates (orange) [14], and the proposed symmetric arrow-
head update (blue) in Section III B. As evident from this figure,
for the task of incrementally updating the eigendecomposition,
the SAU approach provides the quickest solutions by harnessing
the information of the previous eigendecomposition steps.

Lastly, the consistency of eigenvalues obtained via the SAU
updates and the standard batch SVD of the important samples
are studied. Fig. 2 gives the plot of the Frobenius norm of the
difference between Σi = Si, the (diagonal) eigenvalues matrix
computed sequentially via the incremental method in Algorithm
2, and Σsvd = Ssvd, the eigenvalues matrix computed from
decomposing all c samples simultaneously via the batch SVD.
As can be seen, even after adding hundreds of important sam-
ples, the eigenvalues computed via our incremental approach
are nearly identical to those obtained by performing the more
expensive batch SVD, with the differences being on the order of
10−13.

Authorized licensed use limited to: COLORADO STATE UNIVERSITY. Downloaded on July 28,2022 at 16:35:13 UTC from IEEE Xplore.  Restrictions apply. 



HALL et al.: ADAPTIVE CLASSIFICATION USING INCREMENTAL LINEARIZED KERNEL EMBEDDING 1769

Fig. 2. Incremental vs. Batch SVD eigenvalues for growing W.

IV. SRC MODEL AND DICTIONARY MATRIX UPDATING

In this section, we introduce a method for updating learned
dictionaries of an SRC-based classifier [11] with information
present in new samples. To start, as before let Z be the entire
sample set and ZR ⊂ Z be the important sample set selected
via a particular sampling method. Each sample z ∈ Z has an
associated virtual sample representation f ∈ F. Also, let zc+1 be
a newly identified important sample. The augmented data matrix
Z̃R = [ZR, zc+1] has a corresponding new virtual data matrix
denoted by F̃. In what follows, we first discuss the Matched
Subspace Classifier (MSC) [2] and its modified version. We
then present a new mapping scheme for updating the dictionary
matrices once new samples are to be added from new environ-
ments.

A. Modified MSC and SRC Framework

Let us consider a general M−ary classification problem in
which the observations can come from m = 1, . . . ,M possible
classes. The MSC [2] assumes a signal model of the form,

Z = HmΘm +N m ∈ [1,M ] (12)

where Z is the data matrix containing observation vectors zi
as its column, Hm is the dictionary matrix whose columns are
the basis vectors that span the subspace associated with the mth

class, Θm is an unknown matrix with the columns being the
parameter vector associated with data vectors zi, and N denotes
an additive zero-mean noise matrix.

The decision-making in MSC is carried out by determining
the class that satisfies

m∗ = argminm∈[1,M ]{||Z−HmΘ̂m||2F } (13)

where ||A||2F = tr(AA�) represents squared Frobenius norm
of the matrixA and Θ̂m is the least squares (LS) estimate ofΘm

when dictionary matrix Hm is used [2]. That is, the correct class
m∗ is the one which makes the magnitude of the reconstruction
error the smallest. Training of the MSC amounts to constructing

class-dependent dictionary matrices Hm,m = 1, . . . ,M from
representative training data sets in each class m.

In this section, we employ the K-SVD dictionary learning
method [1] to find Hm matrices in (13) hence making the MSC
a sparse representation classifier (SRC). Additionally, the virtual
feature matrix F is used instead of the actual observation matrix
Z to take full benefit of the nonlinear kernel mapping without
increasing the dimension of the representation. The MSC incor-
porating these changes is referred to as “modified MSC” in the
sequel. The incremental dictionary learning/updating method in
this paper allows the previously trained modified MSC to incor-
porate the relevant knowledge embedded in the new data samples
when faced with new conditions. More specifically, learning
via evolving task-specific dictionaries allows the classification
system to generalize previous training and hence perform well
on both old and new tasks [26]–[30]. Moreover, the inherent
sampling in the LKDL method covered in Section II significantly
reduces the number of useful samples required to generate highly
discriminative kernelized features.

In the modified MSC method [11], the decision-making rule
becomes,

m∗ = argminm∈[1,M ]{||F−HmΘ̂m||2F } (14)

where Θ̂m is generated using a pursuit method such as the
Orthogonal Matching Pursuit (OMP) or Basis Pursuit (BP)
algorithms [31] when the dictionary Hm is used. Here, we will
use the fast OMP method in [8] which does not require any
matrix inversion.

B. Joint Embedding and Dictionary Updating

Using the method presented in Section III-B, we know how to
expand the eigendecomposition of a growing kernel matrix. This
expanded eigendecomposition can be used to transfer virtual
features from an old embedding to the new one before using
the modified MSC. That is, the updated virtual features F̃ are
now used in the signal model hence providing important sample
information from the new environment.

Nevertheless, the dictionary matricesHm that were generated
from the original virtual feature vectors in F may no longer
suitably represent the new samples in the augmented data set
Z̃ = [Z, znew]. Clearly, retraining the dictionary matrices every
time a new important sample is incorporated using e.g. K-SVD
learning [1] becomes inefficient and impractical. Moreover, the
IDU method [5] cannot be applied either since it only allows
for the augmentation in the column space of the dictionary
matrices and not the row space which occurs as a result of adding
new important samples. Note that though each virtual sample
f ∈ F is associated with a sample z ∈ Z, it is a non-trivial task
to find a representation of dictionary atoms h ∈ H from the
original sample subspace [32], [33]. Owing to these reasons,
here we propose a mechanism to find a mapped dictionary in the
new embedding that does not degrade the previous learning by
using a coordinate transformation matrix T. Compared to the
repeated K-SVD application, this method of transforming old
dictionaries to produce new class-dependent dictionaries for the
new embedding is computationally more efficient. Moreover,
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it allows the system designer to produce usable dictionaries
in the new embedding without being required to carry along
all the prior training data sets that would be needed for a full
K-SVD retraining. Clearly, this would defeat the whole purpose
of incremental learning particularly for lifelong learning appli-
cations. The computational complexities are discussed later in
this section.

The motivation behind this mapping is that, since the old
atoms can be completely represented as linear combinations
in span{F}, we ought to transform the atoms via the linear
transformation which best matches (in the squared error sense)
old f ’s to their new virtual-sample representatives in the updated
embedding. For the sake of efficiency, we instead generate the
mapping which optimally brings the virtual features of the im-
portant samples, referred to as FR, to their new representations.

Now, let FR = Σ−1/2V�W+ ∈ Rc×(c+b) be the trans-
formed features corresponding to all important samples, includ-
ing the b new ones that were used in updating the embedding,
from the set Z̃R = [ZR,Znew] ∈ Rd×(c+b) in the old embedding.
The original inner products matrix W is augmented with the
inner products matrix between old and new important samples
to produce the W-augmented matrix,

W+ =
[
W C�new

]
∈ Rc×(c+b),

with

C�new = k(ZR,Znew) =
[
k(ZR, znew,1) · · · k(ZR, znew,b)

]
being the c× b matrix of inner products between samples in ZR

and those in Znew. Note that the matrix FR represents the virtual
feature matrix of the original important samples along with the
new important ones, but in the old embedding. Similarly, we
could denote Fnew the virtual sample matrix of Znew as we do
later in explaining the experiment in Section V.B.3

Now, let us denote the full set of important samples in the new

embedding as F̃R = Σ̃
−1/2

Ṽ�W̃ ∈ R(c+b)×(c+b) where W̃ is
the kernel Gram matrix associated with augmented important
sample set Z̃R. As mentioned before, the matrices Ṽ and Σ̃
need to be found for this new W̃ matrix. Assuming that both
the old and new important virtual sample matrices, FR and F̃R,
have been found according to the method in Section II, the goal
here is to find a transformation matrix T ∈ R(c+b)×c that maps
FR to F̃R with minimum squared error.

To find the matrixT, we assume thatW is full rank and k = c,
i.e., we use all c eigenvectors in the original embedding of (2).
The optimum mapping matrix T is then obtained using

T∗ = argminT||TFR − F̃R||2F , (15)

the solution of which gives

T∗ = F̃RF
�
R(FRF

�
R)
−1

= Σ−1/2Ṽ�W̃W�
+(W+W

�
+)
−1VΣ1/2. (16)

Proposition 4.1: The minimum squared error ||E||2F =
||T∗FR − F̃R||2F measures the sum of eigenvalues of the up-
dated kernel matrix W̃ when projected onto 〈W�

+〉⊥, i.e.,
||E||2F = tr(P⊥

W�
+
W̃).

Proof: First, let us expand the squared norm term,

||E||2F = tr(TFRF
�
RT

�)− 2tr(TFRF̃
�
R) + tr(F̃RF̃

�
R),

(17)
We then use the expression for the optimum T in (16) and
those of FR and F̃R given previously. Also, we note that
F�R(FRF

�
R)
−1FR = PF�R

= PW�
+

is a c+ b-dimensional pro-

jection matrix that projects onto the subspace spanned by F�R
(or W�

+).
Now, using the cyclic property of the trace, each term in the

right hand side of (17) can be expressed as follows:

tr(TFRF
�
RT

�) = tr(F�RT
�TFR)

= tr(PW�
+
F̃�RF̃RPW�

+
)

= tr(PW�
+
W̃),

tr(TFRF̃
�
R) = tr(F̃RPW�

+
F̃�R)

= tr(PW�
+
F̃�RF̃R)

= tr(PW�
+
W̃),

and

tr
(
F̃RF̃

�
R

)
= tr

(
F̃�RF̃R

)
= tr(W̃).

Using the above results the minimum squared error can be
expressed as

||E||2F = tr
(
P⊥W�

+
W̃

)
�

Algorithm 3 below provides the step-by-step procedure for
the incremental dictionary updating process outlined in this
section. The process involves incremental updating of the im-
portant sample set ZR, the virtual features F, and the dictionary
matrix H. This assumes that there is a base system trained, and
then new samples are presented to the system to improve the
performance of the system without degrading performance on
previously seen samples. This provides a way of updating the
Nyström approximation of the full kernel matrix K by selecting
new important samples Znew to add to the set ZR, updating
the eigenpairs (Σ, V) given the new set Z̃R, transforming the
previous dictionary H to incorporate the information from the
new samples, and determine if the error introduced through T
is above some threshold in which case we tune the transformed
dictionary via IDU using the updated representations of the new
important samples.

Remark 4.1: As pointed out before, the purpose of the trans-
formation matrix T is to provide an alternative approach to
complete retraining using K-SVD when an embedding has been
updated. In total this transform costs approximately 11c3 flops
when computed via (16) plus an additional 2ML(c2 + cb) op-
erations to apply T to each of the M old dictionaries. In its most
efficient form [34], the K-SVD process costs approximately
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Algorithm 3: Joint Embedding and Dictionary Updating.
Init: Generate baseline embedding components Σ,V via
method in Section II. Generate baseline dictionary H via
K-SVD learning using F with all N baseline virtual
samples.

Require: New important samples Znew, Current
eigensystem Σ and V; Dictionary H; Error tolerance ε;
IDU algorithm [5] IDU(F,H,K1, τ, n) with no. new
atoms K1, sparsity factor τ and number of iterations n;

Ensure: Important sample set Z̃R; Transformed dictionary
H̃; Eigenvalues Σ̃ and eigenvectors Ṽ of W̃;
1: Z̃R = [ZR,Znew]
2: Update eigensystem (Σ, V) as presented in

Section III.
3: C�new ← k(ZR,Znew)
4: C̃new ← [Cnew,k(Znew,Znew)]

5: F̃new ← Σ̃
−1/2

Ṽ�C̃�new
6: W+ ← [W,C�new]

7: W̃←
[
W+

C̃new

]

8: T← Σ̃
−1/2

Ṽ�W̃W�
+(W+W

�
+)
−1VΣ1/2.

9: H̄m ← THm ∀m ∈ [1,M ]
10: if error e = tr(P⊥

W�
+
W̃) > ε then

11: H̃← IDU(F̃new, H̄,K1, τ, n)
12: end if

NL(2cτ + (cτ)2) for a single training iteration where N,L, τ,
and c are the number of training samples, the number of dictio-
nary atoms, the sparsity factor, and the dimension of the input
samples, respectively. To re-train each M dictionary matrix, this
cost must be incurred I times, where I is the number of training
iterations. Typically, when using Nyström c� L < N . As a
result, it is more efficient to transform the dictionaries to the
new embedding using the T matrix rather than retraining using
a repeated K-SVD process.

Remark 4.2: As stated before, dictionary updat-
ing/augmentation using the IDU method [5] results in expansion
of the column space of dictionary matrices when informative
samples are encountered in a new environment. Although this
gives the system the ability to incorporate these new samples,
the computational demand to do so grows with increasing
dictionary sizes. Moreover, the likelihood of having more
redundant basis vectors or dictionary atoms can lead to poor
performance. To avoid having oversized dictionary matrices
one can impose constraints to determine which dictionary
atoms are essential in constructing the classification score and
which atoms can be discarded without any detriment to the
decision-making process.

A dictionary atom is redundant if it can be represented by
other atoms. A dictionary atom is inactive if it doesn’t participate
actively in representing new and old samples. A likelihood
weighted sampling that approximates the expected value of error
over the training data by weighting each atom according to their
importance can be devised to prune the redundant or inactive

atoms. Such methods have successfully been used before in
importance weighting [35] for active learning.

V. EXPERIMENTAL RESULTS

The1 experiments conducted in this paper use two handwritten
digit image data sets, namely the MNIST and USPS. The MNIST
database features 70,000 28×28 pixel grayscale images of hand-
written single digits between 0 and 9. It uses 4 pixel zero-padding
on all data samples and hence the actual characters reside in a
20×20 sub-image centered in the 28×28 image. The USPS is a
smaller data set containing only 9298 16×16 grayscale images
of handwritten digits 0-9. The images in this data set have no
zero-padding and hence to rectify the size discrepancies, the
images were first upsampled to size 20×20 pixels and then
4 pixel zero-padding was added to make them 28×28 pixel
images.

Among the MNIST samples, 60,000 of these samples (or ≈
86% of the total) were treated as training samples and 10,000 of
them were treated as testing samples, we refer to these groups as
the MNIST training and testing sets, respectively. For the USPS
samples, we set aside a small portion of the USPS data (≤ 4%
of the USPS samples) for the experiments in the next section,
this set of samples is henceforth referred to as the in-situ USPS
samples. The testing set for USPS data set includes all of the
USPS data except for the in-situ USPS samples.

Here, we consider three different experiments. In the first
experiment, we demonstrate the performance of a baseline
model which uses the embedding of Section II. The baseline
dictionaries are trained via K-SVD using only virtual feature
vectors extracted from the MNIST data set while testing is done
on both the MNIST and USPS testing data sets. The other two
experiments involve the SAU embedding update procedure in
Section III using the baseline embedding and dictionaries gen-
erated in Experiment 1 as inputs. These experiments, however,
differ in the approach they use to update the dictionary matrices.
The second experiment will demonstrate the performance after
an embedding update and full dictionary retraining using the
K-SVD dictionary learning method. The results of this exper-
iment will then be considered as the benchmark for the next
experiment. In the third experiment an alternative to complete
dictionary retraining after an embedding update is explored
using the methods proposed in this paper. More specifically,
dictionary matrices for the new embedding are first transformed
via T and then the incremental dictionary training (IDU) [5]
is used to augment each of the transformed dictionaries with a
limited number of atoms trained incrementally on a small portion
of the USPS samples. This model is then tested on the same test
set.

For each experiment, the following model parameters were
selected. The baseline number of important samples for the
Linearized Kernel Embedding (LKE) was chosen to be c0 =
1200, and samples were chosen via uniform sampling scheme.
When updating, c1 = 345 additional “important” samples were

1The authors have created a repository containing all scripts and modules
required to reproduce the results of this work. This repository can be found
at https://github.com/hilikliming/ILKE_SAU_paper, two Julia modules are in-
cluded: EasySRC.jl and EasyLKE.jl
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TABLE II
MNIST AND USPS CORRECT CLASSIFICATION RATES FOR 3 METHODS

selected from the USPS in-situ set. The rank of the baseline Nys-
tröm approximation, k, was chosen to be k = 400. A Gaussian
kernel function κ(x,y) = exp(||x− y||2/(2σ2)) with σ = 2
was chosen. A baseline dictionary was trained (Experiment 1)
for each of the 10 digit classes with L = 800 and sparsity factor
of τ = 10. Dictionaries were trained to achieve a desired average
squared error ε = 1e−7 or a maximum of 30 training iterations
per class dictionary. When using the dictionary transformation
method, the full (i.e. c0-dimensional, then c0 + c1-dimensional)
matrices V,Σ and Ṽ, Σ̃ were stored before and after model
updates and were used when forming F and F̃ feature matrices.
However, only the first k eigenpairs were used for the baseline
model, andk = 460was used for all embedding-updated models
i.e. all models, except baseline, use 460-dimensional virtual
features and T ∈ R460×400.

A. Different Experiments & Results

1) Experiment 1-Baseline Training: In this experiment, a
baseline model is trained via the K-SVD dictionary learning
method using all of the virtual feature vectors generated for the
MNIST training data set and then tested on those of the MNIST
and USPS test sets. Table II illustrates the correct classification
rates (CCR) for each of the 10 classes in the MNIST and
USPS testing sets, respectively. As expected, the baseline model
performed well on MNIST with an overall CCR of 97.4%.
The performance of the baseline model on the USPS test set,
however, was comparatively lower (see row 4 of Table II).
Nevertheless, it still managed to achieve an overall CCR of
80.7%, despite there being no training samples from this data
set.

The baseline embedding and dictionary matrices, i.e., Σ,V
and H1, . . . ,H10, generated in this experiment were used as
inputs to all of the subsequent experiments. However, as men-
tioned before the next experiments utilize the SAU embedding
update method presented in Section III and the same set of in-situ
USPS samples, though not all samples were necessarily selected
as important samples.

2) Experiment 2-Benchmark Method: The experiment in this
section utilizes resources for complete model/dictionary re-
training. To this end, the baseline embedding and dictionaries
generated in Experiment 1 are used for the embedding update
via our SAU algorithm in Section III using the in-situ USPS
virtual samples. The K-SVD dictionary learning is then applied
to fully retrain each of the dictionary matrices using all the
training samples including the newly embedded in-situ samples
(i.e. baseline and in-situ samples combined). The embedding
updated and retrained model was then tested on the MNIST and
USPS test sets and results were compared to those of the other
experiments. Furthermore, we show the ability of the system to

retain performance on the original baseline environment after
updating the embedding and dictionaries.

The CCR for each class using the K-SVD retrained model
are shown in rows 2 and 5 of Table II for the MNIST and
USPS test sets, respectively. On the MNIST testing set, this
K-SVD retrain model achieved an overall CCR of 97.5%. As far
as the results on the USPS test set are concerned this K-SVD
retrained model provided significant performance improvement.
More specifically, using ≤ 4% of the total USPS samples, the
modified MSC with the updated dictionaries were able to achieve
an overall CCR of 92.5%, i.e., more than a 10% improvement
over that of the baseline trained system.

3) Experiment 3-Joint Embedding & Dictionary Updating:
The experiment in this section attempts to demonstrate a contrast
between dictionary transformation using T matrix and dictio-
nary updating, and full K-SVD retraining of the dictionaries
in the updated embedding. As before, the in-situ USPS sam-
ples were used to update the baseline embedding and the T
matrix was generated. Using T, we transform each of the old
dictionaries to the new embedding. Then, following Algorithm
3, we augment the T-transformed dictionaries with K1 = 10
new atoms trained using the IDU method in [5] with F̃new ⊂ F̃
representations of only the in-situ USPS samples, including the
c1 samples that were added to F̃R ⊂ F̃new.

All other training parameters aside from K1, e.g., sparsity
factor, error goal, etc., were kept the same as in the baseline
training. The results of this model, which combines transforming
old dictionaries and training a limited number of new atoms,
can be seen in rows 3 and 6 of Table II for the MNIST and
USPS test sets, respectively. While the performance observed
on the MNIST test data is still comparable to that of the baseline
results in Experiment 1, classification accuracy improves across
almost every class in the USPS test set. Although, the results
on the MNIST test set are slightly worse than those of the fully
retrained system, the results on the USPS test set are indeed
comparable to those generated using the fully retrained K-SVD
model in Experiment 2. The overall CCRs on the MNIST and
USPS test sets are found to be 97.4% and 93.2%, respectively.

VI. CONCLUSION

In this paper, we proposed a novel method for incrementally
updating the linearized kernel embedding in the LKDL method.
We presented a new mechanism to incrementally perform eigen-
decomposition of a growing kernel matrix using arrowhead
updates. We also made efforts to shed light on the properties
of the embedding itself and its geometric interpretation. A new
dictionary updating method was presented for LKDL dictionar-
ies which allowed them to be transformed to the expanded em-
bedding without the need for new labels. This method presents
an alternative to the complete repetitive dictionary retraining
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which can be computationally costly and slow. A modified
MSC classifier was used in conjunction with a variety of class-
dependent dictionaries to perform classification on the MNIST
and USPS handwritten digit data sets in conjunction with an
incremental learning strategy. Results were provided comparing
the classification performance of a baseline dictionary, dictio-
naries retrained after expansion of the embedding, and lastly
using dictionaries updated through our proposed method after
expansion of the embedding. These results indicated that the
newly developed incremental linearized kernel embedding can
effectively incorporate samples from novel environments to
allow SRC-type classifiers to adapt to the new environments.

The computational time and consistency of the methods
for eigendecomposition of a growing kernel matrix were also
studied and compared. The results showed: (a) when a model
is expected to undergo many embedding updates during its
lifetime, the arrowhead approach presented in this paper solves
the new embedding in the most competitive time; (b) dictionary
matrices in the new embedding are comparable to those of the
old embedding, and can be obtained by using a simple projection
of the old dictionary; and (c) combination of transforming dic-
tionary matrices and training a limited number of incremental
atoms to augment the dictionary provides comparable, if not
superior, performance to the fully retraining system via K-SVD
with the same training parameters.

Looking forward, there are extensions to our work that
can provide further computational and discriminative improve-
ments. Among these is the development of a down-dating
method which leverages arrowhead eigendecompositions to
complement our proposed SAU. A down-dating method of this
variety would enable efficient pruning of growing embeddings,
allowing for a static embedding dimension while maintaining
the fast updates of the proposed method. The down-dating
method would require the removal of important samples from the
formation of the embedding, thus a mechanism for performing
the important sample selection in both the up- and down-dating
methods would be preferable. Future efforts could be focused on
this important sample selection process using various metrics.
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