EE506: Optical interferometry and laser metrology
To be offered Fall 2021

Course Outline

Instructor: Mario Marconi
Contact information: e-mail: Mario.Marconi@colostate.edu.
Phone: 970-491-0620
Cell phone: 970-481-4487

Prerequisite[s]: EE342, EE441 or equivalent basic laser course *(optional).*

Course description: The subject of the course will be focused in describing and analyzing different schemes of interferometers and interferometric measurements. The course will review basic concepts related with light interference such coherence, laser sources. We will emphasize applications of interferometers to high resolution metrology, microscopy, high resolution optical sensors (fiber optics), etc.. A significant component of the course will be focus on reading and critical discussion of research papers using the topics reviewed in class.

Textbooks: Notes provided by instructor. “Optical Interferometry”, P. Hariharan.

Syllabus:

- **Week 1:** Interferometry: Basis and developments
- **Week 2-3:** Two beam interference (Wavefront division, Amplitude division)
- **Week 4-5:** Coherence (Quasi monochromatic light, Mutual coherence function, Temporal coherence, Spatial coherence)
- **Week 6-7:** Multiple beam interference
- **Week 8-9:** Lasers (Laser modes, Single frequency operation, Frequency stabilization)
- **Week 10:** Electronic phase measurements
- **Week 11:** Measurements techniques, sensors
- **Week 12:** Optical testing
- **Week 13:** Interference microscopy, Interference spectroscopy, Interferometric sensors
- **Week 14:** Break
- **Week 15-16:** Review

Grading: Students will complete 3 series of problems (25% each) that will be assigned during the semester. The last assignment (25%) will consist of answering a set of questions on a research paper that will be assigned before the Fall break. There is no *in class* evaluation, all assignments will be completed at home.