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Abstract—The problem of cloud data classification from satel-
lite imagery using neural networks is considered in this paper.
Several image transformations such as singular value decompo-
sition (SVD) and wavelet packet (WP) were used to extract the
salient spectral and textural features attributed to satellite cloud
data in both visible and infrared (IR) channels. In addition, the
well-known gray-level cooccurrence matrix (GLCM) method and
spectral features were examined for the sake of comparison. Two
different neural-network paradigms namely probability neural
network (PNN) and unsupervised Kohonen self-organized feature
map (SOM) were examined and their performance were also
benchmarked on the geostationary operational environmental
satellite (GOES) 8 data. Additionally, a postprocessing scheme
was developed which utilizes the contextual information in the
satellite images to improve the final classification accuracy. Over-
all, the performance of the PNN when used in conjunction
with these feature extraction and postprocessing schemes showed
the potential of this neural-network-based cloud classification
system.

Index Terms—Cloud classification, feature extraction, neural
networks.

I. INTRODUCTION

A UTOMATIC and accurate classification of clouds to
enhance weather forecasting is one of the important ap-

plications studied in meteorology. Computer-based automatic
classification systems would help the forecaster in several
ways. The importance of this lies in the fact that large
quantities of satellite imagery e.g., 25 GB/day from each
geostationary operational environmental satellite (GOES) are
generated every day. Extracting cloud field information from
these images using visual/manual interpretation is a tedious
and unreliable task and moreover the results are, to some
extent, operator dependent. Therefore, highly efficient and
robust cloud classification schemes are needed for automatic
processing of satellite cloud imagery for climatological appli-
cations.
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In recent years, considerable research has been focused on
the cloud classification area. A good review of the available
schemes is provided by Pankiewicz [1]. Generally, two broad
categories of cloud features are most commonly used in
the cloud classification field: spectral and textural features.
The first class of features, which plays a more important
role for cloud classification, extracts the information on the
cloud radiance in different spectral bands. Some of the most
commonly used methods in this category include threshold-
based schemes [2], histogram schemes [3], and multispectral
approaches [4], [5]. The spectral features due to their physical
importance (albedo, temperature) are proven to be effective
and simple. However, they also encounter some problems
because of the spectral similarities of certain features such
as ice cloud and snow. Other factors, such as moisture in
atmosphere, may also alter the multispectral characteristics
and thus affecting the final judgement. The second category,
i.e., textural features, distinguish certain types of clouds by
the spatial distribution characteristics of gray levels corre-
sponding to a region in one specific channel. While the
spectral characteristics of clouds may change, their textural
properties are often distinct and tend to be less sensitive
to the effects of atmospheric attenuation or detector noise
[6]. Most of the texture-based cloud classification methods
in the past used statistical measures based on gray level
cooccurrence matrix (GLCM) [7] and its variant, such as
gray level difference vector (GLDV), gray level difference
matrix (GLDM) and sum and difference histogram (SADH)
[8], [9]. For example, Welchet al. [8] used GLCM for
feature extraction to classify stratocumulus, cumulus, and
cirrus clouds. Kuoet al. [9] used GLDV method to dif-
ferentiate between clouds and ice/snow. Another important
group of textural extraction schemes explores the frequency
characteristics of images. Garandet al. [10] have examined
the power spectrum of ocean cloud images while Gu and
Duncan [11] evaluated autocorrelation, textural edgeness and
the GLCM approach to obtain cloud textural information.
They suggested a combination of textural measures in order to
classify different cloud types. Gabor filter was also employed
for cloud classification task by Lameiet al. [6] and Du
[12]. Several comparative studies of these features have been
conducted by Parikh [13], Gu [11], and Ohanian [14] where
they suggested that GLCM provides the best features for cloud
classification, while in [15] Gabor filters and Fourier features
are recommended. There is no consistent and optimal feature
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Fig. 1. Block diagram of the proposed cloud classification system.

extraction scheme determined at this time. Therefore, there is a
need to develop efficient feature extraction schemes for cloud
data analysis.

Another important issue in the cloud data analysis is the
choice of an appropriate classifier. There are basically two
types of classifiers; traditional classifiers which include: lin-
ear discriminant, maximum likelihood and k-nearest neigh-
bor classifiers, and the neural-network classifiers which in-
clude: multilayer backpropagation neural network (BPNN),
self-organizing map (SOM) and probability neural network
(PNN), etc. Owing to the fact that the characteristics of
clouds are highly variable and difficult to classify, neural
network classifiers through their adaptive learning nature offer
attractive and computationally very efficient alternatives. Lee
et al. [16] used a three-layer BPNN for cloud classification of
LANDSAT multispectral scanning system (MSS) data while
PNN was examined by Bankertet al. [17] for classification of
AVHRR imagery. In [18], traditional linear discrimination and
two neural-network classifiers namely BPNN and PNN were
comparatively studied for the classification of polar clouds
and surface. The results showed that BPNN-based solution
achieved the highest classification accuracy, while PNN falls
behind within a very small accuracy range. It is worthy to
mention that the BPNN-based scheme was extremely time
consuming in the training phase compared to the one-pass
noniterative PNN training approach [17]. On the other hand,
the price one pays for this one-pass training approach is that
potentially a very large network can be formed. This leads to
increased storage and computational cost in the testing phase
when compared with that of the BPNN-based solution. The
unsupervised Kohonen SOM has also been examined for cloud
classification [19]–[21].

In this paper, a neural-network-based cloud classification
system is proposed (see the block diagram in Fig. 1). Several
image transformation schemes namely singular value decom-
position (SVD) and wavelet packets (WP’s) were exploited
to extract salient features of the cloud data. In addition, the
conventional GLCM-based statistical features were also used
for the purpose of benchmarking. The features from both the
visible and IR channels were then combined together and
fed to a neural-network classifier. However, these features
do not remain consistent and vary at different time of the
day and season. For example, certain types of clouds may
look different in the visible channel due to the sun angle
changes. On the other hand, land and low-level clouds can
be heated up during the daytime thus looking different in the
IR channel. Although the temporal issue is not considered

in this paper, one possible solution is to adapt the neural
network to accommodate these changes [22]. Consequently,
it is important for the neural networks to have fast learning
ability in order to adapt to the temporal changes. Based on this
consideration, two neural-network classifiers are examined in
this paper. The original PNN is improved by using Gaussian
mixture models to provide much faster convergence than the
BPNN-based solution. Using this scheme the computational
cost in the testing phase is also greatly reduced. Owing to the
fact that in most of the situations the truth maps of the clouds
and background may not be available or reliable and further
huge amount of satellite images are generally encountered,
unsupervised Kohonen network solution is also exploited.
In order to further improve the classification accuracy of
the proposed cloud classification system, a postprocessing
scheme is designed which utilizes the rich spatial contextual
information in the satellite imagery. Finally, the effectiveness
of the proposed system is analyzed on the GOES 8 satellite
data, and various feature extraction schemes and classifiers
were benchmarked.

II. FEATURE EXTRACTION SCHEMES

FOR CLOUD CLASSIFICATION

Feature extraction is an important stage for any pat-
tern recognition task especially for cloud classification,
since clouds are highly variable and it is difficult to find
reliable and robust features. According to the study in
[24], trained meteorologists mainly rely on six criteria in
visual interpretation of cloud images. These are brightness,
texture, size, shape, organization and shadow effects. The
brightness corresponds to the spectral features, which can
generally be extracted rather easily. Textural features are those
characteristics such as smoothness, fineness and coarseness or
certain pattern associated with an image [7]. They reflect
the local spatial distribution property in a certain region.
The spectral and textural features are most widely used in
automatic cloud classification. Other features such as size,
shape and organization information attribute to the large-
scale or global spatial distribution. Generally, these features
are calculated after an image has been segmented [1]. The
shadow information is the most difficult one for analysis and
has not been fully exploited.

In the following, two feature extraction schemes, namely
SVD and WP’s are briefly reviewed. These schemes can
extract features which contain contributions from both the
spectral and textural aspects.
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Fig. 2. Some typical8� 8 blocks in the GOES 8 satellite visible channel images and their corresponding SVD values in log domain. Block (a) corresponds
to land while blocks (b)–(d) correspond to cumulus, stratocumulus, and thin cirrus, respectively.

A. Singular Value Decomposition (SVD) Scheme

SVD is a very powerful tool in image restoration, power
spectrum estimation and data reduction compression areas. It is
one of the best candidates for dealing with sets of equations or
matrices that are either singular or ill-conditioned as it provides
quantitative information about the structure of the system or
linear equations. In image processing, SVD has been shown
to have excellent energy-packing ability [25].

Let us consider an image where It is
possible to represent this image in the-dimensional subspace
where is the rank of and Let
and , be nonnegative, symmetric matrices with
same eigenvalues where it is assumed that

These eigenvalues are called
the singular values of Now, if we form matrices and
from the corresponding eigenvectors ofand then can
be diagonalized as

(1)

where is the diagonal matrix, i.e.,
Alternatively, we have

(2)

Basically, the eigenvalues or singular values repre-
sent the energy of image projected on each subspace. The
singular values and their distribution which carry certain useful
information about the content of vary drastically from
image to image. For an image with random textural content,
e.g., white noise, its energy will spread over all the singular
values. On the other hand, for a smooth image with no texture,
the first singular value will be dominant while all the others
are almost zero. Fig. 2 shows some typical blocks of size 8

8 in the GOES 8 satellite visible channel image and their
corresponding eight singular values. In most of the cases, the
first (largest) singular value roughly corresponds to the mean
of the image thus closely relating to the spectral features, while
all the other singular values provide detailed information about
the spatial content of the image which somewhat relates to

the textural features. Another important property of the SVD
features is that they are not sensitive to the orientation of the
texture, since the image and its transpose have the same
set of singular values.

Overall, singular values provide the energy information of
the image as well as the knowledge of how the energy is
distributed over the subspace. They contain the contributions
from both the spectral and textural aspects of the image.

B. 2-D Wavelet Transform (WT) and
Wavelet Packets (WP) Schemes

The 2-D wavelet transform (WT) is a straightforward exten-
sion of the 1-D case [26]-[29]. It can be viewed as performing
the 1-D WT first along the direction then along the
direction. In the first level of decomposition, any given image

is decomposed into one low-pass approximation and
three added detail images which contain high-frequency infor-
mation of the image in the vertical, horizontal and diagonal
directions [28]. Like in the one-dimensional (1-D) case, such
operation can be repeatedly applied to each subimage leading
to the two-dimensional (2-D) wavelet packets (WP) decompo-
sition [30]. 2-D WP decomposition provides a powerful tool
to analyze the content of images with a good localization
property both in the spatial and frequency domains. When
an image goes through WP decomposition process, a full-
structure tree of subimages may be formed. The subimages
in the same decomposition level provide the multiple looks of
the original image at different frequency band. At the higher
levels, the resolution in the frequency domain will increase
while the spatial resolution is gradually degraded. A block of
size in the original image will correspond to a reduced
size block at the decomposition level For
regions with different textural content, their spectra exhibit
different characteristics which in turn will be reflected in the
energy distribution of the subimages through the tree structure
[30], [31]. Consequently, the energy in all the subimages can
be computed to form a feature vector. However, in order to
remove the redundancy in the features, a feature selection
procedure is needed to identify only a few nodes in the
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full tree which possess the best discriminatory ability for
the subsequent classification. This feature selection process
is briefly described in Section IV-B.

III. N EURAL-NETWORK CLASSIFIERS

AND POST PROCESSINGSCHEME

Two different neural-network classifiers namely Kohonen
SOM and PNN were studied for the cloud classification
problem. The reader is referred to [32] and [33] for review on
Kohonen SOM. In the following section the PNN [34], [35]
is briefly discussed. The renowned expectation maximization
(EM) [36] is used for the efficient training of PNN. In order
to further improve the classification accuracy, a postprocessing
approach is also developed to utilize the rich spatial context
information in the satellite imagery.

A. Probability Neural Network (PNN)

The original PNN, which was proposed by Specht in [34],
is a direct neural-network implementation of the Parzen non-
parametric probability density function (PDF) estimation [37]
and Bayes classification rule. It can be considered as a special
case of the radial basis function neural networks. Comparing
with the well-known BPNN-based solution, PNN has a very
fast one-pass learning scheme, and can be retrained or updated
on-line. It was also reported in [35] that PNN and BPNN
have comparable generalization ability in classifying unknown
patterns.

For an input pattern the so-called optimum Bayesian
classification strategy is to make the decision in such a way
that the “expected risk” is minimized. For the “0-1” cost
function [38] which is generally used for pattern recognition,
the Bayes classifier will lead to the maximuma posteriori
(MAP) classifier [37], i.e.,

(3)

where is the class of input which belongs to
is thea priori class distribution, and

is thea priori conditional distribution for class Generally,
the unknown class distribution, , is decided by analyzing
the physical nature of the problem, and is assumed to be
uniformly distributed here without loss of generality. The key
issue for the implementation of this Bayesian classifier is to
extract the conditional distributions from the training data set.
In [37], Parzen proved that can be estimated from all
the samples in the training set which belong to the class
When a Gaussian kernel is adopted, the Parzen PDF estimator
can be represented by [34]

(4)

where is the number of samples in the training set belong to
class represents theth sample belonging to class
is the input vector dimension and is called the “smoothing
factor.”

Fig. 3. The structure of PNN.

The original PNN structure proposed by Specht in [34],
is a direct implementation of the above estimator. It consists
of three feedforward layers: input layer, pattern layer, and
summation layer [34] which are shown in Fig. 3. The input
layer accepts the feature vectors and supplies them to all the
neurons in the pattern layer. The pattern layer consists of
pools of pattern neurons, where is the number of patterns.
In each pool there are number of pattern
neurons. For the input feature vector, the output of each
pattern neuron is

(5)

where is the weight vector of theth neuron in the th
pool, and the nonlinear function represents the activation
function of the neurons. There are totally neurons in the
summation layer where theth neuron, forms the
weighed sum of all the outputs from theth pool in the pattern
layer. The weights of the summation layer are determined by
the decision cost function and thea priori class distribution.
For the “0-1” cost function and uniforma priori distribution,
the weights will be one for all the neurons in the summation
layer. For the input pattern of unknown class, the final
decision will be made by a simple comparison of all the
outputs, i.e.,

if

Comparing (4) and (5), it can easily be observed that
the output of PNN will be proportional to thea posteriori
probability when (under the condition that the
weights of the summation layer are properly assigned based
on the a priori class distribution). So the training phase of
PNN is very straightforward. For each new training sample

belonging to class the training process is nothing but
adding a new neuron in theth pool of the pattern layer, with
the weight vector equal to

One drawback of the original PNN is that potentially a
very large network will be formed since every training pattern
will need to be stored. This leads to extensive storage and
computational requirements during the testing phase. One
natural way to improve the PNN is to reduce the number
of neurons, i.e., use fewer kernels but place them at optimal
places. The scheme in [39] uses learning vector quantization
(LVQ) schemes for clustering the training samples. In [40],
Streitet al. improved the PNN by using finite Gaussian mixture
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model. This scheme is adopted in this paper and briefly
described below.

For any class suppose that the class con-
ditional distribution is modeled approximately by a Gaussian
mixture, i.e.,

(6)

where is the number of Gaussian components in class
and ’s are the weights of the components which satisfy
the constraint denote the
multivariate Gaussian density function of theth component
in class and we have

(7)

where and are the mean vector and covariance matrix
of the th Gaussian component for class, respectively. The
Gaussian mixture model described in (6) and (7) can also be
easily mapped to the PNN structure shown in Fig. 3. Since

is generally much smaller than the number of training
samples belong to class the pattern layer of the PNN
is therefore substantially simplified than its original version.
The price paid for this simplification is that the noniterative
training procedure will no longer exist. Instead, the weights
of the PNN i.e., the parameter sets of the mixture model for
each class, need to be estimated from the training data set.

Let denote the parameter set used to
describe the mixture model of classand denote
the whole parameter space for the PNN. There are several
criteria available which can be used to estimate If we
assume that the parameters inare unknown fixed quantities,
the ML estimation method is a suitable choice. Now suppose
that the training samples drawn independently from the feature
space form the set , which can be further separated into
subset in which all the samples belong to
class The ML estimation of the parameter set is then
given by

(8)

For the computational efficiency, generally we will maximize
the equivalent log-likelihood, i.e.,

(9)

The last step in the above equation is arrived at based
upon the assumption that the conditional probability of class

is totally decided by the parameter set of that class,

and not affected by the parameter set of the other classes.
The maximization of the log-likelihood function can be done
using the gradient descent scheme. However, a more efficient
way is to use the well-known EM approach [36]. This method
which is used here helps to achieve the ML estimation via
iterative computation when the observations can be viewed as
incomplete data. There are two major steps in this approach:
the estimation (E) step and maximization (M) step. The E step
extends the likelihood function to the unobserved variables,
then computes an expectation with respect to them using the
current estimate of the parameter set. In the M step, the
new parameter set is obtained by maximizing the resultant
expectation function. These two steps are iterated until the
convergence is reached. The reader is referred to [36] for the
detail description on EM algorithm. Generally, this training
process converges much faster than the BPNN-based approach.
To improve the final classification accuracy, a postprocessing
method is developed in the following section.

B. Post Processing

In the above discussion each block in the satellite images is
processed separately without considering the spatial neighbor-
hood context. However, there is rich context information in
these images i.e., some classes are likely to span over a region
instead of appearing in isolated blocks. Proper utilization of
such contextual information can help to improve the final
classification accuracy. Therefore, a postprocessing scheme
similar to that in [42] is developed here in order to take
advantage of the contextual information.

For any block in the image, where is the
coordination vector of that block, denotes the correspond-
ing feature vector while refers to its physical class
which belongs to the label set Moreover,
we can define a spatial neighborhood for as

where is the neighborhood set. Fig. 4(a)
shows one typical example of
is used to represent the class label of For simplicity
we assume that all the contextual information for block
is conveyed by the classes of its spatial neighborhood, i.e.,

Now, we can define a spatial context classifier for
post processing of the images, i.e.,

(10)

Comparing with the general classifier in (3), this new classifier
takes into account not only the feature vector in block
but also the class information in its neighborhood, i.e, the
context information. For simplicity, we drop the block position
variable in the sequel. Using Bayes rule, we get

It is reasonable to assume that the distribution of the feature
vector is solely dependent on its own class label and not
affected by its spatial neighborhood, i.e.,

Also, notice that is the same for all classes,
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(a) (b)

Fig. 4. (a) Blockrrr and its spatial neighborhood blocks (shaded)rrr + vvv: In
this case,vvv 2 	 = f(�1; 0); (0;�1); (0;1); (1; 0)g: (b) Three types of
cliques for the spatial neighborhood in 4(a).

then the spatial context classifier in (10) becomes

(11)

The feature vector conditional probability can be cal-
culated using the PNN. Moreover, , which describes
the spatial context conditional probability, can be modeled by
Gibbs distribution [43]. The Gibbs distribution is equivalent
to Markov random field modeling and has been widely used
in the image processing area. The spatial context conditional
probability can be expressed in the form of [43]

(12)

where is a normalization constant andis called the energy
function given by

(13)

is called the “potential function” of the class
configuration on a clique W. A so-called clique is a
set of block locations where any pair of distinct indices in the
set are neighbors to each other. For the spatial neighborhood
shown in Fig. 4(a), there are totally three types of cliques
that are shown in Fig. 4(b). denotes the set of all
possible cliques for current class configuration. The form of
potential function, is very important since it specifics the
context information between adjacent blocks. In this paper,
the potential function suggested in [42] was adopted. It is
shown in [42] that after some simplifications the spatial context
conditional probability can be given by

(14)

where is the number of occurrence of class in
is a constant which is the same for all classes andis
a parameter describing the interactions between classes of
adjacent blocks. corresponds to the situation where
no context information is available for the classification.
On the other hand, a larger value of indicates stronger
class correlation in the neighborhood. Generally, homogenous
regions are more favored in the postprocessing.

Another issue for implementing the classifier in (11) is that
the class of neighborhood, is unknown in practice. This
can be circumvented by performing the postprocessing scheme

iteratively. In this case, the satellite image is initially classified
using the PNN and the initial results are recorded. In the post
processing, the initial classification results are used to replace
the unknown neighborhood class and a new classified image is
generated using (11). This process can be repeated and at each
iteration the resultant image of the previous iteration is used
to provide the neighborhood class information. The process
stops when the class differences between the resultant images
in two consecutive iterations are negligible. In our experiment,
this error goal was set to five blocks per image.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, the proposed cloud classification system
is examined on the GOES 8 satellite image data set. This
data set and the process of labeling are first introduced. The
preprocessing procedure of these data, feature extraction and
selection processes are also described. In order to select the
most suitable classifier and the set of features for this cloud
classification problem, several neural-network paradigms and
different sets of features are benchmarked without considering
the context information. Finally, the postprocessing scheme is
implemented and the final results are provided.

A. GOES-8 Satellite Imagery

The cloud data analyzed in this study was obtained from the
GOES 8 satellite that carries five channel sensors. This study
was carried out only using two channels, namely channel 1
(visible) and channel 4 (IR) since these channels are commonly
used in almost all the other meteorological satellites. Never-
theless, the system can be easily expanded to accommodate
more channels, if necessary. Totally six pairs of images were
used in these tests. Since the purpose of this study was to
examine the performance of cloud classification system for
certain areas without considering the temporal changes of the
data. These images covered the same geographical regions
and were obtained during almost the same period of the day.
Specifically, they were collected on May 1, 1995 and May 5,
1995 from 15:45 UTC1 to 17:45 UTC. One typical image pair
is shown in Fig. 5. These images with spatial resolution of
512 512 pixels cover mid-west and most of the eastern part
of the United States extending from the Rocky Mountains to
the Atlantic coast. The region spreads over mountains, plains,
lakes, and coastal areas where clouds have some specific
features. Lake Michigan is in the upper right corner and
Florida is located in the lower part with Gulf of Mexico in
the lower center of the image. There are a variety of cloud
types in this image. For example, there are some thin cirrus in
the left middle part, cirrostratus in the right middle part and
low/middle-level clouds (stratocumulus and altostratus) in the
center part as well as water and land areas.

Since the ground truth is not available and reliable, two
meteorologists were asked to identify all possible cloud types
as well as the background areas based on the visual inspection
and other related information. This was accomplished with
the aid of a computer software package developed solely
for this purpose. Totally ten cloud/background classes were

1UTC stands for Universal Time Code.
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(a) (b)

Fig. 5. Original GOES 8 Image (Time 15:45 UTC). (a) Visible channel. (b) IR channel.

TABLE I
NUMBER OF BLOCKS FOR EACH CLOUD/BACKGROUND CLASS IN THE LABELED DATA SETS

found, which are: warm land (WLnd), cold land (CLnd), warm
water(WWtr), cold water (CWtr), stratus (St) cumulus (Cu),
altostratus (As), stratocumulus (Sc), cirrus(Ci) and cirrostratus
(Cs). It should be mentioned that the way meteorologists label
images differs from that of the neural-network classification
system. That is, instead of labeling each block, they first try
to identity certain regions and then assign that whole area into
one category. As a result, it is possible that some blocks in
that region may belong to different classes since the labeling
is done based upon global information. Additionally, some re-
gions have mixed cloud types hence making the classification
task difficult. The regions labeled by the experts were further
divided into small blocks of size 8 8 corresponding to an
area of size 32 km 32 km. The labeled results of the satellite
image pair in Fig. 5 are shown in Fig. 6. All the labeled blocks
formed the data set for our benchmarking. Half of the blocks
randomly drawn from this data set were used for the training
of the classifier while the rest were used for the testing and
performance analysis. Table I gives the total numbers of blocks
for each cloud/background type.

B. Feature Extraction and Selection

In order to reduce the dimensionality of the data and extract
the pertinent features for cloud classification, several feature
extraction methods were investigated in this study. Besides the
SVD features and WP features discussed above, the widely
used GLCM-based statistical features and spectral features
were also implemented for the sake of comparison.

To remove the redundancy in these features, a feature
selection process was performed. This not only reduces the
training time for the classifier but also may help to improve

Fig. 6. Cloud/backgroud classes labeled by meteorologists.

the classification accuracy due to the finite sample size. The
sequential forward floating selection (SFFS) algorithm used
in [8] was employed which provides a deterministic single
solution leading to a suboptimal feature set. At every step,
this method searches the remaining feature space iteratively
and selects one feature at a time to make the new enlarged
feature set which maximizes the “distance” among different
classes. In this paper, the Bhattacharya distance was used to
measure the class separability. Jainet al. [44] reported optimal
performance for SFFS scheme among all the other methods
they tested.

For the SVD approach, a total of 16 singular values were
extracted, eight from every 8 8 block in each channel.
However, after the feature selection process, only six features
were chosen for the subsequent classification process. These
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TABLE II
CONFUSION MATRIX FOR ORIGINAL PNN CLASSIFIER USING SVD FEATURE (%). (ROW—NEURAL-NETWORK

RESULTS, COLUMN-EXPERTS LABELLING. OVERALL CLASSIFICATION RATE IS 83.4%)

correspond to the first, third, and fifth singular values in the
visible channel and the first, third, and sixth ones in the IR
channel.

The 2-D WP approach was applied to the whole image.
Haar wavelet [28] was adopted here for its extreme simplicity
and computational efficiency. A three-level decomposition was
carried out and a full tree with a total of 85 nodes was gener-
ated for each channel. The energy of the region corresponding
to 8 8 blocks in the original image was calculated for
each subimage which formed the primary feature set. After
feature selection process, totally ten energy components were
chosen; seven components from the visible channel and three
from the IR channel. Specifically, these were the energy in
subimages [0,1], [1,1], [1,2], [2,3], [2,11], [3,1] and [3,42] of
the visible channel and [0,1], [1,1] and [3,1] of the IR channel,
where the notation represents theth subimage in theth
decomposition level.

For the GLCM scheme [8], the gray level resolution was
reduced to only 16 in order to reduce the storage and com-
putational requirements. Four most popular textural features,
namely contrast, correlation, entropy, and homogeneity, were
calculated for each image setting the interpixel distance equal
to one in all the four orientations, i.e., 0, 45, 90, and 145Fi-
nally, directionality was suppressed by averaging the extracted
features over four directions to produce isotropically averaged
measures. These four GLCM features were extracted from both
the visible and IR images and then fused together to form a
combined feature vector. Since both the SVD and WP features
contain the spectral information, for the sake of fairness in
benchmarking the mean of the block in both channels were
also included in the feature vector. The resultant feature vector
is of dimension ten and no further feature selection process
was applied. Additionally, a feature set which only includes
the spectral information was generated which contained the
mean of each block in the two channels.

C. Comparison Study of Different Classifiers

The performance of different kinds of neural-network clas-
sifiers namely PNN and SOM were first examined for their
classification accuracy. The extracted SVD features were used
for this comparison due to the simplicity of this scheme. Note
that since only parts of the images labeled by the meteorologist
were used for benchmarking and performance comparison, the

accuracy rates alone may not fully reflect the performance of
the classifiers. Visual inspection of the final results is also an
important criterion that was used in the evaluation process.
What follows is the detailed discussion of the results and
performance of each classifier.

1) PNN Classifier: Both the traditional PNN and the mod-
ified PNN (Section III-A) were implemented. The traditional
PNN was trained by the one-pass noniterative scheme, i.e,
adding neurons in the pattern layer with weights equal to the
training samples. The smoothing parameter was determined
experimentally to be It was found that classification
result is not sensitive to the choice of this parameter as long
as it is not too small Table II shows the classification
results in terms of the confusion matrix for the original
PNN. The results indicate that good classification (over 90%)
were obtained for most background classes except cold water
(CWtr), for which the poor performance is partly attributed
to the lack of enough samples as well as the similarities
between the cold land and cold water types. For the high
level cloud classes, i.e., cirrus and cirrustratus, it was observed
that most misclassifications occurred between them. This is
expected since some cirrus blocks exhibit the features similar
to those of cirrustratus if they are thick and smooth enough.
In the data set there are also some very thin cirrus samples
which span over the Gulf of Mexico (lower-left corner in
Fig. 5). Owing to the thin nature of the cirrus, the region
has the averaged temperature of both the cirrus and warm
water, i.e., it is much warmer than the general cirrus and
looks similar to the cold water and some of the low clouds.
This also causes misclassifications. The classification accuracy
for the low and middle level clouds, namely stratus (St),
cumulus (Cu), stratocumulus (Sc), and altostratus (As) ranges
around 60–83%. Some of the most confusing pairs include
St versus As, Cu versus Sc, and especially Sc versus As.
Although the middle level (As) clouds generally are colder
than the lower level clouds, such difference may become
less prominent if considering the background temperature
variation. For example, some Altostraturs samples in the Gulf
of Mexico may have similar temperature as the low clouds
in the far North. On the other hand, the texture of (Sc) are
somehow in between those of (St)/(As) and Cu types. Some
small blocks of Sc have smooth texture like St/As while other
blocks are very similar to Cu.
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TABLE III
CONFUSION MATRIX FOR THE MODIFIED PNN CLASSIFIER USING SVD FEATURES (%). (ROW—NEURAL-NETWORK

RESULTS, COLUMN—EXPERTS LABELLING. OVERALL CLASSIFICATION RATE IS 83.8%)

Fig. 7. Classification results using modified PNN with SVD featuers.

For the modified PNN, several network structures with
different number of Gaussian components in each class were
examined. A pruning operation was also performed during the
training process if the weight of certain Gaussian component
was less than 0.005. The best structure was chosen based on
the classification accuracies, however, this does not imply that
the structure is theoretically optimal. Table III presents the
classification accuracies of the modified PNN. It was found
that this PNN achieved slightly better results than that of
the original PNN. The overall classification rate has increased
from 83.4 to 83.8%. Moreover, the structure of neural network
is greatly simplified. There were totally 5297 pattern neurons
in the original PNN in contrast to only 94 neurons in the
modified PNN. Consequently, the computational and storage
requirements in the testing phase are greatly reduced. The
color-coded image based on SVD features and the modified
PNN classifier is shown in Fig. 7. Visual inspection of this
result indicates that different cloud/background areas are well-
separated. This agrees with the meteorologist labeling with the
exception of some isolated error blocks. Other error blocks
occurred at the border of cloud and background areas where
features in one block are the mixture of different physical
classes. Overall, the resultant classified image show more
promise of the system than indicated by the classification rates.

2) Kohonen SOM:SOM is an unsupervised network which
clusters the inputs into certain prespecified number of un-
known categories. The optimal number of output neurons
(categories) is highly problem dependent and difficult to de-

termine (exactly)a priori. In this study, three SOM networks,
referred to as SOM1, SOM2 and SOM3, with different number
of output neurons, namely, 10, 30, and 50 were tested. For
each SOM network, different neighborhood functions were
experimented, and the best one was chosen based on the clas-
sification accuracy. For SOM1, this was 52 neighborhood
while for SOM2 and SOM3 these were 1 30 and 10
5, respectively. Note that mxn neighborhood implies that the
neurones are arranged in a mxn grid in two dimensions. The
training data set for the SOM consists of 8192 samples which
were randomly chosen from the six image pairs. Each SOM
was initialized using the convex combination method [46].
The training process of SOM was separated into two phases.
In the global ordering phase which corresponds to the first
1000 epochs, the learning rate decreased linearly from 0.9 to
0.45, while the size of the neighborhood was kept large. Such a
large learning rate and neighborhood size can help to form the
topological ordering network. In the fine tuning phase which
takes 19 000 epochs, the learning rate decays exponentially
from 0.45 to zero while the neighborhood is linearly reduced
until finally will contain just the winner neuron after 2000
epochs. After the training is completed, the output neurons
were further mapped to the corresponding cloud/background
class based on a labeling data set. This labeling set is a subset
of the training data set for PNN classifier. The reason being
in the original PNN training set the number of samples for
each class was not equal, e.g., there were only 92 samples for
the cold water class in contrast to 4259 samples in the cirrus
class. If this set was used for labeling the SOM networks,
the resultant SOM would have been significantly biased to
the cirrus class while the cold water type might have been
neglected. In order to circumvent this problem, we require
that the maximum number of samples in each class of the
labeling set does not exceed 500. For those classes in the old
PNN training set which had more samples than this limit, we
randomly chose 500 samples. All SOM networks were labeled
using this new data set.

The classification rates for the three SOM topologies are
given in Table IV. The results of SOM1 were very poor mainly
because ten neurons was inadequate to represent all the clusters
in the feature space. For example, there was no neuron to
represent the CWtr, St, and As classes so the classification
rates for these classes were zero! Increasing the number of
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TABLE IV
CLASSIFICATION ACCURACY FOR THREE SOM’S WITH OUTPUT NEURONS 10, 30,AND 50, RESPECTIVELY (%)

TABLE V
CONFUSION MATRIX FOR SOM2 WITH SVD FEATURES (%). (ROW—NEURAL NETWORK

RESULTS, COLUMN—EXPERTS LABELLING. OVERALL CLASSIFICATION RATE IS 72.0%)

output neurons to 30 certainly help to improve the overall
classification accuracy from to 65.0 to 72.0% since for each
class there was at least one neuron to represent it. However,
there was only a slight improvement when the number of
neurons was further increased to 50. Although SOM3 with
50 neurons can more accurately represent the clusters in the
feature space than the SOM2 with 30 neurons, the formed
clusters may not necessarily correspond to the physical labels
used by meteorologist. In other words, the physical classes
may not form distinct clusters in the feature space. This
explains the reason for no significant improvement in the
classification accuracy.

Comparing to PNN, SOM did not achieve high classification
accuracy owing to the unsupervised learning nature of this
network. The confusion matrix for SOM2 is provided in
Table V. The color-coded image classified using SOM2 and
the SVD features is shown in Fig. 8. Visual inspection of this
image can easily reveal significant errors in classification. One
benefit in using SOM network is that the classified image
will more likely to have very smooth mutually exclusive class
boundaries comparing with other classifiers. This is primarily
due to the fact that each “natural cluster” is mapped to one
cloud/background class as a whole.

From the above discussion, PNN is found to be the better
choice in terms of both the classification accuracy and visual
inspection. The modified version of the PNN slightly outper-
formed the original one with much less computational and
storage costs. SOM’s do not provide satisfactory classification
accuracies.

D. Comparison Study of Different Features

Besides the SVD features discussed above, various features
including GLCM, WP and spectral features were investigated.
The classifier used for this comparison study was the modified

Fig. 8. Classification results using SOM2 and SVD features.

PNN. The classification accuracy for the WP and GLCM
are provided in Tables VI and VII, respectively. Comparing
with the results of SVD in Table III, it was found that WP
and GLCM-based statistical features achieved similar results,
both fall slightly behind SVD results as far as the overall
accuracy is concerned. If the classification rate of each class
is analyzed separately, the SVD features performed the best for
the altostratus, cirrostratus, stratocumulus and the background,
while WP is the best at discriminating cirrus and GLCM
features achieved the highest rate for the stratus and cumulus
types. No feature set performed consistently the best on all
the categories. Moreover, the altostratus and cold water are
the most difficult classes for all the three schemes.

The use of spectral feature alone was also examined on the
effectiveness of the cloud classification system. The classifica-
tion accuracies are given in Table VIII. The overall accuracy is
the worst among all the examined features. Since all the other
features contain both the textural and spectral information, this
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TABLE VI
CONFUSION MATRIX FOR WP FEATURES USING MODIFIED PNN CLASSIFIER (%). (ROW—NEURAL-NETWORK

RESULTS, COLUMN—EXPERTS LABELLING. OVERALL CLASSIFICATION RATE IS 81.2%)

TABLE VII
CONFUSION MATRIX FOR GLCM FEATURES USING MODIFIED PNN CLASSIFIER (%). (ROW—NEURAL-NETWORK

RESULTS, COLUMN—EXPERTS LABELLING. OVERALL CLASSIFICATION RATE IS 80.5%)

TABLE VIII
CONFUSION MATRIX FOR THE SPECTRAL FEATURE ALONE USING MODIFIED PNN CLASSIFIER (%).

(ROW—NEURAL-NETWORK RESULTS, COLUMN—EXPERTS LABELLING. OVERALL CLASSIFICATION RATE IS 75.5%)

observation may indicate the contribution of textural features
in cloud classification.

Overall, the SVD provides better class discrimination among
the examined features followed by the WP, GLCM-based
statistical features and lastly the spectral features alone. Also
considering the storage and computational requirements, the
SVD approach was found to be the most preferred choice for
this study.

E. Results of Postprocessing Approach

To account for the spatial contextual information in the
satellite imagery, the postprocessing scheme in Section III-B
was examined. The satellite images were initially classified
using the modified PNN based on the SVD features. The
postprocessing scheme was then applied to the output of the
PNN classifier. Table IX gives the resultant cloud classifi-
cation accuracies. The parameterin (14) was chosen to
be 0.35 in this process. Comparing to the results without
postprocessing given in Table III, an overall improvement of

5% in classification accuracy was achieved. Furthermore, the
improvement was found to be somewhat consistent for all
individual classes, ranging from 0.6% for warm land class
to nearly 7% for stratocumulus and cumulus classes. Fig. 9
shows the postprocessed color-coded image corresponding
to the original color-coded image shown in Fig. 7. As can
be observed, after postprocessing a large number of the
isolated blocks are removed leading to more homogeneous
regions. Moreover, the boundaries between different classes
are now more distinct. The results conform better to the
experts labeling results in Fig. 6. The postprocessing effects
in relation to the choice of parameterwas also investigated.
Table X presents the overall classification rate versusNotice
that implies that no postprocessing was applied. It
was found that larger will lead to higher classification
accuracy. However, this does not necessarily mean larger
is better. As we discussed before, largerindicates stronger
class correlation in the neighborhood which favors more
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TABLE IX
CONFUSION MATRIX AFTER POST PROCESSING(%) (� = 0:35): (ROW—NEURAL-NETWORK

RESULTS, COLUMN—EXPERTS LABELLING. OVERALL CLASSIFICATION RATE IS 86.3%)

TABLE X
THE OVERALL CLASSIFICATION ACCURACY AFTERPOSTPROCESSING(%). THE SVD FEATURES ANDSIMPLIFIED PNN WEREUSED. � = 0 IMPLIES NO POSTPROCESSING

Fig. 9. Classification results after postprocessing of Fig. 7.(� = 0:35):

homogenous regions as the isolated blocks in the color-coded
image will be removed. Since most of the classification errors
occurred separately, such postprocessing can help to increase
the accuracy. However, if is too large, the image will be
over-smoothed and the clouds in small scale regions will not
be identified. As a result, the choice of this parameter presents
a tradeoff between accuracy and smoothing effects. In our
testing, the visual examination of all the postprocessed images
led to the optimal choice of

V. CONCLUSIONS

In this paper, a study is conducted on the neural-network-
based solutions for the problem of cloud classification from
the multispectral GOES-8 satellite imagery. A comprehensive
study of unsupervised Kohonen SOM and PNN was made to
select the optimal classifier for the problem in hand. These
neural networks were benchmarked on their discriminating
efficiency on the data labeled by the expert meteorologists. It
was demonstrated that PNN achieved the highest classification
rate and the best final color-coded image. On the other hand,
the Kohonen SOM provided an unsupervised solution with
smooth mutually exclusive class boundaries. However, due
to the fact that clusters formed by the unsupervised learning

may not necessarily correspond (match) to the real-world
classes defined by meteorologists, the classification accuracy
rates may not be meaningful. Overall, the PNN was found
to provide the best solution for the cloud classification. A
postprocessing approach was also developed which utilizes
the spatial contextual information in the satellite imagery in
order to improve the classification accuracy. Additionally,
four different sets of features namely SVD, WP, GLCM and
spectral were studied and their performance was compared.
It was found that the spectral features alone can discriminate
different clouds with reasonable accuracy while adding textural
information can help to further improve the classification
performance. SVD and WP achieved almost similar results
while GLCM falls slightly behind. Nevertheless, none of
these feature sets provide consistently good discrimination
ability for all cloud/background classes. Future work should
include searching for a new powerful and robust feature
extraction scheme and a self-adaptation scheme for the PNN to
accommodate significant temporal, geographical and seasonal
changes in satellite imagery sequences. A temporal updating
scheme has recently been introduced in [22].
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